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Abstract

Multiple instance learning (MIL) has been increasingly
used in the classification of histopathology whole slide im-
ages (WSIs). However, MIL approaches for this specific
classification problem still face unique challenges, partic-
ularly those related to small sample cohorts. In these, there
are limited number of WSI slides (bags), while the resolu-
tion of a single WSI is huge, which leads to a large number
of patches (instances) cropped from this slide. To address
this issue, we propose to virtually enlarge the number of
bags by introducing the concept of pseudo-bags, on which
a double-tier MIL framework is built to effectively use the
intrinsic features. Besides, we also contribute to deriving
the instance probability under the framework of attention-
based MIL, and utilize the derivation to help construct and
analyze the proposed framework. The proposed method out-
performs other latest methods on the CAMELYON-16 by
substantially large margins, and is also better in perfor-
mance on the TCGA lung cancer dataset. The proposed
framework is ready to be extended for wider MIL appli-
cations. The code is available at: https://github.
com/hrzhang1123/DTFD-MIL

1. Introduction
The automation of whole slide images (WSIs) poses a

significant challenge to the field of computer vision. The
increasing use of WSIs in histopathology results in digital
pathology providing huge improvements in workflow and
diagnosis decision-making by pathologists [7,21,24,29,31],
but it also stimulates the need for intelligent or automatic
analytical tools of WSIs [11, 20, 36, 40, 44, 48, 49]. WSIs
have enormous sizes, ranging from 100M pixels to 10G pix-
els, and this unique characteristic makes it almost infeasible
to directly transfer existing machine learning techniques to

Figure 1. Illustration of the difference between conventional MIL
models and the proposed double-tier MIL model.

their applications, since these existing techniques were ini-
tially intended for natural images or medical images with
much smaller sizes. When it comes to deep learning based
models, large scale datasets and high quality annotations are
the primary yet crucial conditions to train a high capacity
model. However, the enormous sizes of WSIs bring along
substantial burden for pixel-level annotation. This prob-
lem in turn encourages researchers to develop deep learning
based models trained with limited annotations, termed as
“Weakly Supervised” or “Semi-Supervised” [22,26,35,41].
A large proportion of existing weakly supervised works for
WSI classification are characterized as “multiple instance
learning” (MIL) [1, 5, 8, 25]. Under the framework of MIL,
a slide (or WSI), acting as a bag, constitutes multiple in-
stances that are hundreds or thousands of patches cropped
from the slide. With at least one instance being disease pos-
itive, the slide is marked as positive, or otherwise negative.

There exist some successful attempts to solve the MIL
problem in various computer vision tasks [19,27,28,30,32].
The innate characteristics of WSIs, however, make it less
straightforward to develop MIL solution for WSI classifi-
cation than the counterparts in other computer vision sub-
fields, as the only direct guidance information for training
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Figure 2. (A) Illustration of an image classification system of deep learning. Global average pooling is applied to the extracted feature
maps of an image, leading to a feature vector representing the image. Then the feature vector is forwarded to a classifier which outputs the
class logits, then class probabilities by softmax. (B) Illustration of the AB-MIL paradigm. The extracted feature of an instance is weighted
by an attention score. The bag feature is obtained through the sum of the weighted instance features, and then fed into a classifier for the
bag prediction.

are the labels of a few hundred slides. The most notorious
consequence is the over-fitting problem where a machine
learning model tends to fall into local minima during op-
timization while the learnt features are less relevant with
respect to target disease, and as a result, the trained model
has inferior generalization ability.

Most recent works of MIL for WSIs to tackle the overfit-
ting issue are built on the essential idea of exploiting more
information to learn in addition to the labels of the relatively
small number of slides in a cohort. The mutual-instance
relation is an important direction to explore for this pur-
pose, and it has been empirically proven to be effective.
The mutual-instance relation can be specified as spatial [6]
or feature distances [18, 35, 37, 46], or can be agnostically
learnt by neural modules, such as recurrent neural networks
(RNN) [3], transformer [34], and graph convolution net-
work [51].

Many of the aforementioned methods belong to
attention-based MIL (AB-MIL) [14], although they differ
in the formulations of the attention scores. However, it was
believed infeasible to explicitly infer instance probabilities
under AB-MIL frameworks [18], and as an alternative, at-
tention scores were usually used as the indications of posi-
tive activation [10, 14, 18, 34]. In this paper, we argue that
the attention score is not a rigorous metric for this purpose,
and instead we contribute to deriving the instance probabil-
ity under the framework of AB-MIL.

Given the huge size of a WSI, the units to be directly
processed are the much smaller patches cropped from WSIs
[12]. MIL models for WSI classification essentially aim
to recognize the most distinctive patches that correspond
mostly to the slide label. However, there are a limited num-
ber of slides while there are hundreds or even thousands
of patches (instances) in a slide, and the information for
learning are only the slide-level labels. Moreover, in many
histopathology slides the positive regions corresponding to
positive diseases only occupy small portions of tissue, lead-
ing to a small ratio of positive instances of a slide. There-
fore, it is challenging to guide a model to recognize positive

instances under the condition of MIL, since these factors
collectively contribute to deteriorating the over-fitting prob-
lem.

Although most recent methods utilize mutual-instance
relations to improve MIL, they do not explicitly confront the
problems originated from the innate characteristics of WSIs
as mentioned above. To alleviate the negative impacts of
these problems, we introduce the concept of ‘pseudo-bag’
in the proposed framework. That is, we randomly split the
instances (patches) of a bag (slide) into several smaller bags
(pseudo-bags), and assign each pseudo bag the label of the
original bag, termed as the parent bag. This strategy virtu-
ally increases the number of bags while inside each pseudo
bag there are fewer instances; it also enables Double-Tier
Feature Distillation MIL model (Fig.1). More specifically,
a Tier-1 AB-MIL model is applied to the pseudo-bags of all
the slides. However, it comes along the risk that a pseudo-
bag from a positive parent bag may not be allocated with
at least one positive instance, in which case a mislabeled
pseudo-bag is introduced. To tackle this issue, we distill a
feature vector from each pseudo-bag and establish a Tier-
2 AB-MIL model upon the features distilled from all the
pseudo-bags of a slide (See Fig.3). Through the distillation
process, the Tier-1 model provides initial candidates of dis-
tinct features for the Tier-2 model to generate a better rep-
resentation for the corresponding parent bag. Furthermore,
for the purpose of feature distillation, we derive the instance
probability under the framework of AB-MIL, by harnessing
the fundamental idea of Grad-CAM that was developed for
visualizing deep learning features [33].

In essence, we deal with the MIL problem for WSI
classification from another perspective with the proposed
double-tier MIL framework. The main contributions are:
(1). We introduce the concept of pseudo-bags to allevi-
ate the issue of limited number of WSIs. (2) We derive
the instance probability under the AB-MIL framework by
utilizing the essential idea of Grad-CAM. Given AB-MIL
is the base for many MIL works, the instance probability
derivation can help with the extension studies of related
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MIL methods. (3). By utilizing the instance probability
derivation, we formulate a double-tier MIL framework, and
the experiments show its superiority to other latest methods
on two large public histopathology WSI datasets.

2. Related Works
2.1. Multiple instance learning in WSI analysis

Providing the importance of weakly supervised learning,
there is a trend to develop MIL algorithms for WSI analy-
sis where, instead of elaborated pixel-level annotation, only
the slide labels are available for training. MIL models gen-
erally can be divided into two groups, based on whether
the final bag predictions are directly from instance predic-
tions [3, 9, 12, 15, 17, 47], or from the aggregations of fea-
tures of instance [14, 18, 23, 34, 35, 42, 53]. For the former,
the bag predictions are usually obtained through either the
average pooling (mean value of probabilities of instances)
or the maximum pooling (max value of probabilities of in-
stances). In contrast, the latter one learns a high-level rep-
resentation of a bag and builds up a classifier upon this bag
representation for the bag-level prediction, and it is usually
referred to as the bag embedding method. Despite the sim-
plicity and being straightforward, instance-level probability
pooling is empirically proven to be inferior to the bag em-
bedding counter-part in performance [34, 42].

Many of the bag embedding-based models adopt the ba-
sic idea of AB-MIL, i.e., the bag embedding (or bag rep-
resentation) is obtained from the weighting of the features
of individual instances, while the latest works of this kind
differ in the ways to generate the weighting values, which
are typically referred to as attention scores. For example, in
the original paper [14], the attention scores are learned by a
side-branch network, in DS-MIL [18] an attention score is
based on the cosine distance between features of an instance
and the critical instance, while in Trans-MIL [34], they
are the output of a transformer architecture that encode the
mutual-correlations between instances. Essentially, these
methods are all AB-MIL, and to distinguish, we term the
original AB-MIL [14] as the classic AB-MIL. The main
component of our proposed method is also attention-based,
but it is not restricted to the way the attention scores are
generated. Without loss of generality, we adopt the classic
AB-MIL as the base MIL model for each tier in the pro-
posed framework. Please note that altering to other variants
of AB-MIL will be straightforward, but is not the main fo-
cus of this paper.

2.2. Grad-based Class Activation Map

The class activation map (CAM) [52] originally serves
as a spatial visualization tool to reveal the locations in an
image that correspond to the classification by a deep learn-
ing model. As its generalized version, Grad-CAM (Grad-

based Class Activation Map) [33] enables the generation of
CAM from higher complex architectures of multi-layer per-
ception (MLP). Many works utilized Grad-CAM not only
as a powerful tool for offline model analysis but as an em-
bedded component in the designed deep learning model for
various applications. For example, one notable capability
of CAM is the target localization of a model trained only
with image labels; therefore, it prevails in weakly super-
vised tasks, such as segmentation [4, 13, 16, 43] and detec-
tion [38, 45, 50], or even knowledge distillation [39].

In this paper, we demonstrate that the framework of AB-
MIL is a special case of the deep learning architecture for
image classification. This finding enables the utilization of
the mechanism of Grad-CAM to directly derive the posi-
tive probability of an instance under the framework of AB-
MIL, and the derivation assists in constructing the proposed
framework and also helps with the corresponding analysis.

3. Method
3.1. Revisit Grad-CAM and AB-MIL

3.1.1 Grad-CAM

A deep learning model for end-to-end image classification
typically comprises of two modules: a deep convolution
neural network (DCNN) for high-level feature extraction
and a multi-layer perceptron (MLP) for classification. An
image is fed into the DCNN to generate the features maps,
which become a feature vector by a pooling operation. The
feature vector is then forwarded to the MLP for final class
probabilities (Fig.2.(a)). Suppose the final output feature
maps from the DCNN is U ∈ RD×W×H , with D being the
number of channel and W,H being the dimensional sizes,
respectively. Imposing global average pooling on the fea-
ture maps leads to a feature vector that represents the image,

f = GAP
W,H

(U) ∈ RD (1)

where GAP
W,H

(U) denotes the global average pooling with

respect to W,H , i.e., the dth element of f , fd =
1

WH

∑W,H
w=1,h=1 U

d
w,h. Using f as the input, the MLP out-

puts logits sc for class c ∈ {1, 2, ..., C}, whose value indi-
cates the signal strength for the image belonging to class c
and the predicted class probability can then be obtained by
soft-max operation accordingly. The class activation map
for class c by Grad-CAM is defined as the weighted sum of
the feature maps,

Lc =

D∑
d

βc
dU

d, βc
d =

1

WH

W,H∑
w,h

(
∂sc

∂Ud
w,h

)
, (2)

with Lc ∈ RW×H , and Lc
w,h being the magnitude value at
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Figure 3. Overview of the proposed DTFD-MIL. A set of patches (we show only 9 for convenience) are first cropped from the tissue
regions of a slide. These patches are randomly split into M pseudo-bags (M = 3 for example). A tier-1 MIL model is then applied to the
3 pseudo-bags, respectively. Based on the outputs of the Tier-1 model on the 3 pseudo-bags, 3 feature vectors are distilled accordingly and
are then forwarded to the Tier-2 MIL model. The ground-truth bag label supervises both the Tier-1 and Tier-2 models during the training,
denoted by blue dash lines.

location w, h of Lc, indicating how strongly this location
tends to be class c,

Lc
w,h =

D∑
d=1

βc
dU

d
w,h (3)

3.1.2 Attention-Based Multiple Instance Learning

Consider a bag of instances X = {x1, x2, ...xK} with K
being the number of instances in the bag. Each instance
xk, k ∈ 1, 2, ...,K holds a latent label yk (yk = 1 for pos-
itive, or yk = 0 for negative), which is assumed to be un-
known. The goal of MIL is to detect whether there exist at
least one positive instance in the bag. The only informa-
tion revealed for training, however, is the bag label, which
is defined as,

Y =

{
1, if

∑K
k=1 yk > 0

0, otherwise
(4)

i.e., the bag is positive if at least one instance in it is positive,
or negative otherwise. One straightforward solution for this
learning problem is to assign each instance the bag label and
accordingly train a classifier, and then apply the max or av-
erage pooling operation on the individual instance classifi-
cations to obtain the bag-level results [42]. Another popular
strategy is to learn a bag representation F from the extracted
features of instances in the bag, with which the problem
becomes a conventional classification task, i.e., a classifier
can be trained upon the bag representations. Empirically,
the strategy of bag representation learning is proven to be
more efficient than the instance pooling strategy, which we
refer to as bag embedding-based MIL. The bag embedding
is formulated as,

F = G ({hk | k = 1, 2, ...,K}) , (5)

where G is an aggregation function, and hk ∈ RD is the ex-
tracted feature for instance k. Typically, many works adopt
the attention tactic to obtain the bag representation (or em-
bedding) as follows,

F =

K∑
k=1

akhk ∈ RD, (6)

where ak is the learnable scalar weight for hk, and D is the
dimension of vector F and hk. The paradigm is shown in
Fig.2.(b). The attention mechanisms in [14, 18, 23] follow
this formulation, therefore they all belong to the category
of AB-MIL, but differ in the ways to generate the attention
score (weight value) ak. For example, the weight from the
classic AB-MIL [14] is defined as,

ak =
exp{wT(tanh(V1hk)⊙ sigm(V2hk))}∑K
j=1 exp{wT(tanh(V1hj)⊙ sigm(V2hj))}

, (7)

where w,V1 and V2 are the learnable parameters.

3.2. Derivation of Instance Probability in AB-MIL

Despite the better performance of bag embedding-based
MIL, it was thought infeasible to unravel instance class
probability [18, 42]. In this paper, however, we show that
it is possible to derive the predicted probability of each in-
dividual instance in a bag under the framework of AB-MIL.
The derivation is rooted in the following proposition,

Proposition 1 The paradigm of AB-MIL is a special case
of the framework of the classic deep-learning network for
image classification.

Proof and explanation are in the Supplementary.
Based on Proposition 1, it is safe to apply the mecha-

nism of Grad-CAM to AB-MIL to directly infer the signal
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strength for an instance to be a certain class. Resembling to
Eq.(2), the signal strength for instance k to be class c (c = 0
for negative and c = 1 for positive) can then be derived as
(see Supplementary),

Lc
k =

D∑
d=1

βc
dĥk,d, βc

d =
1

K

K∑
i=1

∂sc

∂ĥk,d

(8)

where sc is the output logit for class c from the MIL clas-
sifier, ĥk,d is the dth element of ĥk, and ĥk = akKhk

with ak being the attention score for instance k defined in
Eq.(6). By applying soft-max, the corresponding probabil-
ity is then,

pck =
exp (Lc

k)∑C
t=1 exp (L

t
k)

(9)

3.3. Double-Tier Feature Distillation Multiple In-
stance Learning

In this section, we present the proposed double-tier fea-
ture distillation MIL framework.

Given N bags (slides), and in each bag there are Kn in-
stances (patches), i.e., Xn = {xn,k | k = 1, 2, ...,Kn}, n ∈
{1, 2, ..., N}, with the ground-truth of a bag being Yn. The
corresponding feature of a patch, denoted as hn,k, is ex-
tracted by a backbone network H, i.e., hn,k = H (xn,k).
The instances in a bag (slide) are randomly split into M
pseudo-bags with approximately even number of instances,
Xn = {Xm

n | m = 1, 2, ...,M}. A pseudo-bag is as-
signed the label of its parent bag’s label, i.e., Y m

n = Yn .
In Tier-1, an AB-MIL model, denoted as T1, is applied to
each pseudo-bag. Suppose the estimated bag probability of
a pseudo-bag through the Tier-1 model is ymn ,

ymn = T1

(
{hk = H (xk) | xk ∈ Xm

n }
)
, (10)

The Tier-1 loss function for training using cross entropy is
then defined as,

L1 = − 1

MN

N,M∑
n=1,m=1

Y m
n log ymn +(1− Y m

n ) log (1− ymn )

(11)
The probabilities of instances in each pseudo-bag can then
be derived using Eq.(8) and Eq.(9). Based on the derived in-
stance probabilities, a feature from each pseudo-bag is dis-
tilled, denoted as f̂m

n for the mth pseudo-bag of the nth par-
ent bag. All the distilled features are forwarded into a Tier-2
AB-MIL, denoted as T2, for the inference of the parent bag,

ŷn = T2

({
f̂m
n |m ∈ (1, 2, ...,M)

})
(12)

The Tier-2 loss function for training T2 is defined as,

L2 = − 1

N

N∑
n=1

Yn log ŷn + (1− Yn) log(1− ŷn), (13)

The overall optimization process is then:

{θ1,θ2} = argmin
θ1

L1 + argmin
θ2

L2 (14)

where θ1 and θ2 are the parameters of T1 and T2, respec-
tively. It should be noted that there is a certain proportion
of noise labels for the pseudo bags, as a pseudo bag may
not be assigned with at least one positive instance by the
random allocation. However, deep neural networks are
resilient to noise labels to some extent. Besides, the noise
level can be roughly controlled by the number of pseudo
bags in each parent bag, i.e., M . We show how M ’s value
will affect the performance of the proposed methods in the
ablation study section.

Four feature distillation strategies are considered as follows:

• MaxS Maximum selection: The feature of the instance
in a pseudo-bag that achieves the maximum positive
probability from the Tier-1 MIL model is selected to
forward to the Tier-2 MIL model.

• MaxMinS MaxMin selection: The features of two in-
stances in a pseudo-bag are distilled and concatenated
to forward to the Tier-2 model: the one with the maxi-
mum probability and the one with the minimum prob-
ability in the pseudo-bag. Such a selection is based on
the consideration that, if only the instance with max-
imum positive probability in each pseudo-bag are se-
lected (as in the case of MaxS), the decision boundary
of the trained Tier-2 model will tend to be pushed for-
ward too tightly to positive samples, and may miss the
genuinely positive cases that are similar to the negative
ones [47]. By introducing the instances of maximum
and minimum probabilities at the same time, it gives
looser space for the Tier-2 model to generate the par-
ent bag’s feature embedding.

• MAS Maximum attention score selection: The fea-
ture of the instance in a pseudo-bag with maximum
assigned attention score from the Tier-1 MIL model is
distilled to the Tier-2 MIL model.

• AFS Aggregated feature selection: The feature ag-
gregated from all the instances in a pseudo-bag as in
Eq.(6) is forwarded the Tier-2 model.

We evaluate the performances of all these 4 strategies in the
experimental section.
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Table 1. Results on CAMELYON-16 test set. The subscripts are the corresponding 95% confidence intervals. The best ones are in bold.
For DTFD-MIL, the number of pseudo-bags is 5. The flops are measured with the number of instances of a bag being 120, and the instance
feature extraction by ResNet-50 is not considered in the presented model sizes and flops.

CAMELYON-16
Method Acc F1 AUC FLOPs Model Size

Mean Pooling 0.626(0.616,0.636) 0.355(0.346,0.363) 0.528(0.518,0.538) 62.4M 524.3K
Max Pooling 0.826(0.798,0.854) 0.754(0.694,0.813) 0.854(0.816,0.891) 62.4M 524.3K
RNN-MIL [3] 0.844(0.818,0.870) 0.798(0.791,0.806) 0.875(0.873,0.877) 64.0M 1.57M
Classic AB-MIL [14] 0.845(0.839,0.851) 0.780(0.769,0.791) 0.854(0.848,0.860) 78.1M 655.3K
DS-MIL [18] 0.856(0.843,0.869) 0.815(0.797,0.832) 0.899(0.890,0.908) 117.6M 855.7K
CLAM-SB [23] 0.837(0.809,0.865) 0.775(0.755,0.795) 0.871(0.856,0.885) 94.8M 790.7K
CLAM-MB [23] 0.823(0.795,0.85) 0.774(0.752,0.795) 0.878(0.861,0.894) 94.8M 791.1K
Trans-MIL [34] 0.858(0.848,0.868) 0.797(0.776,0.818) 0.906(0.875,0.937) 613.83M 2.66M
DTFD-MIL (MaxS) 0.864(0.848,0.880) 0.814(0.802,0.826) 0.907(0.894,0.919) 79.4M 986.7K
DTFD-MIL (MaxMinS) 0.899(0.887,0.912) 0.865(0.848,0.882) 0.941(0.936,0.944) 80.1M 986.7K
DTFD-MIL (AFS) 0.908(0.892,0.925) 0.882(0.861,0.903) 0.946(0.941,0.951) 79.4M 986.7K
DTFD-MIL (MAS) 0.897(0.890,0.904) 0.864(0.855,0.873) 0.945(0.943,0.947) 79.4M 986.7K

Table 2. Results on TCGA lung cancer. The subscripts are the
corresponding standard variances. The best ones are in bold. For
DTFD-MIL, the number of pseudo-bags is 8.

TCGA Lung Cancer
Acc F1 AUC

Mean Pooling 0.8330.011 0.8090.012 0.9010.012

Max Pooling 0.8460.029 0.8330.027 0.9010.033

RNN-MIL [3] 0.8450.024 0.8310.023 0.8940.025

Classic AB-MIL [14] 0.8690.032 0.8660.021 0.9410.028

DS-MIL [18] 0.8880.013 0.8760.011 0.9390.019

CLAM-SB [23] 0.8750.041 0.8640.043 0.9440.023

CLAM-MB [23] 0.8780.043 0.8740.028 0.9490.019

Trans-MIL [34] 0.8830.022 0.8760.021 0.9490.013

DTFD-MIL (MaxS) 0.8680.040 0.8630.029 0.9190.037

DTFD-MIL (MaxMinS) 0.8940.033 0.8910.027 0.9610.021

DTFD-MIL (AFS) 0.8910.033 0.8830.025 0.9510.022

DTFD-MIL (MAS) 0.8910.029 0.8900.021 0.9550.023

4. Experiments

In this section, we present the performance of the pro-
posed methods in comparison to other latest MIL works on
histopathology WSI, and qualitatively validate the sound-
ness of the derivation of instance probability. We also
conduct ablation experiments to further study the proposed
methods. More experimental results are presented in the
supplementary.

4.1. Datasets

We evaluate the proposed methods on two public
histopathology WSI datasets: CAMELYON-16 [2] and The
Caner Genome Atlas (TCGA) lung cancer. Please refer to

Supplementary for the details of these two datasets.
For pre-processing, we apply the OTSU’s threshold

method to localize the tissue regions in each WSI. Non-
overlapping patches of a size of 256 × 256 pixels on the
20X magnification are then extracted from the tissue re-
gions. There are in total 3.7 millions patches from the
CAMELYON-16 dataset and 8.3 millions patches from the
TCGA Lung Cancer dataset.

4.2. Implementation Details

The implementations are described in Supplementary
material. For more details, please refer to the released code.

4.3. Evaluation Metrics

For all the experiments, area under curve (AUC) is the
primary performance metric to report, since it is more com-
prehensive and less sensitive to class imbalance. Besides,
the slide-level accuracy (Acc) and F1 score are also consid-
ered, which are determined by the threshold of 0.5.

For CAMELYON-16, the official training set is further
randomly split into training and validation sets with a ra-
tio of 9:1. An experiment is running for 5 times, and the
mean values of performance metrics on CAMELYON-16
official test set and the corresponding 95% confidence in-
terval (CI-95) are reported. For TCGA lung cancer, we ran-
domly split the dataset into training, validation, and testing
sets with a ratio of 65:10:25 on the patient level. 4-folder
cross-validation is adopted, and the mean value of perfor-
mance metrics of the 4 test folders are reported. Since for
each test folder the performances vary significantly, the CI-
95 from just 4 values is of less use; therefore, we instead
report the corresponding standard variances.
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Figure 4. Heat maps of 5 sub-fields of slides by attention score
and by the patch probability derivation, respectively. In the col-
umn of ‘Original Slide’, the tumor regions are delineated by the
blue lines. In the second and third columns, brighter cyan col-
ors indicate higher probabilities to be tumor for the corresponding
locations.

4.4. Performance comparison with existing works

We present the experimental results of the proposed
methods on CAMELYON-16 and TCGA lung cancer
dataset, in comparison to the following methods: (1)
Conventional instance-level MIL, including the Mean-
Pooling and Max-Pooling. (2) RNN based RNN-MIL
[3]. (3) The classic AB-MIL [14]. (4) Three variants
of AB-MIL, including non-local attention pooling DSMIL
[18], single-attention-branch CLAM-SB [23] and multi-
attention-branch CLAM-MB [23]. (5) transformer-based
MIL, Trans-MIL [34]. The results of all the other meth-
ods are from the experiments conducted using their offi-
cial codes under the same settings. As shown in Table.1,
the proposed models have similar model sizes and compu-
tational complexities with the models of other works except
for Trans-MIL, while Trans-MIL is significantly larger in

model size and computational complexity.
The results on CAMELYON-16 test set are presented in

Tab.1, while the results on TCGA lung cancer are shown in
Tab.2. Generally, the instance-level methods (Mean Pool-
ing, Max Pooling) are inferior to the bag embedding-based
methods in performances.

For CAMELYON-16, most positive slides contain only
small portions of tumor over the whole tissue region.
Among the proposed DTFD-MIL methods with different
feature distillations, the MaxS has the most inferior perfor-
mances, yet it still outperforms other existing MIL methods
except the most recent Trans-MIL. The other 3 DTFD-MIL
achieve similar performances, which are significantly better
than others. For example, DTFD-MIL(AFS) is at least 4%
better in AUC than other existing methods.

For TCGA lung cancer, except for DTFD-MIL(MaxS),
the proposed methods also achieve leading performances,
with DTFD-MIL(MaxMinS) obtaining the best AUC value
of 96.1%. Due to significantly larger tumor regions in
positive slides, however, even the instance-level methods
perform well on the TCGA lung cancer dataset, resulting
in less obvious superiority of the proposed methods over
other existing methods. In comparison, for the much more
challenging dataset CAMELYON-16, the proposed meth-
ods present stronger robustness to the situation of small por-
tions of tumor regions in positive slides.

4.5. Visualization of Detection Results

To further explore the proposed instance probability
derivation, we train a classic AB-MIL model, and generate
the heatmaps of 5 sub-fields of 5 slides from CAMELYON-
16. These heatmaps come from (1) normalized attentions
scores (attention-based); (2) patch probability derivation
(derivation-based) by Eq.(8) and Eq.(9), respectively. The
attention scores directly from the attention module are nor-
malized as a

′

k = (ak − amin) / (amax − amin) [14,18,23,34],
where amin and amax are the minimum and maximum atten-
tion scores of patches in a slide, respectively. For better pre-
sentation, we remove the estimated probabilities of patches
in the derivation-based heatmaps (the third row) whose val-
ues are around 0.5 thus contain little information.

The heatmaps from Fig.4 demonstrate the better ability
of the instance probability derivation to localize the posi-
tive activations, compared with the attention scores. Specif-
ically, the positive activations in the heatmaps by instance
probability derivation are more consistent and accurate, and
present better contrast compared to that of attention scores.
Moreover, in the ground-truth negative slides, there are al-
ways strong false positive regions in the heatmaps of atten-
tion scores, while in the heatmaps from instance probabil-
ity derivation, most of these regions can be correctly recog-
nized as negative. In the supplementary material, we pro-
vide more in-depth analysis about why the instance proba-
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bility derivation is more efficient for positive activation de-
tection compared to the attention scores.

4.6. Ablation Study

Figure 5. AUC scores of the four feature distillation strategies on
CAMELYON-16 test set.

Figure 6. AUC scores of the four feature distillation strategies on
TCGA lung cancer dataset.

Fig.5 and Fig.6 present the AUC scores of the proposed
methods with respect to different numbers of pseudo-bags
on CAMELYON-16 and TCGA lung cancer datasets, re-
spectively. In each sub-figure, the blue curve represents the
Tier-2 MIL model, while the red curve represents the Tier-1
MIL model which directly works on pseudo-bags.

From these curves, we can summarize:

(1). The pseudo-bag idea is beneficial to both the Tier-1 and
Tier-2 MIL models. However, the Tier-1 models are more
sensitive to the number of pseudo-bags in CAMELYON-
16: the corresponding AUC scores drop dramatically as the
number of pseudo-bags increases from 3. In contrast, Tier-
1 models are less sensitive to the number of pseudo-bags in
TCGA lung cancer dataset, and they even achieve high-level
performances with a proper number of pseudo-bags. This
phenomenon mainly results from that the tumors are usu-
ally minor regions in CAMELYON-16 positive slides while
in TCGA lung cancer the situation reverses; therefore, it is
highly possible that a pseudo-bag may not be allocated with
at least one positive instance from a positive parent bag in
CAMELYON-16. This well justifies our initial motivation
to build up a second-tier MIL model upon the distilled fea-
tures from the corresponding pseudo bags, and in general
the performances of Tier-2 models indeed are better than
those of Tier-1 models, especially in CAMELYON-16.
(2). Among the four feature distillation strategies, the
DTFD-MIL (MaxS) performance is not comparable to the
other three, and on TCGA lung cancer dataset the Tier-2
MIL model is even inferior to the Tier-1 MIL model when
MaxS feature distillation is used. It implies that adopting
the instances with the highest positive responses to form
the representation of the bag is not always the optimal op-
tion. This phenomenon is also in accordance with the ob-
servation from Fig.4, where the strongest activations in a
negative slide are from the neutral or even blank regions
(corresponding to approximately zero probability of being
tumor), instead of the non-tumor tissue regions.

5. Conclusion
The first contribution of this paper is the derivation

of instance probability under the framework of AB-MIL,
and we qualitatively demonstrate the derived instance
probability is a more reliable metric over the widely-used
attention scores for the positive region detection. We then
propose the DTFD-MIL, which utilizes the idea of pseudo
bags and double-tier MIL. The derivation of instance
probability serves for the feature distillation in DTFD-MIL.
The experimental results demonstrate that the proposed
DTFD-MIL indeed provides a new perspective to solve
the MIL problem with superior performances, rather than
utilizing mutual-instance relations as in other latest works.
Finally, we also expect that the derivation of instance prob-
ability will be served as a useful tool for developing related
MIL models or for the related analysis in future works, just
as the role it plays in the proposed DTFD-MIL in this paper.
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[27] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic.
Is object localization for free?-weakly-supervised learning
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 685–694, 2015. 1
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