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Abstract

Point-based object localization (POL), which pursues
high-performance object sensing under low-cost data an-
notation, has attracted increased attention. However, the
point annotation mode inevitably introduces semantic vari-
ance for the inconsistency of annotated points. Existing
POL methods heavily reply on accurate key-point annota-
tions which are difficult to define. In this study, we propose
a POL method using coarse point annotations, relaxing the
supervision signals from accurate key points to freely spot-
ted points. To this end, we propose a coarse point refine-
ment (CPR) approach, which to our best knowledge is the
first attempt to alleviate semantic variance from the per-
spective of algorithm. CPR constructs point bags, selects
semantic-correlated points, and produces semantic center
points through multiple instance learning (MIL). In this
way, CPR defines a weakly supervised evolution procedure,
which ensures training high-performance object localizer
under coarse point supervision. Experimental results on
COCO, DOTA and our proposed SeaPerson dataset vali-
date the effectiveness of the CPR approach. The dataset
and code will be available at https://github.com/
ucas-vg/PointTinyBenchmark/.

1. Introduction
Humans can recognize and easily achieve a sense of the

objects present in their eye-sight. In computer-vision, this
is usually framed as drawing bounding boxes around ob-
jects [21,25,40,41] or dense annotations of the entire scene
[13, 16]. However, one inevitable circumstance for training
such models is that they require high-quality densely an-
notated data which is expensive and difficult to obtain. In
some applications [27], just the object’s location is neces-
sary while costly annotation (e.g. bounding box) is redun-
dant or even undesirable (e.g. a robotic arm aims at a single
point to pick up an object [27]).

Hence point-based object localization (POL) is studied.
Due to the simple and time-efficient annotation, point-based
object localization has attracted increasing attention in re-
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Figure 1. Examples of coarse point annotation and the problem of
semantic variance. (Best viewed in color.)

cent years [26,29]. POL based methods require point-level
object annotations and can predict the object’s location as a
2D coordinate in the original image.

However, while annotating an object as a point, there can
be multiple candidate points. One problem that arises with
optional candidate points is that multiple regions of vary-
ing semantic information are labeled positive for the same
class. Conversely, identical regions with similar semantic
information are labeled differently. Take bird category as
an example, during annotation, we label the bird’s different
body parts (e.g. neck and tail etc.) as positive based on the
visible regions in the image. Based on the annotation, for
different images in the dataset, we have labeled same body
part (e.g. neck) of the bird as both positive and negative
(see Fig. 1). Therefore, during training, the model has to
consider the neck region as positive for one image and neg-
ative in another (the image where tail is annotated). This
phenomenon introduces ambiguity and confuses the model
which results in poor performance.

Previous works [29, 37] addressed this issue by setting
strict annotation rules by annotating only the pre-defined
key-point areas of the object. As a result, they suffer from
the following challenges: i) the key points are not easy
to define, especially for some broadly defined categories
where they do not have a specific shape (Fig. 2 (a)); ii) the
key point may not exist in the image due to the different
poses of objects and different camera views (Fig. 2 (b)); iii)
when objects have large scale variance, it is difficult to de-
cide the appropriate granularity of the key points ( Fig. 2
(c)). For a person, if the head is a key point [29] (coarse-
grained) then there remains a large semantic variance for the
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(a) Chairs with different shapes. (b) Persons with different poses.

(c) Persons of different sizes.

Figure 2. The difficulties of key-point based annotation. (a) Key
points are hard to define due to the large in-class variance of shape.
(b) Key point (e.g. head) does not exist due to multiple poses and
views. (c) Key point’s granularity (eye, forehead, head or body) is
hard to determine due to multiple scales.

large-scale instance (whether to annotate the eye or nose). If
the eye is labeled as a key point [37] (fine-grained) then the
position of eyes for a small-scale instance cannot be identi-
fied. Thus, the complicated annotation rules are required to
solve the semantic variance problem from annotation per-
spective, which considerably increases the annotation dif-
ficulty and human burden. Therefore, the challenges men-
tioned above restrict previous POL methods from exploring
multi-class and multi-scale datasets (e.g. COCO or DOTA).

In this paper, we formulate the coarse point-based local-
ization (CPL) paradigm for training a localizer of a general
POL, as shown in Fig. 3. We firstly adopt a coarse point
annotation stragegy, which allows to annotate any point on
an object. Then the coarse point refinement (CPR) algo-
rithm is proposed to refine the initialized annotated coarse
point to the semantic center in the training set. Finally, the
refined points instead of the annotated points are used as su-
pervision to train a localizer. The proposed CPR is the first
attempt to alleviate semantic variance from the perspective
of algorithm rather than annotation. Specifically, CPR finds
the semantic points around the annotated point through mul-
tiple instance learning (MIL) [9], then weighted averages
the semantic points to obtain the semantic center, which has
a smaller semantic variance and a higher tolerance for pre-
diction errors. The contributions are:

1) We dive into point-based object localization (POL)
task, and formulate the coarse point based localization
(CPL) paradigm for general object localization, extending
the previous works to a multi-class/multi-scale POL task;

2) The coarse point refinement (CPR) algorithm is pro-
posed to alleviate the semantic variance from the perspec-
tive of algorithm rather than rigid annotation rules;

3) The experimental results show the CPR is effective

for CPL, which obtains a comparable performance with the
center point (approximate key point) based object localiza-
tion, and improves the performance over 10 points com-
pared with the baseline;

4) A new dataset with more than 600,000 annotations,
named SeaPerson, is introduced in this paper. This dataset
can be used for tiny person detection and localization.

2. Related Work
In this section, we review the relevant point-based vision

tasks and the vision tasks with multiple instance learning.

2.1. Vision Tasks under Point Supervision

Pose Estimation. Human or animal pose estimation
aims to locate the position of joint points of persons or ani-
mals accurately [31, 48, 50]. There are several benchmarks
built for the task, e.g. COCO [22] and the Human3.6M [17]
datasets are the most well-known ones for 2D and 3D pose
estimation and AP-10k [45] for animal pose estimation. In
these datasets, annotations are a set of accurate key points,
and the predicted results are human or aninimal poses rather
than the location of person or animal instances.

Crowd Counting. In this task, accurate head annota-
tion is utilized as point supervision [29, 37, 52]. The crowd
density map [15, 18, 19], generated by head annotation, is
chosen as the optimization objective of the network. Fur-
thermore, crowd counting focuses on the number of people
rather than each person’s position. It depends on precise
key points such as the human head, while the coarse point
object localization task only requires the coarse position an-
notation on the human body.

Object Localization. Unlike object detection [12, 21,
25], especially for rotation detection [42, 43], requiring the
exact bounding box information, object localization appli-
cations [26] are often agnostic to object’s scale. The
works [26,29] train a localizer with points instead of bound-
ing boxes. These tasks are summarized as POL in our paper.
However, they heavily rely on key-point annotations to re-
duce the semantic variance.

Different from the above mentioned tasks, our CPL re-
lies upon a coarse point instead of keypoints and deals the
semantic variance problem with a novel approach.

2.2. Vision Tasks with Multiple Instance Learning

The paradigm of MIL [9] is that a bag is positively la-
beled if it contains at least one positive instance; otherwise,
it is labeled as a negative bag. Inspired by weakly super-
vised object detection task, the proposed CPR method fol-
lows the MIL paradigm. With the object category and the
coarse point annotation, we consider sampled points around
each annotated point as a bag and utilize MIL for training.

Image-level Tasks. An image is divided into patches,
where patches are seemed as instances and the entire im-
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Figure 3. Pipeline of CPL in three steps: 1) Annotating objects as
coarse points A. 2) Refining annotated points to semantic centers
Â. 3) Training a localizer (e.g. P2PNet) with Â as supervision.

age as a bag. Content-based image retrieval [47, 49] is a
conventional MIL task, which just classifys images by their
content. If the image contains at least one object of a class,
the whole bag can be seen as a positive sample for that class.
Otherwise, the bag will be regarded as a negative sample.

Video-level Tasks. Firstly, the video is divided into
segments, which will be classified separately and then the
whole video is seemed as a bag. Following the above
pre-processing, MIL is used to identify specific events in
videos [10,24,30]. Additionally, some researchers have ap-
plied MIL to video object tracking [1,2]. [2] also achieves a
robust tracker by constructing instance-level bag from box,
but different from our work, it does not handle the negative
samples to suppress background for MIL.

Object-level Tasks. MIL is widely used in weakly su-
pervised object localization and detection (WSOL [8, 38]
and WSOD [4, 7, 32, 34–36]), where only the image-level
annotation is utilized. Firstly, Select Search [33] or Edge
Box [53] methods are used to produce proposal boxes,
which are then used as a bag and each of them as an in-
stance. Finally, they classified positive and negative sam-
ples by judging whether the image contains at least one ob-
ject of a specific class. WSOL/WSOD, only with image-
level annotation, focus on local regions and can not distin-
guish instances due to the lack of object-level annotation.

Annotation of CPL is a coarse point position and the cat-
egory of each object. CPR views sampled points around the
annotated point as a bag and trains object-level MIL to find
a better and stable semantic center.

3. Coarse Point Refinement
As shown in Fig. 3, CPR can be regarded as a pre-

processing that transforms the annotations on the training
set to a more conductive form for the subsequent tasks. The
main purpose of CPR is to find a semantic point, which has
a smaller semantic variance and a higher tolerance for pre-
diction errors, to replace the initial annotated point.

In Fig 4 and Algorithm 1, there are three key steps in
CPR: i) Point Sampling: points in the neighborhood of the
annotated point are sampled; ii) CPRNet Training: based on
the sampled points, a network is trained to classify whether
the points are in the same category with the annotated point
or not; iii) Point Refinement: based on the scores obtained
by CPRNet and the constraints (details in Sec. 3.3), the

Algorithm 1 Coarse Point Refinement
Input: Training set Dtrain, CPRNet E.
Output: Refined points ÂDtrain .
Note: A and C are 2D coordinates and category label of annotated
points in image I respectively.

1: LDtrain
CPR ← 0;

2: for (I, A,C) ∈ Dtrain do
3: Extract feature map F of I with E;
4: // Step1: point sampling
5: Bj ← bag sampling(aj) for each aj ∈ A, Eq. 1;
6: Negk ← neg sampling(k) for each category k ∈ {1,

2, ...K}, Eq. 2;
7: // Step2: CPRNet training
8: Calculate LMIL with Bj and F, Eq. 7;
9: Calculate Lann with A and F, Eq. 8;

10: Calculate Lneg with Negk and F, Eq. 10;
11: Sum LMIL, Lann and Lneg to obtain the CPR loss LCPR,

Eq. 3;
12: LDtrain

CPR ← LDtrain
CPR + LCPR;

13: end for
14: Train E by minimizing LDtrain

CPR to obtain Ê.
15: // Step3: point refinement
16: ÂDtrain ← {};
17: for (I, A,C) ∈ Dtrain do
18: Â← Point Refinement(Ê, I, A,C), Algorithm 2;
19: ÂDtrain ← ÂDtrain ∪ {Â};
20: end for

points, having similar semantic information with the an-
notated point, are chosen as the semantic points and then
weighted with their scores to obtain the semantic center as
the final refined point.

3.1. Point Sampling

In this paper, K denotes the number of categories, aj ∈
R2 and cj ∈ {0, 1}K denote the annotated point’s 2D coor-
dinate and the category label of j-th instance. p = (px, py)
denotes a point on a feature map.

Point Bag Construction. In Fig. 4, to sample points
uniformly in the neighborhood of aj , we define R circles
with aj as the center, where the radius of the r-th (1 ≤
r ≤ R, r ∈ N+) circle is set as r. Then we sample r ∗
u0 (uo=8 by default) points with equal intervals around the
circumference of the r-th circle, and obtain Circle(aj , r).
All sampled points of the R circles are defined as points’
bag of aj , denoted as Bj in Eq. 1. The points outside the
feature map are excluded.

Circle(p, r) =

{(
px + r · cos

(
2π · i

u0 · r

)
, py+

r · sin
(
2π · i

u0 · r

))
| 0 ≤ i < r · u0, i ∈ N+

}
;

Bj = ∪
1≤r≤R

Circle(aj , r).

(1)

Bj is used for calculating the MIL loss for CPRNet train-
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Figure 4. The framework of CPR. With F , there are three steps in CPR: 1) Points bag (e.g. B1, B2) and negative samples (e.g. Negk) are
obtained by point sampling according to annotated points A (green), and then feature vectors of these points are extracted on F . 2) CPRNet
are trained with the feature vectors based on MIL loss, annotation loss and negative loss. 3) Semantic points (red points on the birds) are
selected by classification scores of points in bag (e.g. B1, B2) predicted by the trained CPRNet. Finally, the refined points (yellow) Â are
obtained by weighted averaging the semantic points. (Best viewed in color.)

ing and obtaining the semantic points for point refinement.
Negative Point Sampling. All integer points on the fea-

ture map, outside the circles with radius R of all annotated
points of a given category, will be selected as negative sam-
ples. The negative samples of category k can be defined as:

Negk = {(px, py)|px ≤ w, py ≤ h, px ∈ N+, py ∈ N+

∀(aj , cj) s.t. cjk = 1, ||p− aj || > R},
(2)

where ||p−aj || is the Euclidean distance between p and aj .
w and h are the width and height of a given feature map.

3.2. CPRNet Training

This section gives the details of the objective function
of training CPRNet based on the sampled points bag Bj

(j ∈ {1, 2, ..M}) and the negative points Negk (k ∈
{1, 2, ..K}), where M and K are the amount of instances
and categories. U is defined as the amount of points in Bj .

CPRNet. CPRNet adopts FPN [20] with ResNet [14] as
the backbone. Only P2 or P3 is used due to the lack of scale
information in point annotation. After four 3×3 conv layers
followed by the ReLU [11] activation, the final feature map
F ∈ Rh×w×d is obtained, where h×w is the corresponding
spatial size and d is the dimension of channel. For a given
point p = (px, py), Fp ∈ Rd denotes the feature vector of p
on F. If p is not an integer point, the bilinear interpolation
is used to obtain Fp.

CPR Loss. Object-level MIL loss is introduced to
endrow CPRNet the ability of finding semantic points
around each annotated point. Then to overcome the over-
fitting problem of MIL when the data is insufficient, we
further introduce the instance-level prior as supervision by
designing annotation and negative loss. The objective func-
tion of CPRNet is a weighted summation of the three losses:

LCPR =LMIL + αannLann + αnegLneg, (3)

where αann = 0.5 and αneg = 3 (by default in this paper).

And LMIL, Lann and Lneg are based on the focal loss [21]:

FL(Sp, cj) =

K∑
k=1

cj,k(1− Sp,k)
γ log(Sp,k)+

(1− cj,k)S
γ
p,k log(1− Sp,k),

(4)

where γ is set as 2 in Eq. 4 following the standard focal loss,
and Sp ∈ RK and cj ∈ {0, 1}K are the predicted scores on
all categories and the category label, respectively.

Object-level MIL Loss. To find the semantic points dur-
ing refinement, we refer to WSOD [4] and design a MIL
loss to enable the CPRNet justify whether the points in Bj

are in the same category with aj . Based on Bj , the fea-
ture vectors {Fp|p ∈ Bj} are extracted. As Eq. 5 shows,
for each p ∈ Bj , a classification branch fccls is applied to
obtain the logits [Ocls

Bj
]p, which is then utilized as an input

of an activation function σ1 to obtain [Scls
Bj

]p. Besides, an
instance selection branch fcins is applied to Fp to obtain
[Oins

Bj
]p, which is then utilized as an input of an activation

function σ2 to obtain the selection score [Sins
Bj

]p. The score
[Sover

Bj
]p is obtained by taking the element-wise product of

[Sins
Bj

]p and [Scls
Bj

]p.

[Ocls
Bj

]
p
= fccls(Fp) ∈ RK , [Oins

Bj
]p = fcins(Fp) ∈ RK ;

[Scls
Bj

]p = [σ1(O
cls
Bj

)]p = 1/(1 + e
−[Ocls

Bj
]p
) ∈ RK ;

[Sins
Bj

]p = [σ2(O
ins
Bj

)]p = eO
ins
p /

∑
p′∈Bj

[e
Oins

Bj ]p′ ∈ RK ;

[Sover
Bj

]p = [Sins
Bj

]p · [Scls
Bj

]p ∈ RK ,
(5)

where σ2 is a softmax function. Different from MIL
in WSOD, the sigmoid activation function is applied for
σ1, due to its suitability for binary task compared with the
softmax function. Furthermore, the sigmoid activation
function allows to perform multi-label classification (for
the overlapping area of multiply objects’ neighborhood) for
points and is more compatible with focal loss.
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The bag-level score SBj is obtained by the summation
of all points’ scores in Bj by Eq. 6. SBj can be seen as the
weighted summation of the classification score [Scls

Bj
]p of p

in Bj by the corresponding selection score [Sins
Bj

]p.

SBj =
∑
p∈Bj

[Sover
Bj

]p ∈ RK . (6)

The MIL loss is finally given by the focal loss on the pre-
dicted bag-level scores SBj

and the category label cj of aj :

LMIL =
1

M

M∑
j=1

FL(SBj , cj). (7)

Annotation Loss. Due to the lack of explicit positive
samples for supervision in MIL, the network sometimes fo-
cuses on the points outside the instance region and mistak-
enly regards them as the foreground. Therefore, we intro-
duce the annotation loss Lann, that gives the network accu-
rate positive samples for supervision via annotated points,
to guide MIL training. Lann can guarantee a high score
of the annotated point and mitigate mis-classification to
some extent. Firstly, the classification score of Saj

(j ∈
1, 2, ...M) of aj is calcluated as:

Saj = σ1(fc
cls(Faj )) ∈ RK . (8)

Lann is calculated with focal loss as:

Lann =
1

M

M∑
j=1

FL(Saj , cj). (9)

Negative Loss. The conventional MIL adopts binary log
loss, and it views the proposals belonging to other cate-
gories as negative samples. For lacking of explicit supervi-
sion from samples in background, the negative samples are
not well suppressed during MIL training. Therefore, based
on Negk, the negative loss Lneg , the negative part of focal
loss, is calculated as follows, where we set γ = 2.

Sp = σ1(fccls(Fp)) ∈ RK ;

Lneg =
1

M

K∑
k=1

∑
p∈Negk

cj,kS
γ
p,k log(1− Sp,k).

(10)

3.3. Point Refinement

As described in Algorithm 2, the trained CPRNet Ê is
used to refine the annotated point. Based on Bj , [Scls

Bj
]p

predicted by Ê and the constrains (details given in follow-
ing), points with the same category (similar semantic) with
the annotated point are selected, denoted as B+

j . Then, the
semantic center (final refined point), used to replace the an-
notated point, is set as the weighted mean of points in B+

j .
To obtain B+

j , three constraints (line in blue in Algo-
rithm 2) are introduced. Constraint I is to delete points with
small classification scores. We filter out the point p ∈ Bj

whose Sp,kj is smaller than the threshold δ1 (set as 0.1 by
default) or δ2 ∗ Saj ,kj

, where δ2 is set as 0.5 by default

Algorithm 2 Point Refinement
Input: Trained CPRNet Ê, input image I , annotated points A,
category label of annotated points C.
Output: Refined points Â.
Note: δ1, δ2 are thresholds. K is the number of categories. Sp,k is
the predicted score on k-th category of point p. kj ∈ {1, 2, ...K}
is the category label (not one-hot format) of the j-th object.

1: Â← {};
2: F← extract feature(I; Ê) according to Sec. 3.2;
3: for aj ∈ A, cj ∈ C do
4: find kj ∈ {1, 2, ..K} s.t. cjkj = 1;
5: B+

j ← {aj};
6: Saj ← σ1(fc

cls(Faj ; Ê)) ∈ RK ;
7: Bj ← bag sampling(aj) according to Eq. 1;
8: for p ∈ Bj do
9: Sp ← σ1(fc

cls(Fp; Ê)) ∈ RK ;
10: sp ← Sp,kj ;
11: if sp > δ1 and sp > δ2 ∗ Saj ,kj and

kj = argmax1≤k≤K Sp,k and
aj = argmina∈A ||p− a|| then

12: B+
j ← B+

j ∪ {p};
13: end if
14: end for
15: âj ← (

∑
p∈B+

j
Sp ∗ p)/(

∑
p∈B+

j
Sp);

16: Â← Â ∪ {âj};
17: end for

and kj is category label (not one-hot format) of j-th object.
Constraint II is to delete the points that are not classified
correctly. Specifically, the correct classification means the
classification score Sp,kj of point p on the given annotated
category kj is higher than the scores on other categories.
Constraint III is to delete the points closer to other object
in the same category. Since two adjacent objects of the
same category may interfere with each other. With the three
constraints, the remaining points construct the B+

j and are
weighted average to obtain the semantic center point as the
final refined point, which is used as the supervision to train
P2PNet [29]. P2PNet is the SOTA baseline for the POL task
and will be specifically described in experiment section.

With the point sampling, CPRNet training and Point re-
finement mentioned above, the CPR can effectively mitigate
semantic variance, as shown in Fig. 5.
4. Experiment

4.1. Experimental Settings

Datasets. For experimental comparisons, three public
available datasets are used for point supervised localization
task: COCO [22], DOTA-v1.0 [39] and SeaPerson. COCO
is MSCOCO 2017, and it has 118k training and 5k valida-
tion images with 80 common categories. Since the ground-
truth on the test set are not released, we train our model
on the training set and evaluate it on the validation set.
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Figure 5. Visualization of CPR. Semantic points (red) around the annotated point (green) are weighted averaged to obtain the semantic
center (yellow) as final refined point (see Sec. 3.3). The two images on the left show the results of birds with multiple poses; the three
images on the right show results of objects in multiple categories. Images are cut from the raw ones (in COCO/DOTA) for better view.

DOTA(v1.0) provides 2,806 images with 15 object cate-
gories. We utilize training set for the training and validation
set for evaluation. SeaPerson1 is a dataset for tiny person
detection collected through a UAV camera at the seaside.
The dataset contains 12,032 images and 619,627 annotated
persons with low resolution. The images in the SeaPerson
are randomly selected as training, validation, and test sets
with the proportion of 10:1:10. The details are given in the
supplemental materials.

Coarse Point Annotation In practical scenarios, the
coarse point can be obtained through annotating any single
point on an object. However, since datasets in the experi-
ment are already annotated with masks or bounding boxes,
according to the law of large numbers, it is reasonable that
the manually annotated points follow Gaussian distribution.
Furthermore, since the annotated points must be inside the
bounding box or mask of the object, then an improved
Gaussian distribution, named as Rectified Gaussian (RG)
Distribution, is utilized for annotation. RG(p; 0, 1

4 ) is cho-
sen to generate the point annotations for the experiments.

ϕ(p;µ, σ) = Gauss(p;µ, σ) ·Mask(p);

RG(p;µ, σ) =
ϕ(p;µ, σ)∫
p
ϕ(p;µ, σ)

.
(11)

where µ and σ are the mean and standard deviation of
Gaussian distribution, respectively. Mask(p) ∈ {0, 1} de-
notes whether point p falls inside the mask of an object. If
it is generated from the bounding box annotation, then the
box is treated as a mask.

Evaluation. Similar to WSOD, a point-box distance,
calculated between the point and box, is used for evalua-
tion. Specifically, the distance d between point a = (x, y)
and bounding box b = (xc, yc, w, h) is defined as:

d(a, b) =

√(x− xc

w

)2

+
(y − yc

h

)2

. (12)

where (xc, yc), w, h are the center point, width, and height
of the bounding box, respectively. The distance d is used as
the matching criterion for POL performance. A point and
the object’s bounding box are matched if the distance d is
smaller than a predefined threshold τ . (e.g. τ = 1.0 means

1SeaPerson is a low-resolution tiny person dataset and disclose little
personal privacy from the appearance.

that as long as the point falls within an matched ground-
truth box, the point successfully matches the ground-truth
box.) If a bounding box has multiple matched points, the
point with the highest score is chosen. While a point has
multiple matched objects, the object with the smallest point-
box distance is selected. A true positive (TP) is counted if
a point matches an object. Otherwise, a false positive (FP)
is counted. Neither TP nor FP will be counted if a point
matches an object that is annotated as ignore, which fol-
lows the evaluation criteria of pedestrian detection [51] and
TinyPerson benchmark [46]. We adopt mean Average Pre-
cision with τ = 1.0 (mAP all

1.0 ) as the main metric for exper-
imental comparisons. We do not consider a small τ because
it makes the task more like center localization instead of ob-
ject localization. Here we also report the results of τ = 0.5
and τ = 2.0 in Table 3, which can be informative.

Implementation Details for CPRNet. Our codes are
based on MMDetection [6]. Same to the default setting of
the object detection on COCO, the stochastic gradient de-
scent (SGD [5]) algorithm is used to optimize in 1x training
schedule. The learning rate is set to 0.0025 and decays by
0.1 at the 8-th and 11-th epoch, respectively.

4.2. Experimental Comparisons

The POL task with coarse point annotation is divided
into two key parts: refining the coarse point annotation and
training the point localizer with refined points.

Detector with Pseudo Box. For training a point local-
izer, an intuitive idea is to convert the point-to-point (POL)
to a box-to-box (object detection) problem. Firstly, a fixed-
size pseudo-box is generated with each annotated point as
the center. Next, the pseudo-box is used to train a detector.
Finally, during inference, the center points of the boxes pre-
dicted by the trained detector are used as the final output.
Following [26], we conduct the pseudo box for localization
and give the performance in row 1 of Table 1. The differ-
ence to [26] is that the RepPoint [44] is utilized rather than
Faster RCNN [25], due to its efficiency.

Multi-Class P2PNet. We adopt P2PNet2, to train with
point annotation and predict point for each object during in-
ference, as a stronger baseline for POL task. Improvement

2In our experiments, we re-implement P2PNet and further endow it the
new ability of handling multi-class prediction, which to our best efforts,
aligns the results with those reported in the raw paper [29].
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Figure 6. The top-left and top-right figures are the relative position
distribution (Eq. 14) heatmap of annotated points and final refined
points in bounding boxes. The top-middle figure is RSV curve
of refined points (Eq. 13)) in each epoch during CPRNet training.
The bottom four figures give the annotated points (green) and re-
fined points (yellow) in four epochs, showing the refined points
gradually converge to the semantic center points.

refinement localizer COCO DOTA SeaPerson
- RepPoint∗ 37.42 47.22 47.72
- P2PNet 38.48 48.34 76.52

Self-Refinement (ours) P2PNet 50.86 60.39 84.96
CPR (ours) P2PNet 55.46 63.81 85.86

Table 1. The experimental comparisons (mAP all
1.0 ) of localizers in

three datasets: COCO, DOTA and SeaPerson. RepPoint∗ means
RepPoint with pseudo box (details in Sec. 4.2).

pos MIL ann neg mAP all
1.0 mAP all

0.5 mAP all
2.0

✓ 39.07 28.37 46.90
✓ ✓ 39.45 28.22 47.42
✓ ✓ 54.24 46.56 58.94

✓ ✓ 51.82 46.24 55.67
✓ ✓ ✓ 42.72 33.07 48.81

✓ ✓ ✓ 55.46 50.23 59.49

Table 2. The effect of training loss in CPRNet: MIL loss, annota-
tion loss, negative loss. The pos loss is for comparison.

can be made, especially when there are multiple categories:
i) The backbone of P2PNet in this paper is Resnet-50 rather
than VGG16 [28]. ii) Instead of using the Cross-Entropy
loss, we adopt the focal loss when optimizing classifica-
tion to better deal with the problem of imbalance; iii) The
Smooth-ℓ1 loss instead of ℓ2 loss is used for regression. iv)
In label assignment, different from a one-to-one matching
in the default P2PNet, we assign top-k positive samples for
each ground-truth and regard remaining samples as back-
ground. And then the NMS [23] post-processing for points
is performed to obtain the final point results. The perfor-
mances of P2PNet, given in row 2 in Table 1, improves a lot
compared with the pseudo box (row 1 in Table 1). P2PNet
is a stronger baseline for POL task.

Self-Refinement. For refining the coarse point annota-
tion, inspired by [3], we propose a self-refinement tech-
nique that works as a strategy based on self-iterative learn-
ing. Firstly, the aforementioned pseudo box strategy is
adopted to train a point localizer. Then, the weighted
mean of the points predicted by the localizer works as the
new supervision. Finally, the refined points are obtained.

detector COCO DOTA SeaPerson
RetinaNet 32.61 51.53 48.50
FasterRCNN 35.29 51.15 47.93
RepPoint 37.42 47.26 47.72
RetinaNet w. CPR 51.35 63.69 77.90
FasterRCNN w. CPR 53.21 63.00 77.80
RepPoint w. CPR 53.97 60.37 78.94

Table 3. mAP all
1.0 of more architectures on the three datasets.

With these refined points as supervision, the performance
of P2PNet as point localizer is given in row 3 in Table 1,
where it alleviates the semantic variance problem.

CPR. Compared with self-refinement, CPR (shown in
row 5 of Table 1) obtains more performance gain, indicating
it is more efficient for dealing with the semantic variance.
To quantify the semantic variance of point annotation, the
relative semantic variance (RSV), which is calculated based
on the relative distance of the point to the center point:

x′ =
x− xc

w
; y′ =

y − yc

h
;

RSV = [V ar(x′) ∗ V ar(y′)]
1
2 .

(13)

where (x, y) is an annotated point or refined point and
(xc, yc) is the corresponding center point in the bounding
box of an object. V ar(x′) and V ar(y′) are the variance of
x′ and y′ of all objects in the dataset, respectively. Statisti-
cally, the smaller RSV means the (x, y) holds a more stable
relative position to its corresponding (xc, yc), as shown in
Eq. 13. Considering the (xc, yc) as a strict key point, the
intuition behind the RSV is that a small RSV for a category
is equivalent to a strict annotation, which can effectively
reduce the semantic variance of annotations. As shown in
Fig. 6, the annotated coarse point holds a larger RSV, while
the refined point via CPR obtains a smaller RSV.

To show the relative position distribution of annotated
points in the bounding boxes, we calculate Prob(x′, y′) as:

Prob(x′ = px, y
′ = py) =

∑
1≤j≤M

I{x′
j = p′x and y′

j = p′y}

M
.

(14)
where (x′

j , y
′
j) is relative position of annotated point or re-

fined point for object j in dataset, I{∗} is 1 if ∗ is true, oth-
erwise 0. Prob(x′, y′) is shown as the heatmap in Fig. 6.

Performance Analysis. Pseudo box based localizer is
almost equivalent to train a detector that treats the points in
the neighborhood of the annotated points as positive sam-
ples and others as negative samples. The general detectors
perform label assignment with IoU, which depends heavily
on the scale information of the given bounding box. How-
ever, precise bounding box can not be obtained from point
annotation of POL, leading to poor performance of Pseudo
box based localizer. P2PNet adopts hungarian algorithm to
achieve a purely point-to-point assignment, obtaining bet-
ter performance than pseudo box based localizer. How-
ever, P2PNet is much sensitive to the accuracy of annotated
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feature R mAP all
1.0

5 53.32
8 55.46

P3 10 55.19
15 55.38
20 55.04
25 53.85

(a) Different R with P3

feature R mAP all
1.0

5 48.64
10 53.76

P2 15 54.26
20 54.64
30 54.24
40 53.11

(b) Different R with P2

I II III mAP all
1.0δ1 δ2

0 0.5 ✓ ✓ 45.17
0.1 0 ✓ ✓ 54.96
0.1 0.5 ✓ 54.25
0.1 0.5 ✓ 52.69
0.1 0.5 ✓ ✓ 55.46

(c) Constraints in refinement.

annotation CPR mAP all
1.0

coarse 38.48
coarse ✓ 55.46
center 57.47

(d) Different annotation.
CPR P2PNet mAP all

1.0

ResNet-50 ResNet-50 55.46
ResNet-50 ResNet-101 55.80
ResNet-101 ResNet-101 56.43

(e) Different backbones.Table 4. Ablation studies.
points and the semantic variance. Therefore, point refine-
ment strategy, effectively reducing the semantic variance of
the annotation, achieves better performance. CPR that can
better capture the semantic information, outperforms.

4.3. Ablation Studies
To further analyze CPR’s effectiveness and robustness,

we conduct more experiments on COCO.
Training Loss in CPRNet. Ablation study of the train-

ing loss is given in Table 2. The CPR loss given in row 6
in Table 2 obtains 55.46 mAP. i) MIL loss. If the MIL loss
is removed (row 4), the CPRNet training relies on the an-
notation loss and the negative loss, the performance drops
3.64 points (51.82 vs 55.46). When we replace the MIL
loss with the pos loss, which treats all the sampled points in
the MIL bag as positive samples (line 5), the performance
sharply declines by 12.74 points (42.72 vs 55.46), show-
ing that MIL can autonomously discern points belonging
to the object. ii) Annotation loss. Lacking of the annota-
tion loss (row 3), the performance of localization decreases
1.22 points (54.24 vs 55.46). The annotation loss guides
the training through an given accurate positive supervision.
iii) Negative loss. With the negative loss (row 2), the per-
formance improves by 16.01 points (55.46 vs 39.45), in-
dicating that only MIL loss is not enough to suppress the
background, and the negative loss is inevitable.

Feature Map Level. The CPRNet is established based
on single level feature map of FPN. Table 4a and 4b show
the performance with different feature map levels. Since the
performance on P3 is similar to that of P2, P3 is chosen for
our experiments in COCO if not otherwise specified.

Sampling Scope. Table 4a and 4b show the perfor-
mance of different radius R, where R is a sensitive hyper-
parameter in CPRNet. On P3, the best performance 55.46 is
obtained when R is set as 8. If the sampling scope reduces,
such as R = 5, the performance significantly declines to
53.32, since the sampling scope is limited to a small lo-
cal region, leading to a worse refinement. While the scope
getting larger, the performance becomes steady but drops
slowly until R is over 25 (53.85), since the bag Bj for MIL
introduces more noise, which degrades the performance.

Point Refinement Policy. For point refinement, there
are three constraints (described in Sec. 3.3). δ1 and δ2 are
threshold of constraint I. In Table 4c, it shows that the three
constraints together obtain performance gain.

Upper Bound Analysis. To further validate the CPR, a
comparison between CPR and a strict annotation based lo-
calizer, which can be seen as the upper bound for CPR, is
conducted on COCO. Since it is hard to annotate the objects
in general dataset (e.g. COCO) with key points. There-
fore, we approximately use the center point of each objects’
bounding box as a kind of strict point annotation. The ex-
periment results in Tabel 4d show that CPR can achieve a
comparable performance to center point annotation based
localizer (55.46 vs 57.47).

Localizer Architecture. Table 3 shows that CPR can
further improve the performance of different localizers,
such as Faster-RCNN, RetinaNet and RepPoint.

Backbone. As shown in Table 4e, due to the stronger
backbone Resnet-101 for CPRNet and P2PNet, it obtains a
better performance 56.43.

5. Conclusion and Outlook
In this paper, we rethink the semantic variance problem

in point-based annotation caused by the non-uniqueness
of optional annotated points. The proposed CPR samples
points in neighbourhood, finds the semantic points on the
object by introducing MIL, and then weighted averages
these semantic points to obtain the semantic center of the
object as the supervision for the localizer. CPR alleviates
semantic variance and facilitates the extension of POL task
to multi-class and multi-scale. Comprehensive ablations
on multiple datasets further verify the effectiveness of our
model. In future, we will study on an adaptive R and ex-
plore the possibilities of extending CPR to other tasks.

Limitation. The performance is sensitive to R, which is
not an adaptive value in this paper and may limit CPR to
better deal with the multi-scale of objects to some extent.

Broader Impact. Similar to most of object detection
and localization task, the bias of dataset from the intrinsic
artifacts are not considered.
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[5] Léon Bottou. Stochastic gradient descent tricks. In Neural
Networks: Tricks of the Trade - Second Edition. Springer,
2012. 6

[6] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 6

[7] Ze Chen, Zhihang Fu, and Rongxin Jiang et al. SLV: spatial
likelihood voting for weakly supervised object detection. In
CVPR, 2020. 3

[8] Ramazan Gokberk Cinbis, Jakob J. Verbeek, and Cordelia
Schmid. Weakly supervised object localization with multi-
fold multiple instance learning. IEEE TPAMI, 2017. 3

[9] Thomas G. Dietterich, Richard H. Lathrop, and Tomás
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