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Abstract

In this paper, we tackle the problem of category-level 9D
pose estimation in the wild, given a single RGB-D frame.
Using supervised data of real-world 9D poses is tedious and
erroneous, and also fails to generalize to unseen scenarios.
Besides, category-level pose estimation requires a method
to be able to generalize to unseen objects at test time, which
is also challenging. Drawing inspirations from traditional
point pair features (PPFs), in this paper, we design a novel
Category-level PPF (CPPF) voting method to achieve ac-
curate, robust and generalizable 9D pose estimation in the
wild. To obtain robust pose estimation, we sample numer-
ous point pairs on an object, and for each pair our model
predicts necessary SE(3)-invariant voting statistics on ob-
ject centers, orientations and scales. A novel coarse-to-fine
voting algorithm is proposed to eliminate noisy point pair
samples and generate final predictions from the population.
To get rid of false positives in the orientation voting pro-
cess, an auxiliary binary disambiguating classification task
is introduced for each sampled point pair. In order to de-
tect objects in the wild, we carefully design our sim-to-real
pipeline by training on synthetic point clouds only, unless
objects have ambiguous poses in geometry. Under this cir-
cumstance, color information is leveraged to disambiguate
these poses. Results on standard benchmarks show that our
method is on par with current state of the arts with real-
world training data. Extensive experiments further show
that our method is robust to noise and gives promising re-
sults under extremely challenging scenarios. Our code is
available on https://github.com/qq456cvb/CPPF.

1. Introduction

Estimation of 3D position, orientation and scale of
novel objects, namely, category-level 9D pose estimation
in the wild, is of great importance in many fields, such as
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Figure 1. An overview of our proposed voting scheme. Dur-
ing training, for each sampled point pairs on synthetic models, we
train a set of voting targets with a SE(3) invariant neural network.
When testing, objects are first segmented out, and then for each
object we randomly sample some point pairs to vote for the final
9D poses (translation, orientation and scale).

robotics [10,23,32] and human-object interactions [1,20].
There are many prior works exploring this direction, but
with limitations, though. Some past works [3,9,17,25,31]
have explored the instance-level 6D pose estimation. How-
ever, they require exact object models and their sizes before-
hand, which is often not realizable in real-world scenarios.
NOCS [32] introduces normalized object coordinate space
to give a consistent representation across intra-class objects.
Although it is able to achieve category-level pose estima-
tions, it requires real-world pose annotations, which are te-
dious and limited by size. Besides, the 3D object scales
predicted by NOCS are simple heuristics and prone to ob-
ject occlusions, which is inevitable in real world. We doubt
if one can leverage a sim-to-real approach that generalize
9D pose estimations from synthetic objects to real world,
since ground-truth pose annotations in real-world scenarios
are hard to acquire. Gao et al. [10] tries to solve this prob-
lem via comparing the appearance of objects of synthetic
objects and real objects, and finds a pose that minimize the
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difference. Though this method does not require real 9D
pose labels, it is erroneous and inferior to NOCS in terms of
orientation error, due to the domain gap between synthetic
and real RGB images.

Embracing these challenges, in this paper, we propose
Category-level PPF (CPPF) that votes for category-level 9D
poses. We draw some inspirations from traditional point
pair features (PPFs), and formulate the problem of pose es-
timation as a voting process, where each point pair would
generate several offsets or relative angles towards ground-
truth 9D poses. Next, the pose with the most votes is cast
as our final prediction. In contrast to traditional instance-
level PPFs, where each pair is matched against an offline
database, our method is much faster and able to generalize
to unseen objects. To overcome the difficulty in orientation
voting, where false positives are generated, an auxiliary bi-
nary classification task is introduced.

In order to segment out the point cloud of a real-world
target object, we leverage an off-the-shelf or fine-tuned in-
stance segmentation model. We argue that instance segmen-
tation labels are much cheaper and easier to annotate than
9D poses.

Besides, we develop a two-stage coarse-to-fine voting
method, to robustly estimate the object pose when pre-
dictions of instance segmentation are not accurate. This
method could eliminate noisy point pairs that do not con-
tribute to the voting of object pose. Furthermore, our ad-
ditional experiments show that when only object bounding
boxes are available, our method could still achieve robust
and appealing results.

We evaluate our method on the publicly available real-
world dataset released by Wang efr al. [32] on category-
level object pose estimation. Results show that our method
beats sim-to-real state of the arts and is comparable to real-
world training methods. In addition, we show that when
only bounding box detections are provided, our method still
gives decent 9D pose predictions. To further evaluate the
generalization ability of our method to real-world scenarios,
we directly apply our method on SUN RGB-D [27] dataset
with zero-shot transfer, which contains much more diverse
and complex scenes. Our method also outperforms base-
lines by a large margin. In summary, our contribution is:

* We propose a novel category-level voting scheme to
extract 9D pose of objects. An auxiliary task is intro-
duced to remove the ambiguity in orientation voting.
A coarse-to-fine voting algorithm is proposed to elim-
inate noisy point pairs with robust pose predictions.

* We introduce a novel sim-to-real pipeline with care-
fully designed point pair features to achieve generaliz-
able sim-to-real transfer, with synthetic models only.

» Extensive experiments show that our sim-to-real
method is on par with current state-of-the-art meth-

ods, which utilize real-world training data. Besides,
our model is robust to segmentation errors and could
give accurate pose predictions with only bounding box
detections.

2. Related Works
2.1. Object Pose Estimation

Instance-Level Pose Estimation There are many pose
detection methods that requires only point clouds. Drost
et al. [9] propose point pair features to match against an
object database using a voting scheme. Later, some re-
searchers improves upon Drost’s work: Hinterstoisser et
al. [12] leverage a smart sampling scheme to restrict the
searching range; Vidal efr al. [31] improve the matching
process by considering neighborhoods that potentially af-
fected due to noise. It also improves the post-processing
step such that the retrieved pose is more consistent with the
observed camera view. Shi er al. [26] propose a method
on generating object poses from stable geometric groups.
There are also many works taking RGB(-D) images as in-
put. Kehl et al. [16] extend the popular SSD paradigm to
cover the full 6D pose space. Branchmann et al. [3] learn
to classify each pixel into a set of normalized coordinates
and then generates a set of candidates by RANSAC. Grab-
ner et al. [11] render depth images from 3D models using
the predicted poses and match learned image descriptors of
RGB images against those of rendered depth images using
a CNN-based multi-view metric learning approach. Rios
et al. [25] use a discriminative learning approach to match
the object pose in images against a database. DeepIM [19]
leverages a FlowNet to output relative pose between real
and rendered image patches. The pose is refined in an it-
erative way. Kehl et al. [17] learn to auto-encode RGB-D
patches and match them in a codebook to vote for the final
pose. Gao et al. [10] directly regress 6D poses from object
point clouds. These methods lack the ability to generalize
to unseen objects, and most of them [3,9,17,25,31] do not
scale well.

Category-Level Pose Estimation Recently, a few works
focus on category-level object estimation, where an unseen
object’s pose is to be detected. NOCS [32] learns to regress
objects’ normalized coordinates establishing 2D-3D rela-
tionships, so that object poses can be solved in closed form.
However, it requires real-world pose annotations for train-
ing. SPD [28] improves the predictions of canonical ob-
ject models by deforming categorical shape priors. Then,
CASS [5] use a variational auto-encoder to capture pose-
independent features, along with pose-dependent ones, to
directly predict the 6D poses. FS-Net [6] proposes a decou-
pled rotation mechanism that uses two decoders to decode
the category-level rotation information. For translation and
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size estimation, it uses a residual estimation network. Du-
alPoseNet [21] leverages two parallel decoders either make
a pose prediction explicitly, or implicitly do so by recon-
structing the input point cloud in its canonical pose. The ex-
plicit prediction is then refined with the implicit one. Chen
et al. [7] propose to render synthetic models and compare
the appearance with real images under different poses. This
method, though achieves sim-to-real transfer, is inferior to
our method, due to the domain gap between synthetic and
real RGB images. Their method, however, is prone to oc-
clusion and noise.

2.2. Sim-to-Real Transfer

Sim-to-Real is a common strategy in many fields like
object reconstruction, pose estimation and reinforcement
learning for robots. ShapeHD [34] and MarrNet [33] render
realistic ShapeNet [4] models for 3D object reconstruction
from a single RGB image. PoseCNN [35] renders differ-
ent objects into random background to synthesis images for
training of object poses. Many works [ 13, 14, 18,32] follow
this paradigm, and training on synthetic RGB images have
been a common practice in object pose estimation. In re-
inforcement learning, domain adaption methods [2, 15] are
usually leveraged, and visual/physical realistic simulation
of real environment [29, 36] plays an important role. Most
existing methods explore the domain transfer in color space,
while few works [30] focus on the domain gap between syn-
thetic and real point clouds. This is due to the fact that in
real scenarios, objects are often occluded with noisy back-
grounds.

3. Preliminaries: Point Pair Features

In this section, we briefly discuss the original point pair
features (PPFs) proposed by Drost et al. [9], which can be
leveraged for instance-level retrieval.

Given two points p; and p2 with normals n; and no, set
d = p2 — p;1 and define the so-called point pair features F':

F(p1,p2) = (|d|l2, £(n1,d), £(nz,d), Z(n1,n3)), (1)

In the offline phase, the global model description is cre-
ated. Such a global model description contains all the pre-
calculated PPFs for the object of interest.

In the online phase, a set of reference points in the scene
is selected. All other points in the scene are paired with the
reference points to create point pair features. These fea-
tures are matched to the model features contained in the
global model description, and a set of potential matches
is retrieved. Every potential match votes for an object
pose by using an efficient voting scheme where the pose
is parametrized relative to the reference point. Specifically,
for each match, the pose can be retrieved by aligning the

PPF in the scene to that in the offline database. For more
details, we refer the reader to Drost et al. [©]. Though Drost
PPF has been successful in many scenarios, it can not do a
category-level pose estimation, and it is not scalable as the
number of objects goes large.

4. Methodology

To address the problem raised by instance-level PPFs, we
propose Category-level PPF (CPPF) - a brand-new method
for detecting category-level object poses. Compared with
Drost PPF, our method is free of an offline database. In-
stead, we directly predict the necessary statistics to vote for
object centers, orientations and scales, using a neural net-
work with augmented point pair features as the input.

We assume the target object is first segmented out
by some off-the-shelf or fine-tuned instance segmentation
model. The segmentation does not need to be exact, and we
will introduce our coarse-to-fine voting process to robustly
estimate 9D poses when the segmentation is inaccurate.
Furthermore, in Section 6.2, we show that instance segmen-
tation can be replaced by coarse bounding box masks.

4.1. Point Pair Voting
4.1.1 Voting for Centers

Denote the object center as o, for each point pair p; and po,
we predict the following two offsets:

j=pi6- T @)
||p1P2||2’
—
P1P2
v=lo—(p1+ Mm)“m (3

Notice that these two offsets are invariant to rotations and
translations, because for arbitrary rotation matrix R €
SO(3) and translation t € R3, the new offsets p/ and v/
are:

R -pip2
'—R-D6- =y, 4)
. PR pipal.
R -pip3
V=[(R-o+t)— (R-p: +t+“||R~p—V>1p2H2)H2:V~

®)

The proof is simple and omitted, observing that both inner
product and L2 norm are invariant to rotations.

Once p and v are fixed, the object center is determined
up to one degree-of-freedom ambiguity. Specifically, the
object center will lie on a circle, with center ¢ = p; + p -
”;’%Z’E and radius v, demonstrated in Figure 2a.

Inspired by Canonical Voting [38], we can enumerate
every 27” degree and generate multiple votes along the cir-
cle. Though there is a circle ambiguity for a single pair,
when there are enough pairs, the ground truth location will
emerge with the largest vote count, shown in Figure 2b.
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Figure 2. (a) Offset prediction in center voting. Take a bowl
as an example, our model predicts 1 = ||p1¢||2 and v = [|C8||2,
where c is the perpendicular foot on p1p2 opposite o. Once p and
v are fixed, object center would possibly lie on the red dash circle.
(b) Center voting scheme. For each point pair, candidate centers
are generated on the dash circle for an interval of 27"

Symmetry in Objects Another nice property of our vot-
ing scheme is that symmetric objects are naturally han-
dled without any special treatment. Previous methods like
NOCS [7] require a special treatment of symmetric objects
because of the ambiguity of the normalized space. They
map the same input features to different outputs due to sym-
metry. In contrast, in our model, input features of symmet-
ric point pairs are exactly the same (due to the SFE(3) in-
variance of PPF), and the output offsets for these pairs are
also identical, so that our model learns a proper functional
mapping. This is illustrated in Figure 3.

Figure 3. Handling symmetric objects. Here, we take the bird-
eye view of a bowl for better illustration. The three symmetric
point pairs around the rim share exactly the same input PPF fea-
tures and output offsets (u and v).

4.1.2 Voting for Orientations

Denoting the up orientation as e; and right orientation as
ey, we predict the following two relative angles:

—

P1Pp2

a=e] —=— (6)
! P1P2|2

—
P1P2
B .

=ey  ———=-—. @)
? Hp1p2||2

These two angles are also invariant to arbitrary rotations.
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Figure 4. (a) Once « is predicted, the candidate orientation vector
will lie on a cone with one degree of freedom. (b) For two point
pairs p1, p2 and p1, p3, we generate candidate votes and count
them into bins, the final prediction is the one with the most votes.

Analogous to center voting, there is also an ambiguity of
one degree of freedom, shown in Figure 4a. Likewise, we
also generate a set of proposals for each point pair with a
constant degree interval, and then select the predicted orien-
tation as the one with the largest voting count. Because the
orientation is continuous, in practice, we uniformly enumer-
ate a set of orientations from unit sphere. For each orienta-
tion, we count the number of vote candidates that fall into
a fixed solid angle around the orientation. The orientation
with the largest count is identified as the final prediction.
This is illustrated in Figure 4b.

Removing the Ambiguity of Orientations Unfortu-
nately, for orientations, a fake peak with opposite direction
sometimes appears when the object is symmetric in struc-
ture. When the relative angle « is about 7 for a majority
of point pairs, the opposite orientation to ground-truth (i.e.,
-e1) also receives a lot of point votes, giving a false positive.

To eliminate false positives, an auxiliary task is intro-
duced. For each point pair p1, p2, we calculate p;’s normal
n; (normal ambiguity removed by ensuring n; I:TI)% < 0).
Then we do a binary classification on the following two aux-
iliary variables:

1, if . 0

R I ®)
0, otherwise
1, ifn;-ey; >0

r= fhre =0 )

0, otherwise

Taking the up orientation as an example, we show how
these auxiliary variables can be used to remove the ambi-
guity in the opposite direction. During inference, for each
point pair, ¢ is predicted by our neural network. Denote the
orientation candidate after voting as €;, we calculate two
additional statistics 6/ = n; - €; and —6' = —n; - é; for
each pair. Then, 6’ and —¢’ are compared with 5. If the
summation of CrossEntropy(6/, &) from all point pairs is
smaller than CrossEntropy(—4',5). we keep €;; other-
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wise, we flip the sign of &; and set &; := —&;. We will
verify the usefulness of this task in our ablation studies.

4.1.3 Voting for Scales

Denoting the category-level average bounding box scales as
§ € R? and the bounding box scale of a particular instance
as s € R?, we predict the following statistic:

v = log(s) — log(s). (10)

During inference, =y is first averaged among sampled point
pairs, and then the predicted scale can be retrieved as § =
exp(y) * S, where x is the point-wise product.

4.1.4 Coarse-to-Fine Voting Process

In previous sections, we describe the overall voting process
for 9D poses (i.e., translation, rotation, scale). However,
the generated object pose (especially orientation) might be
inaccurate due to noisy points when the instance segmenta-
tion is not precise. In order to filter out these noisy points,
we propose a coarse-to-fine voting algorithm. Specifically,
we first vote for object centers with all the points and then
back-trace these votes, keeping only the points that gener-
ate enough votes close to the voted object center. Once the
noisy points are removed, we vote for the object pose again
with the filtered points. A formal description of this algo-
rithm is illustrated in Algorithm 1.

4.2. Sim-to-Real Transfer
4.2.1 Transfer with Depth Maps

One big advantage of our method is that we only need to
train on the synthetic models, and then generalize to real-
world scenarios. We achieve this by using the depth map
during both training and testing phases, and only local point
features are leveraged as input. We find that depth or point
clouds are much more accurate in sim-to-real generaliza-
tions. In contrast, color information is harder to transfer
in real-world scenarios, because light conditions are really
hard to tune in order to generalize. Color information is
only leveraged when there are several ambiguous poses that
cannot be distinguished from point clouds.

Rendering Synthetic Models through Realistic Self-
Occlusion For each category, we choose several synthetic
topology-correct models from ShapeNetCore55 similar to
that in NOCS [7]. Then we use OpenGL [24] to render each
model’s depth map from a sampled perspective. All points
from the back faces get culled in order to simulate self-
occlusion. Notice that compared with NOCS, our method
does not need to choose a random background and paste
synthetic models onto it. The only requirement is the syn-
thetic model itself.

Algorithm 1 Coarse-to-Fine Voting Algorithm.

1: Input: object point cloud {p1,...,pN}-

2: Output: translation t, orientation &1, &, and scale 8.

3: Initialize empty 3D grids G.

4: for each sampled point pair p; and p» in point cloud
do

5:  Use neural network to predict x and v.

6:  Generate candidate center votes oV, ... o).

7:  Accumulate candidate votes into G by discretization.

8: end for

9: Output t = argmax(G) as the predicted translation.

10: Initialize point pair pool P = {}.

11: for each sampled point pair p; and p» in point cloud
do

12:  Use neural network to predict p and v.

13:  Generate candidate center votes o(), ... o),
14 fori=1,...,Ndo

15: if [0 — t|| < e then

16: Add p; and ps to P.

17: end if

18:  end for

19: end for

20: Initialize discretized orientation grids E; and E,.
21: Initialize v4cc = O.

22: for each sampled point pair p; and ps in P do
23:  Use neural network to predict «, 5 and .

24: Yacet = Y-

25:  Generate candidate orientation votes egl), - ,egN)
and egl), ce egN) with constant interval.

26:  Accumulate candidate votes into E; and Eo

27: end for

28: Output § = exp("“l‘;f) * 8.

29: Output &; = argmax(E;) and é; = argmax(E) as the
orientation with the most votes.

Voxelization and Random Jittering Another problem of
sim-to-real transfer is the different sampling density in sim-
ulated and real scenarios. To mitigate the domain gap, dur-
ing both training and testing, we voxelize input point clouds
with a predefined resolution to obtain a constant sampling
density. Besides, we observe that both simulated and real
point clouds have a grid artifact. This is due to the raster-
ization of image pixels. To solve this issue, we randomly
jitter the simulated and real point clouds, leading to an im-
provement on the final results.

4.2.2 Use Color Information to Disambiguate Poses

For most categories, our rendered depth images (i.e., point
clouds) generalize well to real-world. However, for laptop,
there are two ambiguous poses. The laptop lid and key-
board base are hard to discriminate with point clouds only,
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even for humans. To solve this problem, we train an addi-
tional network that takes RGB inputs to segment the lid and
keyboard. The training data for this network only contains
rendered synthetic laptop images with Blender [8], so that
our model is still free of real training images. When testing,
we calculate the normal of laptop keyboard by RANSAC
plane detection on the predicted segmentation. If the voting
result is inconsistent with this normal, we replace it with the
normal, otherwise the result is unchanged.

5. Implementation Details

In practice, we convert the scalar regression problem into
a multi-class classification problem by using a list of an-
chors, and find that this gives us a better result. We use 32
bins for translation and 36 bins for rotation. In both train-
ing and inference stage, we uniformly sample a fixed num-
ber of points (20,000 in training, 100,000 in testing) per
model/image and predict their corresponding statistics (i.e.,
W, v, a, 3,7). In the center voting process, the accumula-
tion 3D grid has a resolution of 0.4 cm except for laptop
which is 1 cm. The range of 3D grid is the tightest axis-
aligned bounding box of input. In the orientation voting
process, the orientation grid has a resolution of 1.5 degrees.

5.1. Network Architecture

We use SPRIN [37], which is an SO(3) invariant net-
work, and we modified input features to make it SE(3) in-
variant. The input to the network is the point pair and the set
of k nearest neighbors of each point. Denoting £ neighbors
of point p as {p™),--- ,p)}, the sides and angles of tri-
angles formed by % Z}f p, p(™) and p are fed to SPRIN
to extract rotation invariant point embeddings. Besides, the
normal for each point is also estimated and leveraged from
its k£ nearest neighbors. The network profession is illus-
trated in Figure 5. We train each category separately, with
Adam optimizer, using learning rate le-3, for 200 epochs.
The batch size is 1.

6. Experiments

In this section, we evaluate our method on two datasets.
NOCS REAL275 [32] and SUN RGB-D [27]. Both datasets
provide RGB-D frames with annotated 9D bounding boxes.

Metrics We follow NOCS [32] to report both intersection
over union and 6D pose average precision. Intersection over
union (IoU) is calculated between the predicted and ground-
truth bounding boxes with threshold of 50%, while 6D pose
average precision is calculated by measuring the average
precision of object instances for which the error is less than
m cm for translation and n° for rotation. We follow NOCS
to set a detection threshold of 10% bounding box overlap

between prediction and ground truth to ensure that most ob-
jects are included in the evaluation. Notice that the origi-
nal 3D box mAP computation code provided by NOCS is
buggy. Instead, we use the correct code from Objectron [1].

6.1. NOCS REAL275 with Instance Mask

Wang et al. [32] captures 8K real RGB-D frames (4300
for training, 950 for validation and 2750 for testing) of 18
different real scenes (7 for training, 5 for validation, and 6
for testing) using a Structure Sensor. We use the 2750 test-
ing scenes for evaluation. We use the instance segmentation
masks from NOCS [32] for a fair comparison.

Comparisons to State of the Arts We compare our
method with a set of real-world training methods:
NOCS [32], CASS [5], SPD [28], FS-Net [6], Dual-
PoseNet [21]; and a set of methods requiring synthetic train-
ing data only: Chen et al. [7], Gao et al. [10]. The origi-
nal mAP results reported by Chen et al. [10] uses the ToU
matches computed by NOCS [32] which is potentially un-
fair, we fix this by using the matches computed by Chen et
al’s [7] method itself. We also augment Gao et al.’s [10]
method to additionally regress 3D box scales. NOCS [32],
Chen et al. [7], Gao et al. [10] and DualPoseNet [21]’s re-
sults are given by running the official code provided by the
authors, while the others are borrowed from the original pa-
pers. Notice that DualPoseNet [21] uses its own instance
segmentation masks other than those provided by NOCS,
which may result in a higher mAP than the actual.

The results are given in Table 1. We see that our method
achieves an mAP of 16.9, 44.9 and 50.8 for (5°, 5 cm), (10°,
5 cm) and (15°, 5 cm) respectively. It outperforms the best
sim-to-real baseline by 9.1, 27.8 and 24.3, which is a quite
large margin. Our method is also comparable to those meth-
ods that are trained on real-world pose annotations. More
detailed analysis and comparison is illustrated in Figure 6.
Some qualitative comparisons are given in Figure 7. This
experiment shows that our proposed method generalize well
to real-world data with only synthetic training data.

6.2. NOCS REAL275 with Bounding Box Masks

Though our method does not require pose annotations
for real-world data, it does need to first segment out the
target object with a real-world trained instance segmenta-
tion model. Can we relax this requirement? Thanks to our
robust coarse-to-fine voting algorithm 1 which filters out
noisy points, we find that when only bounding boxes are
given, our method still achieves significant results. Notice
that current state of the arts all require pixel-wise instance
segmentation as input. Quantitative results are given in Ta-
ble 1. Qualitative pose predictions are shown in Figure 8.

Moreover, we also tried to get rid of detection priors
completely for bowls, more details in the supplementary.
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Figure 5. Our network architecture. For each input point pair, we first extract SFE/(3) invariant embeddings for each point. Then the two
embeddings are concatenated with the original PPF feature (Equation 1), and fed into multi-layer perceptions to predict final outputs.
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Figure 6. Quantitative comparisons on NOCS REAL275 test
dataset. Our method achieves state-of-the-art performance among
pure sim-to-real methods.

mAP (%)
Training Data o ° o
3Dy 3Dsp 5 10 15

Sem S5cm Scm

NOCS [32] Syn.(O+B) + Real 744 278 9.8 241 349
CASS [5] Syn.(O+B) + Real - - 23.5 38.0 -
SPD [28] Syn.(O+B) + Real - - 214 541 -
FS-Net [0] Syn.(O+B) + Real - - 282  60.8 -
DualPoseNet [21] Syn.(O) + Real 823 573 361 678 763
Chen et al. [7] Syn.(O) 15.5 1.3 0.7 3.6 9.1
Gao et al. [10] Syn.(O) 68.6 247 7.8 17.1 265
Ours w/ bbox mask Syn.(O) 737 272 124 353 412
Ours w/ inst. mask Syn.(0) 782 264 169 449 508

Table 1. Performance comparison of various methods. Syn.(O)
means synthetic ShapeNet objects only; while Syn.(O+B) means
ShapeNet models rendered with real backgrounds. Real means the
real-world training data provided by NOCS. The best using real-
world training data is marked blue, and the best using synthetic
training data is marked red.

6.3. SUN RGB-D in the Wild

SUN RGB-D [27] is a scene understanding benchmark
which provides 58,657 9D bounding boxes with accurate
object orientations for 10,000 images. We use all the chairs
in validation split for evaluation, which contains 2,699 im-
ages. In order to make the problem more challenging, we
randomly rotate the SUN RGB-D scenes while the original
point clouds are aligned with gravity. In addition, we re-
quire that all the algorithms cannot see any training data but

mAP (%)
20° 40° 60°
10cm 20cm 30cm
Back-projection 202 4.4 0.0 0.6 5.8

Gao et al. [10] 222 6.0 0.0 1.0 7.0
Ours 247 83 0.8 10.7 17.6

3D1p 3D

Table 2. mAP results on SUN RGB-D datasets in the wild. Our
method achieves the best performance.

use existing instance segmentation models (i.e., trained on
MSCOCO [22] but not fine-tuned on SUN RGB-D).

Evaluation Results We compare our method with two
baselines: direct back-projection and Gao et al. [10]. Di-
rect back-projection is a simple baseline that directly back
project the detected instance into an axis-aligned bounding
box, while Gao et al. [10] is the same as in Section 6.1.
Since this is an extremely difficult task, we only evaluate
orientation errors along the up axis. Results are listed in
Table 2. More results are given in the supplementary.

6.4. Ablation Study and Running Time

In this section, we conduct various ablation studies on
our model. Results are reported on REAL27S test set.

Number of Point Pair Samples and Size of Discrete Ori-
entation Bins  As the number of pair samples increase, the
voting results for orientation and translation become more
accurate, while getting saturated for 100,000 point pairs.
The size of discrete orientation bins also decides the accu-
mulation accuracy during the voting process. Quantitative
results are given in Table 3.

Auxiliary Task for Disambiguating Poses The auxiliary
classification task helps our model get rid of potentially
flipped orientations, and Table 4 verifies this.

Whether to use Coarse-to-Fine Voting Process Recall,
in Algorithm 1, we filter out point pairs that do not con-
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DualPoseNet Chenetal.

Ground Truth

Figure 7. Qualitative comparisons on NOCS REAL275 test dataset.

Our Pose Estimation Ground Truth

Predicted Bounding Boxes

Figure 8. Our 9D pose prediction given only bounding box
masks on NOCS REAL?275 test dataset.

Number of  Orientation mAP (%)
Point Pairs  Bin Size (°) 5° 10° 15°
D25 3Dso S5cm S5cm S5cm
100,000 1 783 243 132 382 457
100,000 2 785 259 134 46.6 522
100,000 4 784 262 7.0 427 535
10,000 1.5 68.5 21.7 86 272 34.1
60,000 1.5 78.1 258 15.6 428 49.1
200,000 1.5 784 266 173 455 513
100,000 1.5 782 264 169 449 508

Table 3. Effects of sample number and orientation bin size.

tribute to the proposed object center. This makes our model
robust to the noisy points from the imperfect instance seg-
mentation. Quantitative results are given in Table 4.

Regression vs. Classification Direct regression on rele-
vant statistics are worse than classification. This may due
to the fact that regression does not constrain the value into a
valid range and produces more noisy outputs. Quantitative
results are shown in Table 4.

mAP (%)
5° 10° 15°
Scm 5cm Scm

3D25  3Dso

No Aux. Classification 692 239 120 31.7 368
No Coarse-to-Fine Voting  75.6 223 9.7 274 326
Regression 733 147 1.8 12.7 242

Ours (full) 782 264 169 449 50.8

Table 4. Ablation results on NOCS REAL275 test set.

Running Time Analysis It takes 171ms, 229ms and 13ms
per image for the voting of centers, orientations and scales
respectively on a single 1080Ti GPU. Our model is efficient
thanks to the highly parallelized voting process.

7. Conclusion

In this paper, we propose a category-level voting algo-
rithm to predict 9D poses in the wild. To overcome the
difficulty of false positives during the voting step, an auxil-
iary orientation classification task is introduced. Our model
is trained on synthetic objects and generalizes well to real
scenes. Results show that our method is superior to previ-
ous sim-to-real methods, even with bounding box masks.
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