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Abstract

This paper presents contrastive-tuning, a simple method
employing contrastive training to align image and text mod-
els while still taking advantage of their pre-training. In our
empirical study we find that locked pre-trained image mod-
els with unlocked text models work best. We call this in-
stance of contrastive-tuning “Locked-image Tuning” (LiT),
which just teaches a text model to read out good repre-
sentations from a pre-trained image model for new tasks.
A LiT model gains the capability of zero-shot transfer to
new vision tasks, such as image classification or retrieval.
The proposed LiT is widely applicable; it works reliably
with multiple pre-training methods (supervised and unsu-
pervised) and across diverse architectures (ResNet, Vision
Transformers and MLP-Mixer) using three different image-
text datasets. With the transformer-based pre-trained ViT-
g/14 model, the LiT model achieves 84.5% zero-shot trans-
fer accuracy on the ImageNet test set, and 81.1% on the
challenging out-of-distribution ObjectNet test set.

1. Introduction

Transfer learning [44] has been a successful paradigm in
computer vision [32,33,42]. Zero-shot learning [35,36,65]
is an alternative approach aiming to develop models that can
handle a new task without task-specific data or adaptation
protocols. Recently it was demonstrated that web-sourced
paired image-text data can be used to pre-train strong mod-
els for zero-shot transfer [30, 45]. Zero-shot transfer dif-
fers from classical zero-shot learning in that the transfer
setup may see relevant supervised information during pre-
training; it is zero-shot insofar as no supervised examples
are used during the transfer protocol. GPT-3 [3] explored a
similar zero-shot transfer setup using model prompting via
natural language.

In [30,45] authors propose a contrastive learning frame-
work where an image model (or image tower) is trained si-
multaneously with a text model (or text tower). Both towers
are trained to minimize a contrastive loss, which encourages
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Figure 1. Comparison to the previous SOTA methods. Left: re-
sults on public YFCC100m subset, with from-scratch, fine-tuned
from a pre-trained image model, and LiT with a pre-trained image
model. The proposed LiT improves over 30% ImageNet zero-shot
transfer accuracy on YFCC100m subset. Right: results on pri-
vately gathered data, LiT halves the gap between previous from-
scratch methods CLIP [45], ALIGN [30] and supervised fine-
tuning [12, 68].

representations of paired images and texts to be similar, and
representations of non-paired images and texts to be dis-
similar. At test time, the resulting model can be used for
zero-shot image classification by comparing the image em-
bedding with embeddings of textual class descriptions.

In this paper, we adopt a contrastive learning frame-
work and propose a more data- and compute-efficient strat-
egy named contrastive-tuning. The key idea is to tune the
text tower using image-text data, while using a pre-trained,
strong image model as the image tower. During training,
both towers” weights can be locked or unlocked, leading
to different design choices that are illustrated in Figure 2.
Specifically, we find that locking the image tower works
best, as shown in Figure 1. We call this specific instance
of contrastive-tuning “Locked-image Tuning” (LiT), which
just teaches a text model to read out suitable representations
from a pre-trained image model. LiT achieves better results
compared with the from-scratch CLIP [45] or ALIGN [30]
models. With the pre-trained model ViT-g/14 [68], LiT
achieves 84.5% zero-shot transfer accuracy on ImageNet,
halving the gap between previous best zero-shot transfer re-
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sults [30,45] and supervised fine-tuning results [ 12,68]. The
best LiT model also sets new state-of-the-art on several out-
of-distribution (OOD) ImageNet test variants, compared to
previous supervised and unsupervised methods. For exam-
ple, it achieves 81.1% accuracy on the challenging Object-
Net test set [ 1], outperforming the previous state-of-the-art
method [45] by 7.8%.

We believe the reason that LiT works well lies in its de-
coupling of data sources and techniques for learning image
descriptors and vision-language alignment. Image-text data
can be great for learning correspondences between natural
language and the visual world, but, at the same time, it may
not be precise and clean enough to result in state-of-the-art
image descriptors. In this paper we carefully investigate this
hypothesis and support it with empirical evidence.

The proposed LiT works with both supervised and
self-supervised pre-trained models. We verify LiT across
three image-text datasets, with Vision Transformer [20],
ResNet [32], and MLP-Mixer [60] architectures. We also
show that with a self-supervised pre-trained model, i.e.
DINO [4] or MoCo-v3 [10], LiT achieves better perfor-
mance compared to from-scratch contrastive-learning.

Another contribution of this paper is the proposed recipe
for high-performance zero-shot models that can be trained
using only modest computational resources and public
datasets. By re-using already pre-trained models (e.g. pub-
licly released in the literature), the computational resources
used to train the image models can be amortized. Fur-
thermore, we explore publicly available datasets such as
YFCC100m [59] and CC12M [5]. Combined with the
computational efficiency, we hope to facilitate contributions
from a wider audience to research in zero-shot transfer.

2. Related work

This work is closely related to a vast amount of litera-
ture on transfer learning in vision [44, 58]. The main idea
of transfer learning is to leverage already pre-trained mod-
els to solve a new task better and faster, as opposed to less
efficient training from-scratch. This paradigm is usually im-
plemented as a two-step procedure: (1) pre-train (once) an
initial model on a large dataset of images that are (weakly)-
labeled or using self-supervised losses and (2) fine-tune the
pre-trained model for a task of interest using supervised
data. In the context of modern deep learning, many earlier
works [19,32,33,47] used supervised pre-training to learn
transferrable feature representations, with the Vision Trans-
former revisiting and improving this approach [20, 68]. It
was shown that scaling up model and dataset sizes simul-
taneously leads to dramatic improvements in transfer effec-
tiveness [20, 32, 68] and robustness [17]. Crucially, large
pre-trained models exhibit outstanding capabilities in learn-
ing in the low-data (few-shot) regime [8,20,32].

Still, collecting task-specific data and fine-tuning large

pre-trained models remains time-consuming and potentially
costly in many realistic scenarios. Zero-shot transfer is
an alternative paradigm that sidesteps the fine-tuning stage
entirely and performs classification solely based on a de-
scription of the target classes. Early works demonstrated
how to train zero-shot classifiers based on attributes [35] or
numerical descriptors [36]. Another approach, which we
adopt in this work, is to learn an alignment between im-
age and text embedding spaces [0, 15,21,22,31,70]. This
approach has demonstrated that with modern architectures,
contrastive learning, and large data sources it is possible to
obtain performance that is competitive with the classical
two-step approach that involves fine-tuning on the down-
stream data [30,45]. Other efforts in this direction explore
image-text alignment or masked language (or image region)
modeling [11,37]. The models have been applied to di-
verse downstream tasks, including visual question answer-
ing [23], visual commonsense reasoning [07] and image
captioning [40,41,55].

Contrastive learning techniques are another closely-
related research direction. The high-level idea of a con-
trastive loss is to simplify the learning task by requiring
the model to select the correct answers out of a finite set
of carefully designed options. Intuitively, this simplifica-
tion of the task may encourage the model to focus on high-
level information in an image instead of generic informa-
tion, resulting in high quality learned representations. Early
works that investigate very specific instances of this idea
include [18,43]. More recently, contrastive learning was
formulated and studied in more general settings [7,24,61],
leading to very promising results. Finally, [30,45] use con-
trastive learning for learning from image-text data and de-
rive state-of-the-art zero-shot image classifiers.

3. Methods

3.1. Contrastive pre-training

Collections of images (potentially noisily) paired with
free-form text descriptions have emerged as a powerful
resource for training visual models. The key advantage
therein is that it is not limited by a finite set of predefined
categories and instead describes images using open-ended
natural language. As a result, models learned from this data
can serve as zero-shot learners for a wide range of tasks,
e.g. classification and image/text retrieval.

Contrastive pre-training is one particularly effective ap-
proach for training models from image-text data, which was
recently proven to work well in practice [30,45]. We take
a closer look at this approach and propose a simple, yet
highly effective recipe to significantly enhance contrastive
pre-training from image-text data.

The key idea behind the contrastive pre-training ap-
proach is to learn two embedding models: an image model
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Figure 2. Design choices for contrastive-tuning on image-text
data. Two letters are introduced to represent the image tower and
text tower setups. L stands for locked variables and initialized
from a pre-trained model, U stands for unlocked and initialized
from a pre-trained model, u stands for unlocked and randomly ini-
tialized. Lu is named as “Locked-image Tuning” (LiT).

and a text model, both of which produce representations
of the same dimensionality. These models are trained us-
ing a contrastive loss. This loss encourages correspond-
ing image-text pairs to have similar embeddings and, con-
versely, encourages non-corresponding pairs to have dis-
tinct embeddings. See [45, 70] for the detailed discussion
of the contrastive loss function.

An important detail of this loss function is whether the
loss is computed on each accelerator device independently
and then accumulated or computed jointly across all de-
vices. We ablate this design choice (Appendix F) and con-
firm that the latter [30,45] consistently results in better per-
formance. We therefore use the global loss in all our exper-
iments and ablations.

After image and text towers are trained, they can be read-
ily used for zero-shot classification: class names or descrip-
tions are embedded with the text model. Then, for a given
image the label is selected that has the embedding closest to
the embedding of the image. This approach also works for
image-text retrieval.

3.2. Contrastive-tuning

Contrastive pre-training can be viewed as learning two
tasks at the same time: (1) learning an image embedding
and (2) learning a text embedding to align with the image
embedding space. While contrastive pre-training on image-
text data works well for solving both of these tasks simulta-
neously, it may be not the optimal approach.

When not using contrastive pre-training on image-text
data, a standard approach to learning image embeddings
is to use a large and relatively clean dataset of (semi)-
manually labeled images. Large scale and and high qual-
ity of such data result in state-of-the-art image embeddings.
Some dataset choices for learning powerful image embed-
dings are ImageNet-21k [14], JFT-300M [56].

However, this common approach has a clear weakness:

it is limited to a predefined set of categories and, thus, the
resulting models can only reason about these categories. In
contrast, image-text data does not have this limitation, as it
learns from the free-form text that potentially spans a broad
range of real-life concepts. On the other hand, image-text
data that is available may be of lower quality (for learning
image embeddings) than carefully curated datasets.

We propose contrastive-tuning to combine advantages of
both sources of data. One specific way of doing this is to
initialise the contrastive pre-training with an image model
that was already pre-trained using cleaner (semi-)manually
labeled data. This way the image-text alignment is learned
independently of image embedding, enabling benefit from
both data sources.

Beyond using supervised pre-trained image models, the
proposed contrastive-tuning is also flexible enough to in-
tegrate any models that can produce meaningful represen-
tations. We verify this in our experiments using self-
supervised pre-trained image models.

Similar lines of reasoning can also be applied to the text
tower, as there are many powerful pretrained models that
use text-specific data sources and learning techniques.

3.3. Design choices and Locked-image Tuning

Introducing pre-trained image or text models into the
contrastive learning setting involves several design choices.
First, each tower (image and text) can independently be ini-
tialized randomly or from a pre-trained model. For a pre-
trained model there are at least two variants: we can lock
(freeze) it or allow fine-tuning. Note that there are many
choices between these two extremes (e.g. partial freezing of
selected layers, or custom learning rates), but they are not
investigated in this paper.

Pre-trained image-text models may have different repre-
sentation sizes, while the contrastive loss expects represen-
tations of the same size. To compensate, we add an optional
linear projection (head) to each tower, which maps the rep-
resentations to a common dimensionality. Preliminary in-
vestigations with tried MLP-based heads did not yield sig-
nificant improvements over such a simple linear head.

We introduce a two-character notation to discuss the po-
tential design choices outlined above (see Figure 2). Each
character encodes the setting chosen for the image model
and the text model (in this order). We define three potential
settings: L (locked weights, a initialized from pre-trained
model), U (unlocked/trainable weights, initialized from a
pre-trained model) and u (unlocked/trainable weights, ran-
domly initialized). For example, the notation Lu means
locked pre-trained image model, and unlocked (trainable)
randomly initialized text model. Previous works training
models from scratch [30,45] are uu. In our experiments we
find the Lu setting to work particularly well, so we explic-
itly name it as Locked-image Tuning (LiT &).
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4. Image-text datasets

CC12M. The Conceptual Captions dataset [5 ] extracts,
filters & transforms image & alt-text pairs from web pages.
We use the latest 12 million image-text pair version, i.e.
CCI2M [5]. Due to expired URLs, only 10 million image-
text pairs were used for our experiments.

YFCC100m. The Yahoo Flickr Creative Commons
dataset [59] contains 100 million media objects. Of these,
99.2 million are photos that come with rich metadata in-
cluding camera info, timestamp, title, description, tags, ge-
olocation, and more. [45] defines and uses a subset of 15
million images that have been filtered for English text of
high quality, which we call YFCC100m-CLIP. A detailed
investigation of this dataset and how best to use it, includ-
ing whether to filter it, is presented in Appendix E.

Our dataset. We collect 4 billion image and alt-text
pairs following the same process as ALIGN [30], with the
same image-based filtering but simpler text-based filtering.
Appendix L shows that reducing text filtering does not harm
performance. To avoid misleading evaluation results, we
remove from our dataset near-duplicate images of all splits
from all datasets we evaluate on. We do not consider the
creation of our dataset a main contribution of this paper; we
just simplify the data collection process in ALIGN [30] to
demonstrate the efficacy of our methods at scale.

5. Experiments

In this section, we first compare LiT & to state-of-the-art
image-text models. We consider two scenarios: (1) only us-
ing public datasets for model training and (2) using privately
gathered data. We then present learnings from experimental
evaluations of contrastive tuning design choices with var-
ious training settings & datasets. We generally perform
evaluation on 0-shot ImageNet classification (“0-shot”) and
MSCOCO image (“T—1I") and text (“I—=T") retrieval.

5.1. Comparison to the previous state-of-the-art

In this section, we present LiT results on our dataset. The
image tower is initialized with a ViT-g/14 model pre-trained
on JFT-3B [68], which has been de-duplicated against the
downstream tasks. We use 32k batch size, and tune for 18
billion image-text pairs seen (roughly 550k steps). See Ap-
pendix C for details.

We compare the LiT method with the previous state-of-
the-art methods, including CLIP [45] and ALIGN [30]. In
Table 1, we report zero-shot classification results on the
ImageNet dataset, five out-of-distribution test variants and
seven VTAB-natural tasks [69]. Our model significantly
outperforms the previous state-of-the-art methods at Im-
ageNet zero-shot classification. The 8.3% and 8.1% im-
provement over CLIP and ALIGN, respectively, halves the

~— o - Z
*a etno & z E z 8 o g
a — — >
g CLIP[45] 76.2 70.1 88.9 77.2 723 - -
Z ALIGN[30] 764 70.1 922 758 - - -
~ LT 84.5 78.7 93.9 79.4 81.1 88.0 72.6
o CLIP[45] 313 - - - - - -
< OpenCLIP[28]34.8 300 - - - - -
&~ LT 75.7 66.6 60.4 37.8 54.5 82.1 63.1

%

ResNet50[25] 75.8 63.8 36.1 0.5 26.5 82.5 72.6

Table 1. Zero-shot transfer accuracies (%) on ImageNet, five OOD
test variants, and seven VTAB-natural tasks. Results are reported
on both public datasets and privately gathered data. For reference,
we include the ResNet50 model pre-trained on ImageNet, super-
vised fine-tuned on downstream datasets. We use * to denote mul-
tiple datasets during supervised fine-tuning.

gap between zero-shot transfer results and supervised fine-
tuned results [12,68&].

Robustness. We evaluate robustness on ImageNet-
v2 [48], -R [26,63], -A [27], -ReaL [2], and ObjectNet [1],
following CLIP and ALIGN. On all of the OOD variants,
our model consistently outperforms the previous models.
Notably, the LiT model sets a new state-of-the-art 81.1% ac-
curacy on the ObjectNet test set. The pre-trained ViT-g/14
model [68], achieves 70.5% accuracy on the ObjectNet test
set when fine-tuned on ImageNet. This model gets nearly
10% improvement when instead locked-image tuned (LiT)
on our image-text dataset.

Diverse downstream tasks. We evaluate the LiT mod-
els on VTAB, consisting of 19 diverse tasks. We report av-
eraged results on seven VTAB-natural tasks in Table 1. The
LiT models achieve promising zero-shot results, compar-
ing to the supervised fine-tuned ResNet50 baseline. In Ap-
pendix 1.2, we present zero-shot transfer details on VTAB,
as well as more results and analysis on the specialized tasks
and structured tasks.

Data & compute efficiency. Figure 1 shows more re-
sults when tuning with fewer seen image-text pairs. With
LiT the model achieves 78.7% top-1 accuracy on 0-shot
ImageNet transfer, with only 300M image-text pairs seen.
In comparison, it took the from-scratch method (i.e. CLIP)
12.8B image-text pairs seen, i.e. 40 times more data pairs,
to reach 76.2% top-1 accuracy. With a pre-trained image
model, the proposed setup converges significantly faster
than the standard from-scratch setups reported in the liter-
ature. LiT provides a way to reuse the already pre-trained
models in the literature, amortizing the computational re-
sources used to re-generate the image models.

Results on public datasets. Given high data efficiency
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Method ImgNet ImgNet-v2 Cifar100 Pets
Lu 70.1 61.7 70.9 88.1
Uu 57.2 50.2 62.1 74.8
uu 50.6 43.3 479 70.3

Table 2. Evaluation of design choices on our large dataset.
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Figure 3. An in-depth study of the possible locking and initial-
ization settings of LiT on the YFCC100m-CLIP dataset. A pre-
trained image tower works best, while pre-training of the text
tower only helps a little. These are not training curves; each point
is the final value reached by a training run of that duration.

of LiT, we investigate how well it performs when us-
ing only smaller, publicly available models and datasets.
Specifically, we tune an ImageNet-21k pre-trained ViT-
L/16 model [54] on the union of the YFCCI100m-CLIP and
CCI2M datasets. More details of the training setup are
provided in Appendix D. As a result we achieve unprece-
dented 75.7% zero-shot transfer on ImageNet, an absolute
improvement of 30.9% over the previously reported state-
of-the-art result [28] that uses only public data sources. We
also obtain strong results on a wide range of robustness
datasets and the VTAB-natural tasks, see Table 1.

5.2. Evaluation of design choices

Small-scale thorough investigation. We first perform
an in-depth study on various combinations of the image and
text towers being initialized with pre-trained weights and
locked (L) or unlocked (U) or being randomly initialized
and unlocked (u). We train each setting many times on the

YFCC100m-CLIP dataset, varying the total number of steps
from 2500 to 60000 in order to understand the setting’s
trajectory, and sweeping over learning-rates and weight-
decays to avoid being misled. Details can be found in Ap-
pendix D. Figure 3 shows the best result for each setting
for each duration, i.e. each point on the curves is a separate
full run for that duration. It is evident that locking the im-
age tower almost always works best and using a pre-trained
image tower significantly helps across the board, whereas
using a pre-trained text tower only marginally improves per-
formance, and locking the text tower does not work well.

This still holds in the near-infinite data regime. One
may hypothesize that locking the pre-trained image tower
only helps because the YFCC100m-CLIP dataset is rela-
tively small (15 million images, compared to 400M [45] or
1.8B [30]), and that a randomly initialized image tower will
eventually outperform a locked one on much larger image-
text datasets. The trajectory of the Uu and UU settings in
Figure 3 may seem to support this expectation.

Maybe surprisingly, experimental results show that this
is not the case, and locking the image tower provides ben-
efits even when contrastively tuning on a very large dataset
of image-text pairs. Table 2 shows results of contrastive
tuning on our dataset of 4 billion images in three settings:
Lu, Uu, and uu. Implementation details can be found in
Appendix C. The from-scratch method uu unsurprisingly
achieves better performance than with smaller datasets such
as CC12M and YFCC100m-CLIP.

Initializing the image tower from a pre-trained model
provides even better performance and is a relatively
straightforward extension of CLIP/ALIGN. Perhaps sur-
prisingly, the frozen setup Lu, achieves even better results.
While potentially counter-intuitive, another perspective is
that LiT simply learns a text tower that extracts knowledge
from a strong image embedder. This flexible & performant
setup can turn existing vision backbones into a zero-shot
learners, by attaching a text-embedding tower.

Why is locked (L) better than unlocked (U)? It is some-
what surprising and counter-intuitive that locking the im-
age tower works better than allowing it to adapt during the
contrastive-tuning; Figure 4 gives hints as to why.

The first row shows that locking the image tower leads to
substantially worse (contrastive) loss on the dataset used for
LiT, while the loss of the locked image variant is substan-
tially better on out-of-distribution datasets such as COCO
captions (middle row).

We also measure the representation quality of the im-
age model (bottom row) via the performance achieved by
a few-shot linear regression on its pre-logits, as is com-
monly done in the self-supervised representation learning
literature. Taken together, these figures reveal that the im-
age representation of a pre-trained image model generalizes
very well, but contrastively fine-tuning it worsens the gen-
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Figure 4. Comparing the loss on the dataset used for LiT (top row)
to the loss on out-of-distribution (zero-shot) datasets (middle row)
and the “representation quality” as measured by linear few-shot
evaluation on the pre-logits (bottom row). This reveals how the
different settings behave, see text for details.

erality of the visual representation, leading it to be better
on the contrastive dataset, but worse everywhere else. This
indicates that locking the image tower during tuning, i.e.
LiT, leads to a text model that is well aligned to an already
strong and general image representation, as opposed to an
image-text model that is well aligned but specialized to the
dataset used for alignment.

Intermediate variants, such as first locking and later un-
locking the image tower or separating learning-rates are ex-
plored in Appendix H; we did not find a strictly better setup
than LiT and leave this as an open research question.

5.3. LiT works better for more generally pre-
trained models

One may believe that LiT only works because the im-
age tower is initialized with a backbone that was supervis-
edly pre-trained for classification, and hence remains a su-
pervised classifier, as opposed to becoming an image-text
model. We design a controlled experiment to verify whether
that is the case. We find that on the contrary, more generally
pre-trained models are better suited for LiT.

We select a set of image models that all use the same ViT-
B/16 architecture but were pre-trained in various ways: su-
pervised (AugReg [54]) on ImageNet (IN), on the large but
narrow Places [38] dataset, on the much broader ImageNet-
21k (IN21k), or fully unsupervised (DINO and MoCo-v3).
All but the Places model achieve similar ImageNet top-1 ac-
curacies of around 77% as reported in their respective publi-
cations, and can thus be considered similarly good models.

Pre-training LiT

3 % z £ &
Model: s 2 — *:v,: 2 = $
ViT-B/16 g 5 g < & I 4d
MoCo-v3 [10] IN 76.7 60.6 554 335 17.6
DINO [4] IN 78.2 61.2 555 334 182

n
n

AugReg [54] IN21k y 774 639 559 303 17.2
y
y

AugReg [54] IN 7777 77.1 643 254 138
AugReg [54] Places - 225 285 251 129

Table 3. The role of pre-training method for the image model: as
long as it is general, it does not matter. The background coloring
denotes whether a value is similar or far away from the others
in that column.

Table 3 shows model performance without LiT (Im-
ageNet 10-shot, and accuracy when fully fine-tuned on
ImageNet) alongside achieved performance with LiT on
YFCC100m-CLIP (zero-shot ImageNet classification and
MS Coco retrieval).

From these results, we conclude that models which are
pre-trained in a generic way (e.g. on large amounts of data,
or in an unsupervised way) and have similar representa-
tion quality, become similarly good image-text models after
locked-image tuning (LiT). However, this also shows that
a narrowly pre-trained model (AugReg-IN and AugReg-
Places) will perform misleadingly well on its narrow task
(0-shot IN for AugReg-IN), but significantly fall behind on
more general image-text tasks (MSCOCO captions). These
findings highlight the importance of a generally pre-trained
model and varied set of evaluation tasks.

Is this specific to ViT image models? No. Here we
fixed the architecture to avoid confounders, but Appendix A
explores other architectures.

5.4. Which text model to use?

While related work has so far focused on the image
model, the text model plays an important yet underex-
plored role in contrastive image-text learning. We con-
sider four possible transformer-based text models [62]—the
transformer from ViT-B [20] which also resembles that used
in CLIP [45], T5-base [46], mT5-base [66], and the classic
BERT-base [ | 6]—and whether to initialise them randomly,
or from a pre-trained checkpoint. BERT uses a WordPiece
(WP) tokenizer [49, 64], and all others use the Sentence-
Piece (SP) tokenizer [34], a component which we also ab-
late with the ViT model.

Table 4 shows the results of LiT using an AugReg-ViT-
B/32 on YFCC100M-CLIP and our dataset using the base
sized variant of these text models. We sweep over var-
ious learning-rates and weight-decays separately for each
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Model Tok INet Oshot I-T T—I Dedup #tune  #eval ImgNet I—T T—I1
& ViT SP 572 29.7 16.9 - 0 0 70.2 43.6 28.4
d T5 SP 57.8(+1.4) 294 (+1.6) 17.2(+1.2) test 2.6M 76K 70.2 433 28.3
8 mT5 SP 58.1(+1.2) 283(+04) 164 (+1.0) train+test  3.6M 220K 69.9 43.7 28.4
= BERT WP 588 (+0.7) 35.2(+1.1) 20.0(+0.7)
>~ ViT WP 56.4 28.2 173 Table 5. Results on various de-duplication setups. #tune images

are removed from the LiT dataset due to #eval images in the eval-

% ViT SP 68.8 43.6 28.5 uation datasets. We report results averaged across three runs.
8 ViT WP 68.8 454 29.7

BERT WP 65.8 43.8 28.6

Table 4. The effect of different text encoders on zero-shot per-
formance. The main numbers show performance achieved when
the text tower is randomly initialised; the numbers in brackets are
the further improvement achieved when the text tower is initial-
ized with a pre-trained language model. The Tok column indicates
whether a SentencePiece or WordPiece tokenizer was used.

combination to avoid being misled. Our observations dif-
fer slightly between the relatively small YFCC100m-CLIP
dataset, and our much larger dataset, we first discuss the
former. First, we see a small but consistent improvement by
initializing the text model with pre-trained weights. Second
and somewhat unexpectedly, we find that the BERT model
performs significantly better than others, especially for re-
trieval. In order to disentangle the contribution of the ar-
chitecture from the tokenizer, we further apply LiT using a
ViT text encoder paired with BERT’s WordPiece tokenizer
and see no improvement. We believe that small differences
in the architecture, such as initialization and LayerNorm
placement, are responsible for the slightly better generaliza-
tion of BERT that we observe. However, we also found the
BERT model to be less stable to train. For the large-scale
experiments on our dataset, we do not observe this improve-
ment anymore, and favor sticking with the more stable ViT
SentencePiece combination.

What about model capacity? Previous works used rel-
atively low-capacity text models. We show in Appendix B
that increasing the text tower’s capacity consistently im-
proves performance. The same is true, and more pro-
nounced, for the image tower.

5.5. Do duplicate examples matter for LiT?

One relevant question in the context of large-scale train-
ing is the role of duplicate examples between upstream
datasets and downstream datasets. We answer this question
by performing experiments on three different upstream de-
duplication setups: (1) no de-duplication; (2) de-duplicate
against downstream test splits only; (3) de-duplicate against
downstream train and test splits. We conduct experiments
using the Lu setup on our dataset. We use a B/32 image
model pre-trained on the JFT-3B dataset [68], which has

been de-duplicated against downstream train and test splits.

In Table 5, we show the number of duplicate samples
found between upstream datasets and downstream datasets
during de-duplication. In the de-duplication process, a
downstream image may have multiple upstream duplicate
examples, e.g. due to image copies on the web. As a re-
sult, the number of duplicate examples on the upstream
dataset is significantly larger than the number on the down-
stream datasets. The downstream number indicates how
many downstream images had a duplicate detected, while
the upstream number indicates how many images are re-
moved from the image-text dataset.

We apply LiT on the three setups, and the zero-shot
transfer results vary little. More results with larger back-
bone can be found in Appendix K, with consistent conclu-
sions. It indicates that the duplication of examples here does
not influence the results strongly. This observation is also
consistent with previous conclusions [32,45]. A possible in-
terpretation is that with a large upstream dataset, the model
may not memorize those duplicate examples.

Throughout this paper, we report results using the
strictest setup (3) with proper de-duplication against down-
stream train splits and test splits, to avoid data leakage.

5.6. Technical advantages of locked image models

Besides potential modelling advantages previously ex-
plored, using a locked image tower has several more ben-
efits. First, the training is significantly sped-up and mem-
ory use reduced as no gradients are computed for the im-
age tower. Second, if no augmentations are used, such as
in our large-data experiment, the image model’s embed-
dings can be precomputed once, further reducing compu-
tation time and memory requirements. Appendix G shows
concrete measurements. Taken together, these implemen-
tation features unlock the use of enormous models at very
large batch-sizes.

5.7. Preliminary multilingual experiments

It is currently common practice [30,45] to filter image-
text datasets to English language data only. We believe that
removing this restriction has the potential to benefit a larger
part of the world’s population. Concurrent work [29] has
relied on additional translated text pairs for training the text
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Figure 5. Including non-English data unlocks multilingual zero-
shot models without hurting English performance. In such a
regime, multilingual text pre-training can be more useful for low-
resource languages.

encoder. In contrast, we do not require any translations and
purely rely on the pre-trained, locked image model to bridge
the language barrier. In this section, we report preliminary
experiments that show the promise of LiT for multilingual
image-text models.

We apply LiT on an AugReg-i21k ViT-B/32 with the
T5 [46] and mT5 [66] base encoders, both with and without
the pre-trained checkpoints. We do this on both the full
YFCC100m dataset, and the reduced English-only CLIP
subset, and we use all available text as supervision signal
(See Appendix E). We evaluate the resulting model’s mul-
tilingualism in two ways, both of which have limitations
discussed in Appendix J. First, we translate the ImageNet
prompts into the most common languages using an online
translation service and perform zero-shot classification in
each of them; this evaluation is shown in Figure 5. Second,
we use the Wikipedia based Image Text (WIT) dataset [53]
to perform T — I retrieval across more than a hundred lan-
guages. Figure 6 gives a summary of this evaluation; a more
detailed variant is provided in Appendix J.

The high-level conclusions are consistent across both
evaluations: training on the full dataset improves perfor-
mance on non-English languages much more than on En-
glish, using a multilingual tokenizer (as in mT5) signif-
icantly helps languages that do not use the Latin script,
and starting from a pre-trained multilingual text model can
further help. The combination of all three improvements
barely has any effect when evaluated in English, but signif-
icantly improves performance on the long tail of languages.
This is a promising result for unlocking multimodal models
for low-resource languages.

6. Discussion

Limitations. This work explores only classification and
retrieval as zero-shot transfer tasks. We leave evaluating
zero-shot transfer to a broader set of tasks such as detec-
tion, segmentation, visual question answering, and image

&
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Figure 6. Image retrieval performance over 100 languages reveals
that unfiltered data and a multilingually pre-trained text model can
significantly increase long-tail performance.

captioning as future work in order to limit our scope.

On cross-modal retrieval tasks, we have not observed as
clear a benefit of the Lu setup compared to Uu or UU (Fig-
ure 3). For very long tuning schedules, Uu or UU sometimes
overtake Lu on these tasks. Our results suggest that the pro-
posed Lu setup can still save computational cost within a
fixed budget, but with a large enough budget, it may be use-
ful to also consider the Uu setup if zero-shot classification
is not the primary end goal.

Societal impact. This work shows how one can eas-
ily add a text-tower to a pre-trained image model. While
there are many useful applications, like most research, it is
a double-edged sword: the technique also makes it simpler
to create malicious, offensive, or obscene text tower pen-
dants to existing image models. Further research is needed
on how to best equip open-world image-text models with
the behaviour we desire.

7. Conclusion

We present a simple method named contrastive-tuning
that allows transferring any pre-trained vision model in a
zero-shot fashion. More specifically, the proposed LiT
setup leads to substantial quality improvements on zero-
shot transfer tasks. It halves the gap between the from-
scratch contrastive learning setup, and the per-task super-
vised fine-tuning setup. LiT makes it possible to turn pub-
licly available models into zero-shot classifiers using pub-
licly available data, and rival the performance of previous
works which rely on more, proprietary data.

We hope that this work motivates future research on how
to smartly re-use and adapt already pre-trained models for
different research problems.
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