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Abstract

The 360◦ imaging has recently gained much attention;
however, its angular resolution is relatively lower than that
of a narrow field-of-view (FOV) perspective image as it is
captured using a fisheye lens with the same sensor size.
Therefore, it is beneficial to super-resolve a 360◦ image.
Several attempts have been made, but mostly considered
equirectangular projection (ERP) as one of the ways for
360◦ image representation despite the latitude-dependent
distortions. In that case, as the output high-resolution
(HR) image is always in the same ERP format as the low-
resolution (LR) input, additional information loss may oc-
cur when transforming the HR image to other projection
types. In this paper, we propose SphereSR, a novel frame-
work to generate a continuous spherical image represen-
tation from an LR 360◦ image, with the goal of predicting
the RGB values at given spherical coordinates for super-
resolution with an arbitrary 360◦ image projection. Specif-
ically, first we propose a feature extraction module that rep-
resents the spherical data based on an icosahedron and
that efficiently extracts features on the spherical surface.
We then propose a spherical local implicit image func-
tion (SLIIF) to predict RGB values at the spherical coordi-
nates. As such, SphereSR flexibly reconstructs an HR image
given an arbitrary projection type. Experiments on various
benchmark datasets show that the proposed method signifi-
cantly surpasses existing methods in terms of performance.

1. Introduction
The 360◦ imaging has recently gained much attention

in many fields, including the AR/VR field. In general,
raw 360◦ images are transformed into 2D planar represen-
tations while preserving the omnidirectional information,
e.g., equirectangular projection (ERP) and cube map pro-
jection (CP) to ensure compatibility with imaging pipelines.
Omnidirectional images (ODIs)1 are sometimes projected

*Lin Wang is currently with HKUST.
1Throughout the paper, we use omnidirectional images and 360◦ im-

ages interchangeably.

Figure 1. Learning continuous spherical image representation.
SphereSR leverages SLIIF to predict RGB values at given spheri-
cal coordinates for SR with arbitrary image projection.

back onto a sphere or transformed with different types of
projection and rendered for display in certain applications.

However, the angular resolution of a 360◦ image tends
to be lower than that of a narrow field-of-view (FOV) per-
spective image, as it is captured using a fisheye lens with
an identical sensor size. Moreover, the 360◦ image quality
can be degraded during a transformation between different
image projection types. Therefore, it is imperative to super-
resolve the low-resolution (LR) 360◦ image by considering
various projections to provide high-level visual quality un-
der diverse conditions. Early studies attempted to recon-
struct high-resolution (HR) ODIs by interpolating the miss-
ing data between the LR image pixels [3, 5, 25].

Recently, deep learning (DL) has brought a significant
performance boost to 2D single image super-resolution
(SISR) [17, 37, 44]. These methods mostly explore super-
resolving 2D LR image using high-capacity convolutional
neural networks (CNNs) via, e.g., residual connections [21],
and learning algorithms including generative adversarial
networks (GANs) [18, 40, 41]. However, directly using
these methods for 360◦ images represented in 2D planar
representations is less applicable as the pixel density and
texture complexity vary across different positions in 2D pla-
nar representations of 360◦ images, as pointed in [10].
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Consequently, several attempts were made to address SR
problems in relation to 360◦ imaging [10, 28, 36, 46]. In
particular, 360-SS [28] proposes a GAN-based framework
using the Pix2Pix pipeline [14]. however, it focuses only
on the ERP format and does not fully consider the proper-
ties of 360◦ images. LAU-Net [10] introduces a method to
identify ODI distortions on the latitude and upsample ODI
pixels on segmented patches. However, this process leads
to considerable disconnections along the patches. In a nut-
shell, existing methods for ODI SR ignore the projection
process of 360◦ images in real applications and only take
the ERP image as the LR input, producing the HR ERP out-
put. Indeed, a 360◦ image can be flexibly converted into
various projection types, as in real applications, the user
specifies the projection type, direction, and FOV. Thus, it
is vital to address the ERP distortion problems and strive to
super-resolve an ODI image to an HR image with an arbi-
trary projection type rather than a fixed type.

In this paper, as shown in Fig. 1, we propose a novel
framework, called SphereSR, with the goal of super-
resolving an LR 360◦ image to an HR image with an ar-
bitrary projection type via continuous spherical image rep-
resentation. First, we propose a feature extraction module
that represents spherical data based on icosahedron and effi-
ciently extracts features on a spherical surface composed of
uniform faces (Sec. 3.1). As such, we solve the ERP image
distortion problem and resolve the pixel density difference
according to the latitude. Second, we propose a spherical
local implicit image function (SLIIF) that can predict RGB
values at arbitrary coordinates on a sphere feature map, in-
spired by LIIF [7] (Sec. 3.2). SLIIF works on triangular
faces, buttressed by position embedding based on normal
plane polar coordinates to obtain relative coordinates on a
sphere. Therefore, our method tackles pixel-misalignment
issue when the image is projected onto another ODI projec-
tion. As a result, SphereSR can predict RGB values for any
SR scale parameters. Additionally, to train SphereSR, we
introduce a feature loss that measures the similarity between
two projection types, leading to a considerable performance
enhancement (Sec. 3.3). Extensive experiments on various
benchmark datasets show that our method significantly sur-
passes existing methods.

In summary, the contributions of our paper are four-fold.
(I) We propose a novel framework, called SphereSR, with
the goal of super-resolving an LR 360◦ image to an HR im-
age with an arbitrary projection type. (II) We propose a fea-
ture extraction module that represents spherical data based
on an icosahedron and extracts features on a spherical sur-
face. (III) We propose SLIIF, which predicts RGB values
from the spherical coordinates. (IV) Our method achieves
the significantly better performance in the extensive experi-
ments.

2. Related Works
Omnidirectional Image SR and Enhancement. Early
ODI SR methods [2, 4, 6, 15, 26] focused on assembling
and optimizing multiple LR ODIs on spherical or hyper-
bolic surfaces. On the other hand, as the distortion in ODI
arises due to the projection of the original spherical image
onto a 2D planar image plane, recent research has focused
on tackling and solving distortion in ODI using 2D con-
volution to achieve a qualitative result in the observation
space, i.e., a spherical surface. Su et al. [36] and Zhou
et al. [46] proposed evaluation methods for ODI weighted
with the projected area on a spherical surface. Two other
works [27, 30] adapted existing SISR models to ERP SR
by fine-tuning or by adding a distortion map as an input to
tackle different distortions. Ozcinar et al. [28] leveraged
GAN to super-resolve an ODI by applying WS-SSIM [46].
Zhang et al. [45] also proposed the GAN-based frame-
work employing multi-frequency structures to enhance the
panoramic image quality up to the high-end camera qual-
ity. Liu et al. [22] focused on the 360◦ image SR utiliz-
ing single-frame and multi-frame joint learning and a loss
function weighted differently along the latitude. Deng et
al. [10] considered varying pixel density and texture com-
plexity along latitude by proposing network allowing dis-
tinct up-scaling factors along the latitude bands. Unlike the
aforementioned methods, we propose to predict RGB val-
ues at the given spherical coordinates of an HR image with
respect to an arbitrary project type from an LR 360◦ image.
2D SISR with an Arbitrary Scale. Research on SISR
with an arbitrary scale has been actively conducted. Lim et
al. [21] first proposed a method that enables multiple scale
factors over one network. MetaSR [13] achieves SR with
the non-integer scale factors. However, both methods are
limited to SR with the symmetric scales. Later on, Wang
et al. [39] proposed a framework that enables asymmet-
ric scale factors along horizontal and vertical axes. More-
over, SRWarp [34] generalizes SR toward an arbitrary im-
age transformation. Although these methods are effective
for 2D SISR with an arbitrary scale factor, they fail in that
they are not directly applicable to 360◦ image SR due to the
difference between the xy-coordinate (2D) and the spherical
coordinates in ODI domains. We overcome this challenge by
proposing SphereSR, which leverages SLIIF to predict RGB
values for arbitrary spherical coordinates.
Continuous Image Representation. Research on implicit
neural representation (INR) has been conducted to express
3D spaces, e.g., 3D reconstruction and novel view synthesis
via continuous ways [23, 24, 32]. Since then, continuous
image representation has been explored on the (x,y) coordi-
nate. Some studies used networks to predict the RGB value
of each pixel from the latent vector on (x,y) coordinate with-
out a spatial convolution for 2D image generation [1, 33].
LIIF [7] proposes to bridge between discrete and continu-
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Figure 2. Overall framework of the proposed SphereSR.
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Figure 3. Subdivision process of an icosahedron. We define a pixel
as the face of a subdivided icosahedron.

ous representation for images on the (x,y) coordinate. We
propose SLIIF, which enables continuous image represen-
tation on the unit sphere.
CNNs for Spherical Images. Cohen et al. [8] proposed a
CNN-based method on the sphere with structural character-
istics called rotational equivariance. However, it requires
Fourier transform for each step. Coors et al. [9] devel-
oped a CNN filter in light of spatial location on the sphere
to solve the distortion problem of the ERP images. Su et
al. [35] proposed a kernel transformer network that converts
the pre-trained kernels on the perspective images into ODIs.
SpherePHD [19] proposed a convolution kernel applicable
to triangular pixels defined on the faces of the icosahedron.
Zhang et al. [43] performed convolution using a hexagonal
filter applicable to the vertices of icosahedron. In this work,
we focus on ODI SR and propose SphereSR, which applies
convolution to a spherical structure created through the sub-
division of an icosahedron.

3. Method
Overview. As shown in Fig. 2, we propose a novel frame-
work, SphereSR, the goal of which is to obtain continuous
spherical image representation from a given icosahedron in-
put. First, we introduce a feature extraction method for

spherical images that efficiently extracts features from an
image on an icosahedron (Sec. 3.1). Second, we propose
the Spherical Local Implicit Image Function (SLIIF), which
predicts RGB values through the extracted features in order
to reconstruct an HR image flexibly with an arbitrary pro-
jection type(Sec. 3.2). Lastly, We propose a feature loss to
obtain support from features of other projection types by
utilizing the advantage of SLIIF, i.e., conversion to an arbi-
trary projection type(Sec. 3.3).

3.1. Feature Extraction for Spherical Images

Feature extraction is crucial yet challenging for spherical
image SR, as we focus on very large scale factors, e.g., ×16.
In this situation, it is imperative to tackle the memory over-
load issue while ensuring high SR performance. Hence, the
proposed SphereSR represents the spherical data based on
an icosahedron and efficiently extracts features on a spher-
ical surface composed of uniform faces. This is achieved
by a new data structure on the icosahedron coupled with
weight sharing between kernels of different directions.
Data structure. Inspired by the convolution of icosahe-
dron data in SpherePHD [19], we propose a new spheri-
cal data structure. To implement the convolution operation,
SpherePHD [19] uses the subdivision process of an icosahe-
dron, described in Fig. 3, and creates a call-table containing
the indices of N neighboring pixels for each pixel, subse-
quently using it to stack every neighboring pixel. Convo-
lution is then performed with a kernel of size [N + 1, 1].
However, this implementation is not memory-efficient, as it
requires additional N channels for stacking the neighboring
pixels for every convolution operation. To solve this prob-
lem, we propose a new data structure by which the convolu-
tion operation can be directly applied without stacking the
neighbors in a call-table. As shown on the left side of Fig. 4,
we rearrange the original data in the direction of the arrow
while transforming the triangular pixels to rectangular pix-
els such that conventional 2D convolution can be applied.
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Figure 4. New kernel weight sharing. Left: proposed new data
structure, Right: our kernel weight sharing scheme

Here, an upward kernel (red kernel) for each upward (△)
aligned pixel is arranged in the odd-numbered rows, and
a downward kernel (blue kernel) for each downward (▽)
aligned pixel is arranged in the even-numbered rows. (More
details can be found in the supplementary.)

Kernel Weight Sharing. While the memory overload is-
sue can be resolved by the proposed data structure, it is still
necessary to ensure high SR performance. SpherePHD [19]
rotates each upward or downward kernel by 180◦ to obtain
the same kernel shape. Therefore, it is possible to share
weights of the up/downward kernels whose directions and
shapes are symmetric to each other. However, as the direc-
tion of the kernel weight changes for adjacent pixels, high
performance cannot be ensured if the characteristics of the
texture according to the direction need to be identified.

To solve this problem, we introduce a kernel weight shar-
ing scheme called GA-Conv which geometrically aligns
up/downward directional kernels without rotation. As
shown on the right side of Fig. 4, the pixel (face) combi-
nations of two kernels, where up/downward kernels are ap-
plied, are shaped differently depending on the direction of
the center pixel. However, if three vertices of the center
pixel (denoted by the red and blue dots on the right side
of Fig. 4) are included in the pixel combination as imagi-
nary pixels, the shapes of two different up/downward pixel
combinations can be made to be geometrically identical. To
this end, rather than averaging and creating imaginary pix-
els, we distribute the kernel weight to nearby pixels. For
the upward kernel, image pixel weights w3, w9, and w10

are distributed to the nearest four pixels, except the center
pixel. The downward kernel weights w4, w5, and w11 are
distributed in the same way. Details are presented on the
right side of Fig. 4. In this way, the feature extraction mod-
ule can be applied to any pixel without rotation.

Figure 5. Spherical local implicit image function.

3.2. Spherical Local Implicit Image Function
(SLIIF)

Overall Process of SLIIF. With the data efficiently repre-
sented, we now describe the method used to super-resolve
ODIs efficiently on an arbitrary scale. Our main idea is to
predict an RGB value for an arbitrary coordinate on the unit
sphere S2 using a feature map extracted by means of GA-
Conv, as described in Sec. 3.1. Inspired by LIIF [7], we
propose SLIIF, which learns an implicit image function on
S2 using icosahedral faces. SLIIF takes a spherical coor-
dinate of the point on the unit sphere and its neighboring
feature vectors as inputs and predicts the RGB value. It can
be formulated as:

I(s) = fdec(z, s), s ∈ S2 (1)

where fdec is a decoding function shared with all icosahe-
dral faces, s is the point on the unit sphere S2, z represents
a feature vector formed by concatenating the neighboring
feature vectors of s, and I(s) is the predicted RGB value of
s.

For a pixel in an image that can be formed by any
arbitrary projection from the unit sphere, there is a corre-
sponding point s on unit sphere S2.2 The face containing
s is denoted as fs, and the three vertices surrounding fs
are denoted as v1s , v

2
s , and v3s (see Fig. 5). The RGB values

of s w.r.t. the coordinate system of the three vertices are
first calculated and then ensembled based on the triangular
areas A1, A2, and A3 to obtain the final RGB value of
point s. The RGB value of s w.r.t. each vertex vjs is
calculated with the features of six faces containing the
vertex and relative polar coordinate. The features of the
six faces are concatenated clock-wise starting from fs to
preserve geometrical consistency. Here, we denote the
concatenated features as zj and the polar coordinate of s
with respect of vjs as (rj , θj). To better utilize the positional
information, the (rj , θj) values are encoded with γ(p) =
(sin (20πp), cos (20πp), ..., sin (2L−1πp), cos (2L−1πp))

2The coordinate of s is computed by using the center point of a pixel.
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Figure 6. Sphere-oriented Cell Decoding.

to extend the dimension of the relative coordinate, as
introduced in [24, 38]. As such, we can predict the RGB
value of point (θ, ϕ) ∈ S2, which can be formulated as
follows:

I(θ, ϕ) =

3∑
j=1

Aj

A
· fdec(zj , [γ(rj), γ(θj)]) (2)

When the pixel in the image corresponds to the vertex on
S2, we can still utilize the aforementioned procedure be-
cause any choice of neighboring vertices results in the same
RGB value due to the triangle area-based weighting.
Sphere-oriented Cell Decoding. Through SLIIF, we can
predict the RGB value for any point on S2. That is, we can
generate the desired HR image for any projection type by
predicting the RGB value of each pixel.

However, SLIIF provides the RGB value only for the
center of the pixel and discards the information within the
pixel area, except for the center value. To handle this,
LIIF [7] defines the cell decoding value as the width and
height of the query pixel of interest. Nonetheless, this def-
inition cannot be directly applied to a sphere, as the cor-
responding region on the sphere does not have a rectangu-
lar shape and the direction of the reference vertex, where
the RGB value is initially calculated, continually changes.
Thus, we propose sphere-oriented cell decoding, a method
that takes into account the relation between the pixel re-
gion on the projected output and the corresponding region
on S2. By adding the cell decoding value as input to SLIIF,
we can fully utilize the information within the pixel area.
As shown in Fig. 6, we aim to obtain the RGB value of a
rectangular pixel on the projected plane. We call this rect-
angular pixel a plane cell, which can be expressed using the
two vectors

−−→
∆X,

−−→
∆Y . The sphere cell, the corresponding

area of the plane cell on the sphere, is located on the face on
which the corresponding point of pixel center is located on
the sphere. The sphere cell can also be expressed using the
two vectors

−→
∆x,

−→
∆y. The relationship between

−−→
∆X,

−−→
∆Y

and
−→
∆x,

−→
∆y depends on the projection type and location of

the pixel center (refer to the supplementary for details).
For geometrical consistency of the orders of the con-

catenated features, the relative coordinate of s, and the cell
decoding value among the pixels, we need to define new

Figure 7. Proposed feature loss between the spherical and ERP
features.

axis vectors, −→n1 and −→n2, invariant to the face orientation.
The unit vector −→n1 is defined as a vector between the ref-
erence vertex and the face center, and the unit vector −→n2

is defined by the 90 degree counter-clockwise rotation of
−→n1. To determine the height and width based on this coordi-
nate system, we approximate the parallelogram sphere cell
to an axis-aligned rectangle. The approximated sphere cell
is defined as a rectangle which can be expressed using the
two vectors

−−−→
∆xeq,

−−−→
∆yeq with an area identical to that of the

parallelogram sphere cell and with the largest intersection
area within the parallelogram sphere cell. Based on the ap-
proximated rectangular sphere cell, we finally formulate the
sphere-oriented cell decoding value as shown below:(−→

∆x
−→
∆y

)
≈

(−−−→
∆xeq−−−→
∆yeq

)
=

(
cx
−→n1

cy
−→n2

)
(3)

⇒ c = [cx, cy] =

(
|
−−−→
∆xeq|
|−→n1|

,
|
−−−→
∆yeq|
|−→n2|

)
(4)

As a result, we can predict the RGB value I(X,Y ) for
any point on the projected plane based on the following
equation,

I(X,Y ) = I(θ, ϕ, c)

=

3∑
j=1

Aj

A
· fdec(zj , [γ(rj), γ(θj)], [cx, cy])

(5)

3.3. Loss Function

We train the proposed framework using two loss terms.
First, we use the multi-scale L1 loss. With the L1 loss
defined on multiple scales, our framework can learn more
about various relative coordinates and cell decoding values.
Second, we design a feature loss module to measure the
similarity between the features extracted from the sphere
and other projection types.

As shown in fig. 7, we design a feature mask from the
ERP or cube map feature. The spatial part of the mask
is generated from the difference between the predicted SR
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Table 1. ERP SR results on the ODI-SR and SUN 360 Panorama Dataset. Bold indicates the best results.

Scale x8 x16

Method ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama
WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 19.64 0.5908 19.72 0.5403 17.12 0.4332 17.56 0.4638
SRCNN [11] 20.08 0.6112 19.46 0.5701 18.08 0.4501 17.95 0.4684
VDSR [16] 20.61 0.6195 19.93 0.5953 18.24 0.4996 18.21 0.4867

LapSRN [17] 20.72 0.6214 20.05 0.5998 18.45 0.5161 18.46 0.5068
MemNet [37] 21.73 0.6284 21.08 0.6015 20.03 0.5411 19.88 0.5401
MSRN [20] 22.29 0.6315 21.34 0.6002 20.05 0.5416 19.87 0.5316
EDSR [21] 23.97 0.6417 22.46 0.6341 21.12 0.5698 21.06 0.5645

D-DBPN [12] 24.15 0.6573 23.70 0.6421 21.25 0.5714 21.08 0.5646
RCAN [44] 24.26 0.6628 23.88 0.6542 21.94 0.5824 21.74 0.5742
EBRN [29] 24.29 0.6656 23.89 0.6598 21.86 0.5809 21.78 0.5794
360-SS [28] 21.65 0.6417 21.48 0.6352 19.65 0.5431 19.62 0.5308

LAU-Net [10] 24.36 0.6801 24.02 0.6708 22.07 0.5901 21.82 0.5824
SphereSR(Ours) 24.37 0.6777 24.17 0.6820 22.51 0.6370 21.95 0.6342

ODI and the HR ground truth. The channel part of the mask
is generated from the features via channel-wise global aver-
age pooling. In this way, we obtain a feature mask empha-
sizing the relevant parts with high accuracy. Also, the spher-
ical features are converted to the shapes of other projection
types via the SLIIF feature conversion module. Finally, the
converted features are subtracted and masked to formulate
the feature loss Lfeat. The total loss is as follows:

Loss =
1

N

N∑
j=1

∥ Iestj − Igtj ∥1 +λLfeat (6)

4. Experiments
4.1. Dataset and Implementation

We train and test SphereSR using the ODI-SR
dataset [10] and the SUN360 panorama dataset [42]. For
training, 750 out of 800 ODI-SR training images are
used and the remaining 50 images are used for valida-
tion. For testing, we use 100 images from the ODI-SR test
dataset and another 100 images from the SUN360 panorama
dataset. The resolution of an HR ODI is 1024×2048, and
training is performed for the scales of ×8 and ×16. As
shown in Fig. 3, SphereSR takes an image on an icosahe-
dron as input converted from LR ODIs, and the icosahedron
subdivision levels for the scales of ×8 and ×16 are set to 5
and 6, respectively. (More details are in the supplementary.)

4.2. Evaluation on ERP

We use the ODI-SR and SUN360 Panorama datasets for
an evaluation. We compare SphereSR with 9 models for 2D
SISR, including SRCNN [11], VDSR [16], LapSRN [17],
MemNet [37], MSRN [20], EDSR [21], D-DBPN [12],
RCAN [44], EBRN [29] and 2 models for ODI-SR, i.e.,
360-SS [28] and LAU-Net [10]. We use WS-PSNR [46]
and WS-SSIM [46] as evaluation metrics.
Quantitative results. Table 1 shows the results of quanti-

tative comparisons of ×8 and × 16 SR on the ODI-SR and
the SUN 360 panorama datasets. As shown here, SphereSR
outperforms all of the other methods on both datasets, ex-
cept in the ×8 SR case on the ODI-SR dataset, where
SphereSR shows performance comparable to that of LAU-
Net. However, for ×16 SR, SphereSR shows better perfor-
mance compared to LAU-Net in WS-PSNR and WS-SSIM
on both the ODI-SR and the SUN360 panorama datasets.
Qualitative comparison. Figure 8 shows the results of a
visual comparison of ×8 SR images on the ODI-SR dataset.
As shown here, SphereSR reconstructs clear textures and
more accurate structures, while the other methods compared
in this case are affected by the problems of blurred edges
or distorted structures. From this visual comparison, we
can conclude that SphereSR produces textures of repeated
patterns more accurately than ERP networks.

4.3. SR for Other Projection Types

In this section, we verify whether the proposed
SphereSR, trained using the ERP images on the ODI-SR
dataset, can perform well for any projection type. First,
we conduct an experiment involving conversion to a FOV
90◦ perspective image with a size 512×512. We then con-
duct another experiment on the conversion to a FOV 180◦

fisheye image with a size 1024×1024. In addition, we use
circular fisheye projection, one of several types of fisheye
projections. For a comparison with other SR models, we
use bicubic interpolation to convert to the desired projection
type. The ERP GT image is also interpolated using the bicu-
bic method to the desired projection type for a performance
evaluation. We use PSNR and SSIM as evaluation metrics.
Note that we select five random directions, generate a pro-
jection output suitable for the corresponding direction, and
calculate the mean value for PSNR and SSIM.
Perspective Image. Table 2 shows the quantitative re-
sults for perspective image SR. SphereSR again achieves
the best performance on both the ODI-SR and the SUN360
datasets. LAU-Net [10] achieves PSNR values of 26.39dB
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Figure 8. Visual comparisons of x8 SR results of different methods on ODI-SR dataset.

Figure 9. Visual comparison for x8 SR of perspective images on
ODI-SR dataset.

Figure 10. Visual comparison for x8 SR of fisheye images on ODI-
SR dataset.

and 24.33dB on the corresponding datasets. In contrast,
our method significantly surpasses LAU-Net and achieves
the highest PSNR values of 26.76dB and 24.46dB on the
two respective both datasets. In addition, when remov-
ing the SLIIF component in SphereSR, the corresponding
PSNR values drop by 0.1dB and 0.14dB. In Fig. 9, we
show a visual comparison between SphereSR with SLIIF,
SphereSR without SLIIF, RCAN [44] and LAU-Net [10].
As shown in the figure, SphereSR reconstructs clear straight
lines and textures better than other the RCAN(b) and LAU-
Net(c) methods. Also, as a comparison of the usage of
SLIIF(d,e), triangle-shaped artifacts are created when SLIIF
is not used(d), but it can be confirmed that clear straight
lines are created when SLIIF is used(e).

Fisheye. Table 2 shows the quantitative results for fish-
eye image SR. It can be seen that SphereSR has the high-
est performance in terms of the PSNR and SSIM values on
the ODI-SR and SUN360 panorama datasets. Among the
methods for 2D SISR, RCAN achieves the second-highest
PSNR value of 24.40dB on the ODI-SR dataset. On the
SUN360 panorama dataset, LAU-Net achieves the second-
highest PSNR of 24.97dB. Our method results in the highest
PSNR and SSIM values, showing the best SR performance.
In Fig. 10, we show a visual comparison between SphereSR
with SLIIF, SphereSR without SLIIF, RCAN [44] and LAU-
Net [10]. Specifically, we crop the area to view the SR re-
sults at the south pole. As shown in the figure, RCAN(b)
and LAU-Net(c) generate inappropriate textures with sev-
eral lines rushing to the south pole. On the other hand,
SphereSR(w/o SLIIF)(d) and SphereSR(w/ SLIIF)(e) do
not encounter such a problem. Moreover, In the case of (e),
it eliminates the triangle-shaped artifact generated in (d).

4.4. Ablation Study and Analysis

In this section, we study the effectiveness of each of
our proposed modules, e.g., GA-Conv, SLIIF, and feature
loss. In addition, we validate the memory load during
CNN operation using the proposed data structure and using
SpherePHD [19].
GA-Conv. We compare the results of Models 1 and 3 in Ta-
ble 3 when adding or removing GA-Conv. GA-Conv is used
in the feature extraction module to obtain the feature vec-
tor to be used in SLIIF. If GA-Conv is not used, the kernel
weight sharing proposed by SpherePHD [19], which gives
180 degrees rotation per kernel, is used. Table 3 shows that
using GA-Conv improves the PSNR score by 0.14dB and
0.12dB on the ODI-SR and the SUN360 Panorama datasets,
respectively, for ×8 SR.

SLIIF. SphereSR uses SLIIF to present SR results for the
ERP projection type through the feature vectors presented
on the sphere. Identical to an earlier method [31], we imple-
ment a pixel-shuffle algorithm capable of performing SR on
an icosahedron without SLIIF for a performance compari-
son. When using the pixel-shuffle step, the last feature map
was subdivided by the scale factor multiple, after which the
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Table 2. Perspective and fisheye SR results on the ODI-SR and SUN 360 Panorama Dataset. Bold indicates the best results.

Projection Type Perspective Fisheye
FOV 90 180

Method ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 25.40 0.6858 23.49 0.6516 23.27 0.7117 22.75 0.7157
SRCNN [11](+Bicubic) 26.04 0.7005 23.98 0.6654 23.92 0.7246 23.47 0.7295
EDSR [21](+Bicubic) 26.53 0.7192 24.91 0.6916 24.21 0.7323 23.98 0.7452

D-DBPN [12](+Bicubic) 26.59 0.7139 24.63 0.6836 24.39 0.7308 24.02 0.7401
RCAN [44](+Bicubic) 26.70 0.7191 24.81 0.6901 24.40 0.7348 24.08 0.7452
360-SS [28](+Bicubic) 23.28 0.6528 21.95 0.6205 22.00 0.6957 21.61 0.6962

LAU-Net [10](+Bicubic) 26.39 0.7197 24.72 0.6943 24.33 0.7346 24.97 0.7727
SphereSR(w/o SLIIF)(+Bicubic) 26.66 0.7176 24.83 0.6930 24.32 0.7345 25.00 0.7477

SphereSR(Ours) 26.76 0.7208 24.97 0.6962 24.46 0.7393 25.14 0.7780

Table 3. Ablation studies on ERP SR on ODI-SR and SUN360 Panorama Dataset for both ×8 and ×16 SR.

Scale Component x8 x16

Model GA-Conv SLIIF Feature
loss

ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama
WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

1 x ✓ x 24.20 0.6688 23.98 0.6719 22.44 0.6341 21.92 0.6318
2 ✓ x x 24.31 0.6731 24.07 0.6749 22.47 0.6335 21.92 0.6294
3 ✓ ✓ x 24.34 0.6765 24.10 0.6816 22.47 0.6364 21.93 0.6336
4 ✓ ✓ ✓ 24.37 0.6777 24.17 0.6820 22.51 0.6370 21.95 0.6342

Table 4. Comparisons of activation memory between SpherePHD
and the proposed data structure. The network architectures of
SpherePhD and ours have the same number of convolution layers
(16) and hidden feature dimension (32).

Level 4 5 6 7

SpherePHD(MB) 660 1896 6714 26032
New Data Structure(MB) 374 724 2138 7450

final ERP output was derived by means of bicubic interpo-
lation. As shown in Models 2 and 3 in Table 3, using SLIIF
for continuous image presentation achieves higher perfor-
mance (24.34dB vs. 24.31dB) than the pixel-shuffle method
of subdivision of the icosahedron for ×8 SR.
Feature loss. We propose a feature loss that measures the
feature similarity of the crucial areas through feature mask-
ing using features generated from other projection types. To
confirm the effectiveness of feature loss, we compare the SR
performance when adding and removing this loss. Models
3 and 4 in Table 3 show the ablation results. The results
of the performance comparison indicate a performance im-
provement for all metrics in the ×8 and ×16 SR cases.
Data Representation Efficiency. In Sec. 3.1, we point out
that the CNN implementation of SpherePHD is not efficient
for SR. We thus propose a new data structure to tackle this
problem. To ascertain the efficiency of the new data struc-
ture, we implement a simple CNN model and then conduct
an experiment to compare the activation memory. The CNN
model is a simple structure in which the convolution layers
are stacked; the number of convolution layer is set to 16 and
the hidden feature dimension is set to 32. Table. 4 shows the
experiments from input level 4 to input level 7. As indicated

in the table, the new data structure in GA-Conv has a much
lower activation memory level. In addition, it is found that
as the input level is increased, the ratio of using new data
structure memory to SpherePHD decreases. Based on this,
the proposed data structure is shown to be more efficient in
terms of memory compared to SpherePHD. Moreover, the
efficiency increases as the input resolution is increased.

5. Conclusion
In this paper, we proposed a novel framework,

SphereSR, which generates a continuous spherical image
representation from an LR 360◦ image. SphereSR predicts
the RGB values at the given spherical coordinates of an HR
image corresponding to an arbitrary project type. First, we
proposed geometry-aligned convolution to represent spher-
ical data efficiently, after which we proposed SLIIF to ex-
tract RGB values from the spherical coordinates. As such,
SphereSR flexibly reconstructed an HR image with an arbi-
trary projection type and SR scale factors. Experiments on
various benchmark datasets demonstrated that our method
significantly surpasses existing methods.
Limitation and Future Work. We focused on finding an
efficient data structure and kernel weight sharing method
to extract meaningful features with the ODI input based on
GA-Conv (Sec. 3.1). Future studies will therefore need to
improve the network architecture using the properties of
ODIs compared to perspective images, and then we can
achieve better SR results via SLIIF.
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