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Figure 1. Our system allows users to interactively manipulate an image by sketching desired contours directly on top of the image.

Abstract

Sketch-based image manipulation is an interactive image
editing task to modify an image based on input sketches from
users. Existing methods typically formulate this task as a
conditional inpainting problem, which requires users to draw
an extra mask indicating the region to modify in addition to
sketches. The masked regions are regarded as holes and filled
by an inpainting model conditioned on the sketch. With this
formulation, paired training data can be easily obtained by
randomly creating masks and extracting edges or contours.
Although this setup simplifies data preparation and model
design, it complicates user interaction and discards useful
information in masked regions. To this end, we investigate a
new paradigm of sketch-based image manipulation: mask-
free local image manipulation, which only requires sketch in-
puts from users and utilizes the entire original image. Given
an image and sketch, our model automatically predicts the
target modification region and encodes it into a structure
agnostic style vector. A generator then synthesizes the new
image content based on the style vector and sketch. The
manipulated image is finally produced by blending the gener-
ator output into the modification region of the original image.
Our model can be trained in a self-supervised fashion by

learning the reconstruction of an image region from the style
vector and sketch. The proposed method offers simpler and
more intuitive user workflows for sketch-based image manip-
ulation and provides better results than previous approaches.
More results, code and interactive demo will be available at
https://zengxianyu.github.io/sketchedit.

1. Introduction
Recently there have been increasing efforts and demand

for building interactive photo editing tools on devices with
touch interfaces. Being expressive and easily editable,
sketching is one of the most straightforward ways that
people illustrate their creative ideas and interact with the
apps [2, 10, 25, 44]. Sketch-based image editing is an emerg-
ing research topic where the goal is to build models which
can manipulate holistic or local structures of an image ac-
cording to the user-drawn sketches. It has made a significant
progress in the last few years with advancements in deep
learning and generative models, e.g., GANs [11].

There are two challenges in sketch-based image manip-
ulation: (1) The input sketch roughly indicates where to
modify, but the precise modification region is unknown, and
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Figure 2. Illustration of the previous inpainting-based image ma-
nipulation systems and the proposed one with only sketch input.

(2) it is difficult to collect large-scale image pair data (i.e.
images before and after manipulation) for training. Previous
approaches avoid these obstacles by converting sketch-based
image manipulation into a conditional inpainting problem.
Users are required to draw an extra mask to indicate the
modification regions in addition to the sketch. The masked
regions are regarded as holes and filled by an inpainting
model conditioned on the sketch, , as illustrated in Fig. 2 (a).
Under this inpainting framework, paired training data can be
easily obtained by randomly generating masks as in general
image inpainting [17, 21, 24, 26, 33, 35, 38, 40, 42, 47, 48, 51,
53, 54, 56, 59–61, 64] and extracting edges/contours in the
masked regions as surrogate sketches using edge detection
algorithms [1, 5, 6, 15, 23, 27, 28, 41, 46, 50, 52]. Then the
problem can be solved by training an inpainting model to
predict the original image given the masked image, mask,
and sketch as input. This clever formulation simplifies model
design and training setup, and has been explored extensively
in the recent literature [19, 29, 36, 55, 58].

However, the inpainting framework is sub-optimal for
sketch-based image manipulation. First, although it eases
model design and training, it leaves extra work to users and
results in a complicated user interface. After users sketch
in an image region, they have to draw a mask again around
the same location. This procedure is tedious and redundant.
An untrained user may not be able to draw a good mask
that exactly covers the desired modification area, making the
model difficult to produce reasonable results. Second, with
this framework, masked regions in an input image has to be
removed to match the training condition of the inpainting
model. However, since the original content in a modification
region is usually highly correlated with the desired result,
ignoring this information will degrade the quality of the
manipulated image and lead to unwanted changes in the
modification region.

To this end, we investigate a new paradigm of sketch-

based image manipulation, which requires only sketch inputs
from users while leveraging the entire original image. Our
system provides a more straightforward and user friendly
interface for image manipulation: to solely sketch directly
on top of the original image, as illustrated in Fig. 2 (b).
Moreover, as the system takes the entire image as input,
information in the modification region can be reserved, re-
sulting in more consistent appearance (e.g. color, texture)
with the original content in the modification region.

For local editing, it is desired to preserve most of the
original image content and only modify the relevant image
region surrounding the sketch input. Therefore, we first
predict the modification region with a mask estimator and
then synthesize new content inside with a generator. The
manipulated image is produced by blending the generator
output into the original image using the predicted mask.
To encourage the structure of the synthesized content to
follow the sketch while only keeping the style of the original
content, we encode the modification region of an input image
into a structure agnostic style vector with a style encoder.
The system can be trained in a self-supervised fashion by
learning to reconstruct the target modification region based
on the style vectors and sketches.

We evaluate our method on multiple datasets, including
CelebAHQ, Places2, and newly constructed datasets Sketch-
Face and SketchImg containing sketches and masks drawn
by users. Extensive experiments demonstrate that the pro-
posed method outperforms the state-of-the-art approaches.
To show the advantage of our new framework in terms of
user interaction, we include an interactive demo in the sup-
plementary material. Our contributions are as follow,

• Investigation of a new paradigm of sketch-based image
manipulation: mask-free local image manipulation that
requires only partial sketch inputs from users.

• The first system for mask-free sketch-based local image
manipulation, including the network architecture, data
acquisition, and training strategy.

• Extensive experiments are conducted on multiple
datasets to demonstrate the superiority of our approach
over the related methods.

2. Related Work
Sketch-guided image completion. Previous research on
sketch-based image manipulation is studied mainly under a
conditional image inpainting framework. Yu et al. [58] pro-
pose DeepFill-v2 which can perform sketch-guided image
inpainting of general images as well as face images. The
gated convolution layer is introduced to select useful fea-
tures from the incomplete input dynamically. Portenier et
al. [36] propose FaceShop for sketch-based face images ma-
nipulation through conditional image completion. FaceShop
allows users to modify the local shape and color in a face
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image by drawing the mask, sketch, and a few color strokes.
Jo and Park [19] explore face manipulation with sketch and
color strokes through image completion. They use free-form
masks and style loss to train the image completion model to
handle irregular and possibly large missing areas. Yang et
al. [55] focus on the adaptation of the face manipulation
model trained on sketches generated by edge detection to
the human-drawn sketches. A sketch refinement strategy is
proposed, which first dilates then refines a user-drawn sketch
to close to an edge detection result. Our work is inspired by
these methods but focuses on the manipulation of complete
images. We do not require the users to draw an extra mask to
construct an incomplete image when editing a photo. Instead,
the region to edit is automatically discovered and modified
based on where and what they draw.

Image-to-image translation. Image translation aims to
learn the mapping between different image domains, e.g.
to generate images from semantic label maps, edges, etc.
Isola et al. [18] propose an image-to-image translation frame-
work, called Pix2Pix, to generate images from label maps
or edge maps. Zhu et al. [65] propose CycleGAN, which
allows training an image translation model on unpaired data
with a cycle consistency constraint. Park et al. [34] pro-
pose spatially-adaptive normalization for image generation
conditioned on semantic layout, which modulates the acti-
vations using input semantic layouts to propagate semantic
information throughout the network better. Zhang et al. [62]
propose a framework for exemplar-based image translation
with cross-domain correspondence by jointly learning cross-
domain correspondence and image translation. When deal-
ing with the edge input, image translation methods usually re-
quire a complete edge map and generate a brand new image.
In contrast, our method focuses on local image manipulation
with partial sketches as input.

Contour-based image manipulation is another line of re-
search where an image is edited in the contour domain. Ap-
proaches in this category typically encode an image into an
edge-based representation and decode after users modify the
edges. Elder et al. [8] encode images with the brightness
on edges and perform image editing operations (crop, paste,
delete) in the contour domain. Dekel et al. [3] propose to
encode images with learned features at contour points to
perform complex changes in the image domain by simple
edits of contours. Vinker et al. [43] explore deep image
manipulation with a single training sample by extensive aug-
mentation of the training sample through thin-plate splines
(TPS) warping. A conditional generator trained on the aug-
mented samples can map the edited edges and segmentation
to the modified image. These methods require the contour
representation to be complete from which the image can be
faithfully reconstructed and assume that the users have basic
photo editing skills to perform certain editing operations
on a pre-computed edge map. In comparison, our method

allows a broader range of users to manipulate an image more
easily, i.e. by directly sketching on top of the input image.

3. Proposed Method
We focus on local image manipulation based on free-

form sketches. Given an input image x and partial sketch
c indicating the target contour, our model modifies a local
region of x to match the sketch, resulting in a manipulated
image y. Due to the lack of data for supervised training, we
propose a self-supervised learning approach to jointly learn
mask estimation and masked region reconstruction.

3.1. Model

Our model consists of three components: mask estimator,
structure agnostic style encoder, and generator. Fig. 3 shows
the overall structure of our model. Given an input image x
and sketch c, the generator synthesizes new content based
on the image, sketch, and a structure agnostic style vector
produced by the style encoder. The mask estimator predicts
a mask to blend the synthesized content into the original
image at a proper location. In what follows, we describe
each of these components in detail.
Mask estimator. The mask estimator M is an encoder-
decoder style network that maps an image x and a partial
sketch map c to a mask m, i.e. m = M(x, c). The mask is
produced by applying the sigmoid function on the output of
a convolutional layer, which is a gray-scale map of range
[0, 1]. We use the term mask for consistency with previous
inpainting-based approaches. Each element of the mask
represents how likely the corresponding pixel of the input
image should be modified to match the sketch. Thus, we
can separate the modification region and non-modification
static region by multiplying an input image x with m and
1−m element-wise, respectively. Since we are interested in
the style information in the modification region, we define
a style partial image as xsty = m� x, where � represents
element-wise multiplication. We define a static partial image
xsta = (m− 1)� x as the non-modification region of the
input image.
Structure agnostic style encoder. The goal of the style
encoder S is to extract the style information from the modi-
fication region of the input image but get rid of the structure
information. It is composed of stacked convolutional lay-
ers followed by a global max pooling, which produces a
d-dimensional style vector vsty given the style partial image
xsty and the mask m, i.e. vsty = S(xsty,m). By repeating
vsty by h×w times, we can obtain a style feature v̂sty(d×h×w)

of arbitrary spatial size h× w while keeping position invari-
ant. However, it may still be sensitive to spatial transforma-
tion due to the local connectivity of convolutional layers. To
further encourage the extracted style features to be structure
agnostic, we apply random warping and deterioration to xsty

in training, which will be introduced in Sec. 3.2.
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Figure 3. Model structure of the proposed method. Given an input image x and sketch c, the mask estimator predicts a mask m indicating the
region to edit. The style partial image xsty and the static partial image xsta can be created by multiplying x with m and 1−m element-wise,
respectively. Then the generator synthesizes new content in the modification region based on the static image xsta, sketch c, and a structure
agnostic style feature extracted from xsty by the style encoder.

Generator. The proposed framework is general and does not
depend on the specific architecture of the generator. We can
combine it with most existing inpainting-based models by
using the estimated modification regions as missing regions
and tiling the style vector into style feature maps of the suit-
able size as a generator’s input. In our implementation, we
incorporate the network architecture of DeepFill-v2 [58] due
to its simplicity and lightweight. The generator G consists
of a coarse stage G0 and refinement stage network G1. The
coarse stage takes the partial image, estimated mask, and
sketch as input. We use the style feature maps v̂sty as the
side input at the bottleneck of the coarse stage network. The
output of the coarse stage is denoted as y0, which is passed
through the refinement stage to produce a refined output y1:

y0 = G0(xsta,m, v̂sty)

y1 = G(xsta,m, v̂sty) = G1(y0).
(1)

The final result y is produced by blending the refinement
stage output into the original image using the estimated mask

y = y1 �m + x� (1−m). (2)

To train the generator, we minimize the L1 error between
the output y0, y1, y and the original image x. We also use
adversarial training with a discriminator to encourage visual
realism of the blended image y. The detailed training strategy
and loss functions will be described in the next section.

3.2. Learning by reconstruction

Due to the lack of training data, previous inpainting-based
approaches resort to self-supervised learning, specifically,
by learning to reconstruct the original image from a masked
image and sketch. In this work, we also seek to train our
model using self-supervision. However, as our model infers
the mask, directly learning by reconstructing the original
image will lead to a trivial solution. The mask estimator will
constantly predict an all-zero mask; the generator becomes
an identity mapping; the style encoder does not need to
learn any meaningful representation. We solve this issue by

deteriorating the input images with random local warping
and regional dropout before passing them through the model.
Fig. 4 shows a training iteration of the proposed method.
Local warping. Before passing an input image through the
model in training, we warp x in a random area using triangu-
lar local warping. We construct a triangular mesh by placing
vertices on the image boundary, boundary of a randomly
sampled region, and inside the region. Then a warping flow
can be created by moving interior vertices while keeping
other vertices unmoved. For general images, we place and
move the interior vertices randomly. For face images, to
make the warped faces remain visually plausible, we use
facial landmarks and blendshapes to guide the selection and
movements of the interior vertices. The detailed warping
algorithm can be found in the supplementary material. Fig. 5
shows samples augmented by warping. We can see that
the warped images have the same color and texture as the
original ones but with different structures in warped regions.
Therefore, we can construct the original image with structure
information from the sketch and style information extracted
from a warped image. Also, as a warped image is identical to
the original image in non-warped regions, the mask estimator
will be encouraged to predict zero where no sketch appears.
Thus the regions irrelevant to sketches can be preserved.
Bi-directional mask regularization. Since we warp the
input images in training, the mask predictor may end up
producing masks by simply detecting warping artifacts and
fail in the inference stage, as shown in thee third column of
Fig. 6. To avoid this behavior, we train the mask estimator
with a bi-directional image reconstruction loss as regulariza-
tion. Let f(x) denote the image produced by distorting x
with the warping flow f . By applying the same warping flow
to the sketch c, we obtain a sketch f(c) corresponding to the
warped image. During training, we add an extra decoder to
the mask estimator to predict an image, with the goal of esti-
mating the original image x from the warped image f(x) and
the original sketch c, and the opposite, to estimate f(x) from
x and f(c). Thus the mask estimator M has an extra output
in addition to the mask output m = M(x, c). For input im-
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Figure 5. Example images augmented by local warping. Top: origi-
nal images, bottom: warped images.

age x and sketch c, we let M̄(x, c) represent the estimated
image and M̂(x, c) represent the image blended using the
mask, i.e. M̂(x, c) = M̄(x, c)�M(x, c)+x�(1−M(x, c)).
The bi-directional mask regularization (BMR) loss is defined
as follows:

LBMR =
∥∥M̄(f(x), c)− x

∥∥
1

+
∥∥M̄(x, f(c))− f(x)

∥∥
1

+
∥∥∥M̂(f(x), c)− x

∥∥∥
1

+
∥∥∥M̂(x, f(c))− f(x)

∥∥∥
1
.

Since LBMR is computed for both the warped and the orig-
inal images, the mask estimator can be adapted to natural
image input and thus can predict reasonable masks in the
inference stage, as shown in the forth column of Fig. 6.
Regional dropout. Warping helps the style encoder learn
structure agnostic representation by creating structural varia-
tion while preserving the style in a local region. However,
the warped image and the original image usually have iden-
tical visual elements, while real cases might involve the
generation of new elements. Therefore, during training, we
randomly dropout sampled regions in the style image xsty

before passing it through the style encoder to reduce the
correlation between vsty and x.
Loss functions. For a pair of image x and sketch map c in

Image Sketch w/o BMR w/ BMR

Figure 6. The predicted masks with and without the bi-directional
mask regularization (BMR). Top: warped images, bottom: real
images. BMR helps the mask estimator generalize better to real
image inputs.

the training set, we compute the following loss functions
to jointly train the mask estimator, style encoder, and the
generator:

LR = ‖y0 − x‖1 + ‖y1 − x‖1 + ‖y − x‖1. (3)

Eqn. 3 measures the error of the coarse stage output y0
and refinement stage output y1, as well as the error of the
manipulated image y, which is the combination of x and y1
blended using the estimated mask. In addition,

LG = ReLU[1−D(y, c)], (4)

where D represents the discriminator. For the discrimina-
tor, we use the hinge loss and spectral normalization [32]
in [57, 58]. Eqn. 4 defines the adversarial loss inspired by
GANs. To minimize LG, the generator and mask estimator
have to cooperate reasonably to fool the discriminator. It
requires the generator to synthesize visually realistic content
and the mask estimator to provide the mask that blends the
synthesized content into a proper region in the original im-
age seamlessly. The overall loss function is the sum of LG,
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LR and the mask regularization term LBMR:

Ltotal = LR + LG + LBMR. (5)

4. Experiments
As introduced in Sec. 3.1, our framework can be com-

bined with most inpainting-based models to enable mask-
free manipulation. In our implementation, we plug the
DeepFill-v2 generator into our framework due to its sim-
plicity and efficiency. To verify the effectiveness of the
proposed method, we compare the results under our mask-
free framework to the original DeepFill-v2 as a baseline.
We also compare with other state-of-the-art inpainting-based
face manipulation methods including SC-FEGAN [19] and
DeepPS [55] to demonstrate the superiority of our approach.

4.1. Datasets & Evaluation Metric

We train our general image manipulation model on the
training split of Places [39]. For face manipulation, we
train the model on CelebHQ [20] for consistency with the
inpainting-based approaches. We randomly sample 2,000
images as the validation set and use the remaining data for
training.

For evaluation, we use edge maps extracted by [15] as
surrogate sketches for Places and obtain the sketches in
face regions by connecting detected facial landmarks for
the CelebAHQ dataset. We randomly sample modification
regions for each test image and obtain partial sketches by
discarding all edges outside this region. For evaluation of
our method, we apply local warping in modification regions.
For inpainting-based methods, we set pixel values in modifi-
cation regions equal to zero according to their training condi-
tion. For synthetic samples, the original images can be seen
as the ground-truth. Hence, we evaluate the performance
using PSNR, L1 error, SSIM, and FID [16] between the re-
sults and the original images. PSNR, L1 error and SSIM are
based on pixel-wise errors, often used in image inpainting
and restoration tasks [7,12–14,22,31,37,45,49,57,63]. FID
measures the distance between the distribution of the deep
features of generated images and real images. It is the cur-
rent standard metric for assessing the quality of generative
models [30].

Apart from using synthetic samples for evaluation, to re-
flect the performance in real cases, we construct two test
sets SketchImg and SketchFace for face and general image
manipulation, respectively. These two datasets contain 100
natural images and 400 face images as well as the corre-
sponding sketches and masks drawn by human users. The
samples are created under the conditional inpainting frame-
work, where the users draw a sketch indicating the target
contour and the mask that marks the region to modify. To
evaluate our method, we simply ignore the masks and only
use the images and sketches as input. For the real cases,

the results are supposed to have a similar style to the input
images. Therefore, we evaluate the performance using style
loss [9], i.e. the mean squared error between the Gram ma-
trices of the deep features of the input image and results.
We use the feature maps from the relu 1 and relu 2 of a
VGG [39] network pretrained on ImageNet [4]. We denote
the obtained style loss as SL 1 and SL 1, respectively. We
also report FID between the results and input images as a
reflection of the image quality.

4.2. Qualitative Evaluation

Fig. 7 presents the face manipulation results of our
method and the state-of-the-art methods. As our model lever-
ages entire images as input, it can better reserve the original
appearance in the modification region of the input image, e.g.
the eyebrows in the firs row and the lip color in the second
row. Our method can also produces visually realistic results
for more challenging general image manipulation. Fig. 8
shows the general image manipulation results of our method
and DeepFill-v2. It can be seen that our method well pre-
serves the colors and textures of the original images. In
contrast, DeepFill-v2 often adds extra changes in the modifi-
cation regions, e.g. it changes the colors of the island, arch,
and the beak in the first, second, and forth row, respectively.
In addition, as our framework prevents the information loss
caused by masking out the modification area, our results are
less blurry and have more details.

4.3. Quantitative Evaluation

Table 1 reports the quantitative evaluation results on the
synthetic samples from the CelebAHQ and Places valida-
tion sets. It can be seen that our results have larger PSNR,
SSIM and smaller L1 error than previous approaches, which
imply a smaller difference between the generated images
and the corresponding ground-truth. Our results also have
smaller FID, indicating a closer distance to the distribution
of original images. Table 2 reports the quantitative evalu-
ation results on real samples. It can be seen that the style
loss of our results are significantly smaller than previous
approaches, as our mask-free framework effectively keeps
the style of the input images. Our method also outperforms
previous approaches in terms of FID on real samples.

4.4. Ablation Study

Mask estimator. The mask estimator is an important com-
ponent in our framework to enable local manipulation and en-
courage the model to learn better generative capability. With-
out the mask predictor, we may train a common conditional
GAN on training samples synthesized by warping. However,
a model trained to mimic warping often fails in challenging
cases involving generating new elements or deleting existing
elements. For example, as shown in Fig. 9, the generator
jointly trained with the mask estimator correctly deletes and
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Figure 7. Visual comparison of face manipulation results. Input*: input sketch and masks for inpainting-based methods. Input: input sketch
for our method.
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Figure 8. Visual comparison of general image manipulation results. Input*: input sketch and masks for inpainting-based methods. Input:
input sketch for our method.
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Table 1. Quantitative comparison on synthetic samples from Cele-
bAHQ (top) and Places (bottom) validation sets.

CelebAHQ
Method L1 error↓ PSNR↑ SSIM↑ FID↓

SC-FEGAN 0.0110 30.39 0.9408 2.693
DeepPS 0.0125 30.54 0.9340 2.460

DeepFill-v2 0.0115 30.59 0.9370 2.345
Ours 0.0072 34.15 0.9604 0.844

Places
Method L1 error↓ PSNR↑ SSIM↑ FID↓

DeepFill-v2 0.0293 24.06 0.8442 2.238
Ours 0.0223 26.35 0.8527 1.500

Table 2. Quantitative comparison on SketchFace and SketchIMG
containing sketches and masks drawn by human users.

SketchFace SketchImg
Method SC-FEGAN DeepPS DeepFill-v2 Ours DeepFill-v2 Ours
FID↓ 4.092 5.285 4.382 2.94 27.11 24.27

SL 1↓ 2484 3797 2859 2001 5314 4374
SL 2↓ 13145 15585 13970 10850 24169 21575

FFH Q /09638.p n g FFH Q /18100.p n g

Image Sketch w/o ME with ME
Figure 9. Results with and without the mask estimator (ME).

adds teeth in manipulation of mouths. In contrast, a com-
mon conditional GAN only squeezes or stretches the mouth.
The mask estimator also helps to better preserve the non-
modification regions. Without the mask estimator, slight
changes in the static region is almost inevitable. This is
reflected by the larger L1 error and smaller PSNR in the
third row of Table 3. Another baseline without the mask
estimator is to use masks generated based on rules. The
third row reports the results with the rule-based masks given
by the minimum bounding boxes enclosing sketches. By
comparing the first row and the third row, we can see the
significant improvements brought by the mask estimator.
Style encoder. The style encoder is essential to keep the
appearance of the modification region. The model without
the style encoder has no access to information in the mod-
ification region and generates new content based on prior,
resulting in unexpected changes. Fig. 10 shows example
results for face manipulation. It can be seen that the model

Table 3. Effect of each components. Rule-based Mask: masks given
by the minimum bounding boxes enclosing sketches, ME: mask
estimator, SE: style encoder. The first row corresponds to the full
model with both ME and SE.

w/o Mask Rule-based Mask ME SE L1 error↓ PSNR↑
X X 0.0072 34.15

X X 0.0127 32.50
X X 0.0102 31.87

X 0.0074 33.98

FFH Q /02744.p n g FFH Q /22804.p n g

Image Sketch w/o SE with SE
Figure 10. Results with and without the style encoder (SE).

with the style encoder reserves the colors of the lips, while
the one without the style encoder changes the colors. The
quantitative evaluation results also reflect the effect of the
style encoder. The first and the forth row of Table 3 report
the quantitative evaluation results with and without the style
encoder, respectively. It can be seen that the model with the
style encoder results in smaller L1 error and larger PSNR.

5. Conclusion, Limitations and Future Work

This paper presents a new paradigm of sketch-based im-
age manipulation, i.e. mask-free local image manipulation,
and propose a complete system implementation for this task
including the network architecture, data acquisition and train-
ing strategy. The proposed method offers simpler and more
robust user workflows for sketch-based image manipulation
and provides consistently better results than the related ap-
proaches. A limitation is that the current framework only
supports structure editing based on monochrome sketches.
Color editing based on colored sketches under the proposed
new mask-free framework is an interesting topic for future
work. Potential negative social impact of this work might
include: fake news can be created by manipulating photos;
The spreading of manipulated images may distort of peo-
ple’s perception of body images and beauty. The negative
impact can be mitigated by embedding digital watermarks
in manipulated images to make them easy to identify.
Acknowledgement This work was supported by an ARO
grant W911NF-21-1-0135.
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