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Abstract

The recently developed DEtection TRansformer (DETR)
establishes a new object detection paradigm by eliminat-
ing a series of hand-crafted components. However, DETR
suffers from extremely slow convergence, which increases
the training cost significantly. We observe that the slow
convergence is largely attributed to the complication in
matching object queries with target features in different fea-
ture embedding spaces. This paper presents SAM-DETR,
a Semantic-Aligned-Matching DETR that greatly acceler-
ates DETR’s convergence without sacrificing its accuracy.
SAM-DETR addresses the convergence issue from two per-
spectives. First, it projects object queries into the same em-
bedding space as encoded image features, where the match-
ing can be accomplished efficiently with aligned seman-
tics. Second, it explicitly searches salient points with the
most discriminative features for semantic-aligned match-
ing, which further speeds up the convergence and boosts de-
tection accuracy as well. Being like a plug and play, SAM-
DETR complements existing convergence solutions well yet
only introduces slight computational overhead. Extensive
experiments show that the proposed SAM-DETR achieves
superior convergence as well as competitive detection ac-
curacy. The implementation codes are publicly available at
https://github.com/ZhangGongjie/SAM-DETR .

1. Introduction

Object detection is one of the most fundamental tasks in
computer vision and has achieved unprecedented progress
with the development of deep learning [27]. However,
most object detectors often suffer from complex detection
pipelines and sub-optimal performance due to their over-
reliance on hand-crafted components such as anchors, rule-
based target assignment, and non-maximum suppression
(NMS). The recently proposed DEtection TRansformer
(DETR) [3] removes the need for such hand-designed com-
ponents and establishes a fully end-to-end framework for
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Figure 1. Convergence curves of our proposed SAM-DETR and
other detectors on COCO val 2017 under the 12-epoch training
scheme. All competing methods are single-scale. SAM-DETR
converges much faster than the original DETR, and can work
in complementary with existing convergence-boosting solutions,
reaching a comparable convergence speed with Faster R-CNN.

object detection. Despite its simple design and promising
results, one of the most significant drawbacks of DETR is its
extremely slow convergence on training, which requires 500
epochs to converge on the COCO benchmark [26], while
Faster R-CNN [35] only takes 12∼36 epochs instead. This
slow convergence issue significantly increases the training
cost and thus hinders its more comprehensive applications.

DETR employs a set of object queries in its decoder
to detect target objects at different spatial locations. As
shown in Fig. 2, in the cross-attention module, these object
queries are trained with a set-based global loss to match
the target objects and distill corresponding features from
the matched regions for subsequent prediction. However,
as pointed out in [10, 31, 63], each object query is almost
equally matched to all spatial locations at initialization, thus
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Figure 2. The cross-attention module in DETR’s decoder can be
interpreted as a ‘matching and feature distillation’ process. Each
object query first matches its own relevant regions in encoded im-
age features, and then distills features from the matched regions,
generating output for subsequent prediction.

requiring tedious training iterations to learn to focus on
relevant regions. The matching difficulty between object
queries and corresponding target features is the major rea-
son for DETR’s slow convergence.

A few recent works have been proposed to tackle the
slow convergence issue of DETR. For example, Deformable
DETR [63] replaces the original global dense attention with
deformable attention that only attends to a small set of fea-
tures to lower the complexity and speed up convergence.
Conditional DETR [31] and SMCA-DETR [10] modify the
cross-attention module to be spatially conditioned. In con-
trast, our approach works from a different perspective with-
out modifying the attention mechanism.

Our core idea is to ease the matching process between
object queries and their corresponding target features. One
promising direction for matching has been defined by
Siamese-based architecture, which aligns the semantics
of both matching sides via two identical sub-networks to
project them into the same embedding space. Its effective-
ness has been demonstrated in various matching-involved
vision tasks, such as object tracking [1, 4, 20, 21, 46, 47],
re-identification [5, 37, 38, 48, 59], and few-shot recogni-
tion [15, 19, 39, 41, 55]. Motivated by this observation, we
propose Semantic-Aligned-Matching DETR (SAM-DETR),
which appends a plug-and-play module ahead of the cross-
attention module to semantically align object queries with
encoded image features, thus facilitating the subsequent
matching between them. This imposes a strong prior for
object queries to focus on semantically similar regions in
encoded image features. In addition, motivated by the im-
portance of objects’ keypoints and extremities in recogni-
tion and localization [3, 31, 62], we propose to explicitly

search multiple salient points and use them for semantic-
aligned matching, which naturally fits in the DETR’s orig-
inal multi-head attention mechanism. Our approach only
introduces a plug-and-play module into the original DETR
while leaving most other operations unchanged. Therefore,
the proposed method can be easily integrated with existing
convergence solutions in a complementary manner.

In summary, the contributions of this work are four-
fold. First, we propose Semantic-Aligned-Matching DETR
(SAM-DETR), which significantly accelerates DETR’s con-
vergence by innovatively interpreting its cross-attention as a
‘matching and distillation’ process and semantically align-
ing object queries with encoded image features to facilitate
their matching. Second, we propose to explicitly search for
objects’ salient points with the most discriminative features
and feed them to the cross-attention module for semantic-
aligned matching, which further boosts the detection accu-
racy and speeds up the convergence of our model. Third, ex-
periments validate that our proposed SAM-DETR achieves
significantly faster convergence compared with the original
DETR. Fourth, as our approach only adds a plug-and-play
module into the original DETR and leaves other operations
mostly unchanged, the proposed SAM-DETR can be easily
integrated with existing solutions that modify the attention
mechanism to further improve DETR’s convergence, lead-
ing to a comparable convergence speed with Faster R-CNN
even within 12 training epochs.

2. Related Work
Object Detection. Modern object detection methods can
be broadly classified into two categories: two-stage and
single-stage detectors. Two-stage detectors mainly include
Faster R-CNN [35] and its variants [2, 9, 16, 23, 32, 44, 49,
51, 54], which employ a Region Proposal Network (RPN)
to generate region proposals and then make per-region pre-
dictions over them. Single-stage detectors [17, 28, 29, 33,
34, 43, 57, 61, 62] skip the proposal generation and directly
perform object classification and localization over densely
placed sliding windows (anchors) or object centers. How-
ever, most of these approaches still rely on many hand-
crafted components, such as anchor generation, rule-based
training target assignment, and non-maximum suppression
(NMS) post-processing, thus are not fully end-to-end.

Distinct from the detectors mentioned above, the re-
cently proposed DETR [3] has established a new paradigm
for object detection [50, 55, 56, 60, 63]. It employs a
Transformer [45] encoder-decoder architecture and a set-
based global loss to replace the hand-crafted components,
achieving the first fully end-to-end object detector. How-
ever, DETR suffers from severe low convergence and re-
quires extra-long training to reach good performance com-
pared with those two-stage and single-stage detectors. Sev-
eral works have been proposed to mitigate this issue: De-
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formable DETR [63] replaces the original dense attention
with sparse deformable attention; Conditional DETR [31]
and SMCA-DETR [10] propose conditioned cross-attention
and Spatially Modulated Co-Attention (SMCA), respec-
tively, to replace the cross-attention module in DETR’s de-
coder, aiming to impose spatial constraints to the original
cross-attention to better focus on prominent regions. In this
work, we also aim to improve DETR’s convergence, but
from a different perspective. Our approach does not modify
the original attention mechanism in DETR, thus can work
in complementary with existing methods.

Siamese-based Architecture for Matching. Matching is
a common concept in vision tasks, especially in contrastive
tasks such as face recognition [36, 40], re-identification [5,
14,22,37,38,48,59], object tracking [1,4,8,11,20,21,42,46,
47, 52, 58, 64], few-shot recognition [15, 19, 39, 41, 53, 55],
etc. Its core idea is to predict the similarity between two in-
puts. Empirical results have shown that Siamese-based ar-
chitectures, which project both matching sides into the same
embedding space, perform exceptionally well on the tasks
involving matching. Our work is motivated by this observa-
tion to interpret DETR’s cross-attention as a ‘matching and
feature distillation’ process. To achieve fast convergence,
it is crucial to ensure the aligned semantics between object
queries and encoded image features, i.e., both of them are
projected into the same embedding space.

3. Proposed Method

In this section, we first review the basic architecture of
DETR, and then introduce the architecture of our proposed
Semantic-Aligned-Matching DETR (SAM-DETR). We also
show how to integrate our approach with existing conver-
gence solutions to boost DETR’s convergence further. Fi-
nally, we present and analyze the visualization of a few
examples to illustrate the mechanism of our approach and
demonstrate its effectiveness.

3.1. A Review of DETR

DETR [3] formulates the task of object detection as
a set prediction problem and addresses it with a Trans-
former [45] encoder-decoder architecture. Given an image
I ∈ RH0×W0×3, the backbone and the Transformer encoder
produce the encoded image features F ∈ RHW×d, where
d is the feature dimension, and H0, W0 and H , W denote
the spatial sizes of the image and the features, respectively.
Then, the encoded image features F and a small set of ob-
ject queries Q ∈ RN×d are fed into the Transformer de-
coder to produce detection results, where N is the number
of object queries, typically 100∼ 300.

In the Transformer decoder, object queries are sequen-
tially processed by a self-attention module, a cross-attention
module, and a feed-forward network (FFN) to produce the

outputs, which further go through a Multi-Layer Perceptron
(MLP) to generate prediction results. A good way to inter-
pret this process is: object queries denote potential objects
at different spatial locations; the self-attention module per-
forms message passing among different object queries; and
in the cross-attention module, object queries first search for
the corresponding regions to match, then distill relevant fea-
tures from the matched regions for the subsequent predic-
tions. The cross-attention mechanism is formulated as:

Q′ =

to match relevant regions︷ ︸︸ ︷
Softmax(

(QWq)(FWk)
T

√
d

)(FWv)︸ ︷︷ ︸
to distill features from matched regions

, (1)

where Wq, Wk, and Wv are the linear projections for
query, key, and value in the attention mechanism. Ideally,
the cross-attention module’s output Q′ ∈ RN×d should
contain relevant information distilled from the encoded im-
age features to predict object classes and locations.

However, as pointed out in [10,31,63], the object queries
are initially equally matched to all spatial locations in the
encoded image features, and it is very challenging for the
object queries to learn to focus on specific regions properly.
The matching difficulty is the key reason that causes the
slow convergence issue of DETR.

3.2. SAM-DETR

Our proposed SAM-DETR aims to relieve the difficulty
of the matching process in Eq. 1 by semantically aligning
object queries and encoded image features into the same
embedding space, thus accelerating DETR’s convergence.
Its major difference from the original DETR [3] lies in
the Transformer decoder layers. As illustrated in Fig. 3 (a),
the proposed SAM-DETR appends a Semantics Aligner
module ahead of the cross-attention module and models
learnable reference boxes to facilitate the matching process.
Same as DETR, the decoder layer is repeated six times, with
zeros as input for the first layer and previous layer’s outputs
as input for subsequent layers.

The learnable reference boxes Rbox ∈ RN×4 are mod-
eled at the first decoder layer, representing the initial lo-
cations of the corresponding object queries. With the lo-
calization guidance of these reference boxes, the proposed
Semantics Aligner takes the previous object query embed-
dings Q and the encoded image features F as inputs to
generate new object query embeddings Qnew and their po-
sition embeddings Qnew

pos , feeding to the subsequent cross-
attention module. The generated embeddings Qnew are en-
forced to lie in the same embedding space with the encoded
image features F, which facilitates the subsequent match-
ing process between them, making object queries able to
quickly and properly attend to relevant regions in the en-
coded image features.
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Figure 3. The proposed Semantic-Aligned-Matching DETR (SAM-DETR) appends a Semantics Aligner into the Transformer decoder layer.
(a) The architecture of one decoder layer in SAM-DETR. It models a learnable reference box for each object query, whose center
location is used to generate corresponding position embeddings. With the guidance of the reference boxes, Semantics Aligner generates
new object queries that are semantically aligned with the encoded image features, thus facilitating their subsequent matching. (b) The
pipeline of the proposed Semantics Aligner. For simplicity, only one object query is illustrated. It first leverages the reference box to
extract features from the corresponding region via RoIAlign. The region features are then used to predict the coordinates of salient points
with the most discriminative features. The salient points’ features are then extracted as the new query embeddings with aligned semantics,
which are further reweighted by previous query embeddings to incorporate useful information from them.

3.2.1 Semantic-Aligned Matching

As shown in Eq. 1 and Fig. 2, the cross-attention module
applies dot-product to object queries and encoded image
features, producing attention weight maps indicating the
matching between object queries and target regions. It
is intuitive to use dot-product since it measures similarity
between two vectors, encouraging object queries to have
higher attention weights for more similar regions. How-
ever, the original DETR [3] does not enforce object queries
and encoded image features being semantically aligned,
i.e., projected into the same embedding space. Therefore,
the object query embeddings are randomly projected to an
embedding space at initialization, thus are almost equally
matched to the encoded image features’ all spatial locations.
Consequently, extremely long training is needed to learn a
meaningful matching between them.

With the above observation, the proposed Semantics
Aligner designs a semantic alignment mechanism to en-
sure object query embeddings are in the same embedding
space with encoded image features, which guarantees the

dot-product between them is a meaningful measurement
of similarity. This is accomplished by resampling object
queries from the encoded image features based on the ref-
erence boxes, as shown in Fig. 3 (b). Given the encoded
image features F and object queries’ reference boxes Rbox,
the Semantics Aligner first restores the spatial dimensions
of the encoded image features from 1D sequences HW × d
to 2D maps H × W × d. Then, it applies RoIAlign [12]
to extract region-level features FR ∈ RN×7×7×d from the
encoded image features. The new object queries Qnew and
Qnew

pos are then obtained via resampling from FR. More de-
tails are to be discussed in the ensuing subsection.

FR = RoIAlign(F,Rbox) (2)

Qnew,Qnew
pos = Resample(FR,Rbox,Q) (3)

Since the resampling process does not involve any projec-
tion, the new object query embeddings Qnew share the exact
same embedding space with the encoded image features F,
yielding a strong prior for object queries to focus on seman-
tically similar regions.
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3.2.2 Matching with Salient Point Features

Multi-head attention plays an indispensable role in DETR,
which allows each head to focus on different parts and thus
significantly strengthens its modeling capacity. Besides,
prior works [3,31,62] have identified the importance of ob-
jects’ most discriminative salient points in object detection.
Inspired by these observations, instead of naively resam-
pling by average-pooling or max-pooling, we propose to ex-
plicitly search for multiple salient points and employ their
features for the aforementioned semantic-aligned matching.
Such design naturally fits in the multi-head attention mech-
anism [45] without any modification.

Let us denote the number of attention heads as M , which
is typically set to 8. As shown in Fig. 3 (b), after retrieving
region-level features FR via RoIAlign, we apply a ConvNet
followed by a multi-layer perception (MLP) to predict M
coordinates RSP ∈ RN×M×2 for each region, representing
the salient points that are crucial for recognizing and local-
izing the objects.

RSP = MLP(ConvNet(FR)) (4)

It is worth noting that we constrain the predicted coordi-
nates to be within the reference boxes. This design choice
has been empirically verified in Section 4.3. Salient points’
features are then sampled from FR via bilinear interpola-
tion. The M sampled feature vectors corresponding to the
M searched salient points are finally concatenated as the
new object query embeddings, so that each attention head
can focus on features from one salient point.

Qnew′ = Concat({FR[..., x, y, ...] for x, y ∈ RSP}) (5)

The new object queries’ position embeddings are generated
using sinusoidal functions with salient points’ image-scale
coordinates as input. Similarly, position embeddings corre-
sponding to M salient points are also concatenated to feed
to the subsequent multi-head cross-attention module.

Qnew′
pos = Concat(Sinusoidal(Rbox,RSP)) (6)

3.2.3 Reweighting by Previous Query Embeddings

The Semantics Aligner effectively generates new object
queries that are semantically aligned with encoded image
features, but also brings one issue: previous query em-
beddings Q that contain valuable information for detection
are not leveraged at all in the cross-attention module. To
mitigate this issue, the proposed Semantics Aligner also
takes previous query emebddings Q as inputs to generate
reweighting coefficients via a linear projection followed by
a sigmoid function. Through element-wise multiplication
with the reweighting coefficients, both new query embed-
dings and their position embeddings are reweighted to high-
light important features, thus effectively leveraging useful

information from previous query embeddings. This process
can be formulated as:

Qnew = Qnew′ ⊗ σ(QWRW1) (7)
Qnew

pos = Qnew′
pos ⊗ σ(QWRW2), (8)

where WRW1 and WRW2 denote linear projections, σ(·)
denotes sigmoid function, and ⊗ denotes element-wise
multiplication.

3.3. Compatibility with SMCA-DETR

As illustrated in Fig. 3 (a), our proposed SAM-DETR
only adds a plug-and-play module with slight computa-
tional overhead, leaving most other operations like the at-
tention mechanism unchanged. Therefore, our approach
can easily work with existing convergence solutions in a
complementary manner to facilitate DETR’s convergence
further. We demonstrate the excellent compatibility of our
approach by integrating it with SMCA-DETR [10], a state-
of-the-art method to accelerate DETR’s convergence.

SMCA-DETR [10] replaces the original cross-attention
with Spatially Modulated Co-Attention (SMCA), which es-
timates the spatial locations of object queries and applies
2D-Gaussian weight maps to constrain the attention re-
sponses. In SMCA-DETR [10], both the center locations
and the scales for the 2D-Gaussian weight maps are pre-
dicted from the object query embeddings. To integrate our
proposed SAM-DETR with SMCA, we make slight modi-
fications: we adopt the coordinates of M salient points pre-
dicted by Semantics Aligner as the center locations for the
2D Gaussian-like weight maps, and simultaneously predict
the scales of weight maps from pooled RoI features. Exper-
imental results demonstrate the complementary effect be-
tween our proposed approach and SMCA-DETR [10].

3.4. Visualization and Analysis

Fig. 4 visualizes the salient points searched by the pro-
posed Semantics Aligner, as well as their attention weight
maps generated from the multi-head cross-attention mod-
ule. We also compare them with the original DETR’s atten-
tion weight maps. Both models are trained for 12 epochs
with ResNet-50 [13] as their backbones.

It can be observed that the searched salient points mostly
fall within the target objects and typically are the most
distinctive locations that are crucial for object recognition
and localization. This illustrates the effectiveness of our
approach in searching salient features for the subsequent
matching process. Besides, as shown in the attention weight
maps from different heads, the sampled features from each
salient point can effectively match target regions and nar-
row down the search range as reflected by the area of at-
tention maps. Consequently, the model can effectively and
efficiently attend to the extremities of the target objects as
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Figure 4. Visualization of SAM-DETR’s searched salient points and their attention weight maps. The searched salient points mostly fall
within the target objects and precisely indicate the locations with the most discriminative features for object recognition and localization.
Compared with the original DETR, SAM-DETR’s attention weight maps are more precise, demonstrating that our method effectively
narrows down the search space for matching and facilitates convergence. In contrast, the original DETR’s attention weight maps are more
scattered, suggesting its inefficiency for matching relevant regions and distilling distinctive features.

shown in the overall attention maps, which greatly facili-
tates the convergence. In contrast, the attention maps gen-
erated from the original DETR are much more scattered,
failing to locate the extremities efficiently and accurately.
Such observation aligns with our motivation that the com-
plication in matching object queries to target features is the
primary reason for DETR’s slow convergence. The visu-
alization also proves the effectiveness of our proposed de-
sign in easing the matching difficulty via semantic-aligned
matching and explicitly searched salient features.

4. Experiments
4.1. Experiment Setup
Dataset and Evaluation Metrics. We conduct exper-
iments on the COCO 2017 dataset [26], which contains
∼117k training images and 5k validation images. Standard
evaluation metrics for COCO are adopted to evaluate the
performance of object detection.

Implementation Details. The implementation details of
SAM-DETR mostly align with the original DETR [3]. We
adopt ImageNet-pretrained [7] ResNet-50 [13] as the back-
bone, and train our model with 8×Nvidia V100 GPUs us-
ing the AdamW optimizer [18,30]. The initial learning rate
is set as 1×10−5 for the backbone and 1×10−4 for the Trans-
former encoder-decoder framework, with a weight decay of
1×10−4. The learning rate is decayed at a later stage by 0.1.
The batch size is set to 16. When using ResNet-50 with di-
lations (R50-DC5), the batch size is 8. Model-architecture-
related hyper-parameters stay the same with DETR, except
we increase the number of object queries N from 100 to
300, and replace cross-entropy loss for classification with
sigmoid focal loss [25]. Both design changes align with the
recent works to facilitate DETR’s convergence [10, 31, 63].

We adopt the same data augmentation scheme as
DETR [3], which includes horizontal flip, random crop, and
random resize with the longest side at most 1333 pixels and
the shortest side at least 480 pixels.
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Method multi-scale #Epochs #Params (M) GFLOPs AP AP0.5 AP0.75 APS APM APL

Baseline methods trained for long epochs:

Faster-RCNN-R50-DC5 [35] 108 166 320 41.1 61.4 44.3 22.9 45.9 55.0
Faster-RCNN-FPN-R50 [24, 35] ✓ 108 42 180 42.0 62.1 45.5 26.6 45.4 53.4
DETR-R50 [3] 500 41 86 42.0 62.4 44.2 20.5 45.8 61.1
DETR-R50-DC5 [3] 500 41 187 43.3 63.1 45.9 22.5 47.3 61.1

Comparison of SAM-DETR with other detectors under shorter training schemes:

Faster-RCNN-R50 [35] 12 34 547 35.7 56.1 38.0 19.2 40.9 48.7
DETR-R50 [3] ‡ 12 41 86 22.3 39.5 22.2 6.6 22.8 36.6
Deformable-DETR-R50 [63] 12 34 78 31.8 51.4 33.5 15.0 35.7 44.7
Conditional-DETR-R50 [31] 12 44 90 32.2 52.1 33.4 13.9 34.5 48.7
SMCA-DETR-R50 [10] 12 42 86 31.6 51.7 33.1 14.1 34.4 46.5
SAM-DETR-R50 (Ours) 12 58 100 33.1 54.2 33.7 13.9 36.5 51.7
SAM-DETR-R50 w/ SMCA (Ours) 12 58 100 36.0 56.8 37.3 15.8 39.4 55.3

Faster-RCNN-R50-DC5 [35] 12 166 320 37.3 58.8 39.7 20.1 41.7 50.0
DETR-R50-DC5 [3] ‡ 12 41 187 25.9 44.4 26.0 7.9 27.1 41.4
Deformable-DETR-R50-DC5 [63] 12 34 128 34.9 54.3 37.6 19.0 38.9 47.5
Conditional-DETR-R50-DC5 [31] 12 44 195 35.9 55.8 38.2 17.8 38.8 52.0
SMCA-DETR-R50-DC5 [10] 12 42 187 32.5 52.8 33.9 14.2 35.4 48.1
SAM-DETR-R50-DC5 (Ours) 12 58 210 38.3 59.1 40.1 21.0 41.8 55.2
SAM-DETR-R50-DC5 w/ SMCA (Ours) 12 58 210 40.6 61.1 42.8 21.9 43.9 58.5

Faster-RCNN-R50 [35] 36 34 547 38.4 58.7 41.3 20.7 42.7 53.1
DETR-R50 [3] ‡ 50 41 86 34.9 55.5 36.0 14.4 37.2 54.5
Deformable-DETR-R50 [63] 50 34 78 39.4 59.6 42.3 20.6 43.0 55.5
Conditional-DETR-R50 [31] 50 44 90 40.9 61.8 43.3 20.8 44.6 59.2
SMCA-DETR-R50 [10] 50 42 86 41.0 - - 21.9 44.3 59.1
SAM-DETR-R50 (Ours) 50 58 100 39.8 61.8 41.6 20.5 43.4 59.6
SAM-DETR-R50 w/ SMCA (Ours) 50 58 100 41.8 63.2 43.9 22.1 45.9 60.9

Deformable-DETR-R50 [63] ✓ 50 40 173 43.8 62.6 47.7 26.4 47.1 58.0
SMCA-DETR-R50 [10] ✓ 50 40 152 43.7 63.6 47.2 24.2 47.0 60.4

Faster-RCNN-R50-DC5 [35] 36 166 320 39.0 60.5 42.3 21.4 43.5 52.5
DETR-R50-DC5 [3] ‡ 50 41 187 36.7 57.6 38.2 15.4 39.8 56.3
Deformable-DETR-R50-DC5 [63] 50 34 128 41.5 61.8 44.9 24.1 45.3 56.0
Conditional-DETR-R50-DC5 [31] 50 44 195 43.8 64.4 46.7 24.0 47.6 60.7
SAM-DETR-R50-DC5 (Ours) 50 58 210 43.3 64.4 46.2 25.1 46.9 61.0
SAM-DETR-R50-DC5 w/ SMCA (Ours) 50 58 210 45.0 65.4 47.9 26.2 49.0 63.3

Accelerating DETR’s convergence with self-supervised learning:

UP-DETR-R50 [6] 150 41 86 40.5 60.8 42.6 19.0 44.4 60.0
UP-DETR-R50 [6] 300 41 86 42.8 63.0 45.3 20.8 47.1 61.7

Table 1. Comparison of the proposed SAM-DETR, other DETR-like detectors, and Faster R-CNN on COCO 2017 val set. ‡ denotes the
original DETR [3] with aligned setups, including increased number of object queries (100→300) and focal loss for classification.

We adopt two training schemes for experiments, which
include a 12-epoch scheme where the learning rate decays
after 10 epochs, as well as a 50-epoch scheme where the
learning rate decays after 40 epochs.

4.2. Experiment Results

Table 1 presents a thorough comparison of the proposed
SAM-DETR, other DETR-like detectors [3, 6, 10, 31, 63],
and Faster R-CNN [35]. As shown, Faster R-CNN and
DETR can both achieve impressive performance when
trained for long epochs. However, when trained for only

12 epochs, Faster R-CNN still achieves good performance,
while DETR performs substantially worse due to its slow
convergence. Several recent works [10, 31, 63] modify the
original attention mechanism and effectively boost DETR’s
performance under the 12-epoch training scheme, but still
have large gaps compared with the strong Faster R-CNN
baseline. For standalone usage, our proposed SAM-DETR
can achieve a significant performance gain compared with
the original DETR baseline (+10.8% AP) and outperform
all DETR’s variants [10, 31, 63]. Furthermore, the pro-
posed SAM-DETR can be easily integrated with existing
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SAM Query Resampling Strategy RW AP AP0.5 AP0.75Avg Max SP x1 SP x8

22.3 39.5 22.2
✓ ✓ 25.2 48.9 23.3
✓ ✓ 27.0 50.2 25.8
✓ ✓ 28.6 50.3 28.1
✓ ✓ ✓ 30.3 52.0 29.8
✓ ✓ 32.0 53.4 32.8
✓ ✓ ✓ 33.1 54.2 33.7

Table 2. Ablation studies on our proposed design choices. Results
are obtained on COCO val 2017. ‘SAM’ denotes the proposed
Semantic-Aligned Matching. ‘RW’ denotes reweighting by previ-
ous query embeddings. Different resampling strategies for SAM
are studied, including average-pooling (Avg), max-pooling (Max),
one salient point (SP x1), and eight salient points (SP x8).

Salient Point Search Range AP AP0.5 AP0.75within ref box within image

✓ 33.1 54.2 33.7
✓ 30.0 52.3 29.2

Table 3. Ablation study on the salient point search range. Results
are obtained on COCO val 2017.

convergence-boosting methods for DETR to achieve even
better performance. Combining our proposed SAM-DETR
with SMCA [10] brings an improvement of +2.9% AP
compared with the standalone SAM-DETR, and +4.4% AP
compared with SMCA-DETR [10], leading to performance
on par with Faster R-CNN within 12 epochs. The conver-
gence curves of the competing methods under the 12-epoch
scheme are also presented in Fig. 1.

We also conduct experiments with a stronger backbone
R50-DC5 and with a longer 50-epoch training scheme.
Under various setups, the proposed SAM-DETR consis-
tently improves the original DETR’s performance and
achieves state-of-the-art accuracy when further integrated
with SMCA [10]. The superior performance under various
setups demonstrates the effectiveness of our approach.

4.3. Ablation Study
We conduct ablation studies to validate the effectiveness

of our proposed designs. Experiments are performed with
ResNet-50 [13] under the 12-epoch training scheme.

Effect of Semantic-Aligned Matching (SAM). As
shown in Table 2, the proposed SAM, together with any
query resampling strategy, consistently achieves superior
performance than the baseline. We highlight that even
with the naive max-pooling resampling, AP0.5 improves by
10.7%, a considerable margin. The results strongly support
our claim that SAM effectively eases the complication in
matching object queries to their corresponding target fea-
tures, thus accelerating DETR’s convergence.

Effect of Searching Salient Points. As shown in Table 2,
different query resampling strategies lead to large variance
in detection accuracy. Max-pooling performs better than
average-pooling, suggesting that detection relies more on
key features rather than treating all features equally. This
motivates us to explicitly search salient points and use their
features for semantic-aligned matching. Results show that
searching just one salient point and resampling its features
as new object queries outperforms the naive resampling
strategies. Furthermore, sampling multiple salient points
can naturally work with the multi-head attention mecha-
nism, further strengthening the representation capability of
the new object queries and boosting performance.
Searching within Boxes vs. Searching within Images.
As introduced in Section 3.2.2, salient points are searched
within the corresponding reference boxes. As shown in Ta-
ble 3, searching salient points at the image scale (allow-
ing salient points outside their reference boxes) degrades
the performance. We suspect the performance drop is due
to increased difficulty for matching with a larger search
space. It is noteworthy that the original DETR’s object
queries do not have explicit search ranges, while our pro-
posed SAM-DETR models learnable reference boxes with
interpretable meanings, which effectively narrows down the
search space, resulting in accelerated convergence.
Effect of Reweighting by Previous Embeddings. We
believe previous object queries’ embeddings contain helpful
information for detection that should be effectively lever-
aged in the matching process. To this end, we predict a
set of reweighting coefficients from previous query embed-
dings to apply to the newly generated object queries, high-
lighting critical features. As shown in Table 2, the proposed
reweighting consistently boosts performance, indicating ef-
fective usage of knowledge from previous object queries.

4.4. Limitation
Compared with Faster R-CNN [35], SAM-DETR inher-

its from DETR [3] superior accuracy on large objects and
degraded performance on small objects. One way to im-
prove accuracy on small objects is to leverage multi-scale
features, which we will explore in the future.

5. Conclusion
This paper proposes SAM-DETR to accelerate DETR’s

convergence. At the core of SAM-DETR is a plug-and-play
module that semantically aligns object queries and encoded
image features to facilitate the matching between them. It
also explicitly searches salient point features for semantic-
aligned matching. The proposed SAM-DETR can be eas-
ily integrated with existing convergence solutions to boost
performance further, leading to a comparable accuracy with
Faster R-CNN within 12 training epochs. We hope our work
paves the way for more comprehensive research and appli-
cations of DETR.
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