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Abstract

Maximisation of Consensus (MaxCon) is one of the most
widely used robust criteria in computer vision. Tennakoon
et al. (CVPR2021), made a connection between MaxCon
and estimation of influences of a Monotone Boolean func-
tion. In such, there are two distributions involved: the dis-
tribution defining the influence measure; and the distribu-
tion used for sampling to estimate the influence measure.
This paper studies the concept of weighted influences for
solving MaxCon. In particular, we study the Bernoulli mea-
sures. Theoretically, we prove the weighted influences, un-
der this measure, of points belonging to larger structures
are smaller than those of points belonging to smaller struc-
tures in general. We also consider another “natural” fam-
ily of weighting strategies: sampling with uniform measure
concentrated on a particular (Hamming) level of the cube.
One can choose to have matching distributions: the same
for defining the measure as for implementing the sampling.
This has the advantage that the sampler is an unbiased es-
timator of the measure. Based on weighted sampling, we
modify the algorithm of Tennakoon et al., and test on both
synthetic and real datasets. We show some modest gains of
Bernoulli sampling, and we illuminate some of the interac-
tions between structure in data and weighted measures and
weighted sampling.

1. Introduction

Robust model fitting is a fundamental problem in pro-
cessing data in the presence of outliers, which is a long-
standing and challenging research topic. Maximisation of
Consensus (MaxCon) is one of the most popular criteria for
robust fitting, which aims at finding a model that has the
largest consensus on the given measurements. Formally,
given a data set X = {xxxi}ni=1 of size n and a prescribed

threshold ε > 0, the maximum consensus criterion for pre-
scribed type of mathematical model is formulated as,

max
θθθ∈Ω,I⊆X

|I|,

s.t. r(xxxi, θθθ) ⩽ ε, ∀ xxxi ∈ I,
(1)

where Ω is the set of allowed parameters for prescribed
mathematical model, θθθ is the model parameter, |I| is the
size of the subset I ⊆ X , r(xxxi, θθθ) is the fitting residual of
datum xxxi with respect to the model θθθ.

Random sample consensus (RANSAC), “the original
MaxCon algorithm”, is probably one of the most influen-
tial and widely used method since it was proposed in the
1980s [10]. The key idea is to adopt a hypothesize and ver-
ification procedure, which randomly samples subsets to fit
the model and computes the consensus with respect to the
obtained model. Such randomized methods can be very
fast but there is no guarantee for the optimality of solu-
tions. Variants of RANSAC, such as LO-RANSAC [6] and
PROSAC [5], may improve the original RANSAC, but, they
still inherit the drawback of randomized methods.

Related approaches are based on the M -estimator
paradigm, or other ways to modify the residual measure.
Examples include: l1 method [20], l∞ method [22,23], iter-
atively reweighted least squares [1], reweighted l1 method
[21], exact penalty method [15, 16].

It is known that the MaxCon problem is combinatori-
ally hard [3]. Optimal methods, (branch-and-bound (BnB)
search [17] and A∗ tree search [2, 4]) exist but their (worst
case) runtime increases exponentially with the size of the
problem, which makes them ineffective for large scale and
high dimensional problems.

This work directly follows [24] - here examining alter-
native definitions of influences and associated estimation
methods. That work, in turn, uses the same basic “tree”
strategy of Chin et al. [4], which used A∗ search on a tree
structure, founded on the notion of “basis” in LP-type the-
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ory. The A∗ search is able to find global optimal solutions.
However, this method is slow in general, despite speedups
introduced by Cai et al. [2]. In [25], an unsupervised
learning approach was proposed to determine which point
in a basis to remove in solving robust model fitting prob-
lems. This approach adopted the framework of reinforce-
ment learning, where removing points are guided by max-
imising rewards. Like many learning based approaches, it
may take a long time to train and it is hard to analyse the
method and its ability to generalise. Like [25] and [24],
modifications to the basic tree search that lose the priority
queue guarantees of A∗, sacrifice optimality guarantees for
speed. This paper is also spiritually in that context.

1.1. Influence and consensus maximisation

Recently, Tennakoon et al. [24] characterized the max-
imum consensus problem by Monotone Boolean Function
Theory and investigated the characterisation of the MaxCon
solutions by influences of a monotone Boolean function. In
detail, any subset I ⊆ X = {xxxi}ni=1 can be represented by
a bit vector bbb of length n, where its i-th component bi = 0
denotes the exclusion of the datum xxxi and bi = 1 denotes
the inclusion of the datum xxxi. Then, any subset I is nothing
more than a vertex of an n-dimensional Boolean cube. A
Boolean function f : {0, 1}n → {0, 1}:

f(bbb) :=

{
1, if r(θθθ,xxxi) > ε

0, if r(θθθ,xxxi) ⩽ ε
, ∀ i ∈ {j : bj = 1}. (2)

defines feasibility (the subset {xxxi} denoted by bbb is called
feasible if f(bbb) = 0 and infeasible otherwise). Solving
MaxCon is a search for the feasible subset of maximal size.

A Boolean function is called monotone if f(aaa) ⩽ f(bbb)
holds for any aaa ≺ bbb, where the ordering relation ≺ means
i-th component ai ⩽ bi for any 1 ⩽ i ⩽ n. We can
easily see that the Boolean function (2) is monotone. The
reason is that adding data points to infeasible subsets still
keeps them infeasible while deleting data points from feasi-
ble subsets keeps them feasible. An upper zero bbb of a mono-
tone Boolean function f is a vertex such that f(bbb) = 0 and
f(aaa) = 1 for any aaa satisfying bbb ≺ aaa. A maximum up-
per zero bbb of f is an upper zero with the maximal size, i.e.,
f(bbb) = 0 and f(aaa) = 1 for any aaa satisfying ∥aaa∥1 > ∥bbb∥1,
where ∥ · ∥1 is the l1 norm. The upper zeros essentially
characterise all possible candidate consensus solutions sys-
tematically and finding maximum consensus is equivalent
to finding the maximum upper zero of associated Boolean
function. See Figure 1 for a toy example of 2D line fit-
ting, which illustrates the connection between monotone
Boolean functions and the MaxCon problem.

The key concept in [24] is influence. When endowing
the Boolean cube with a uniform measure, the influence of
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Figure 1. Left: 2D line fitting problem with 8 points. Right:
Boolean cube associated with the fitting problem. The 8D Boolean
cube is flattened on the plane, where every blue dot represents
an infeasible subset of the line fitting problem and other colored
dots represent feasible subsets. These dots are arranged by the
ordering relation ≺ from top to bottom. In this toy example,
there are four upper zeros, i.e., bbb6 = 00111111 (maximum up-
per zero, superscript represents how many data points are cho-
sen), bbb4 = 10001101, bbb3 = 011000010, bbb3

′
= 11010000,

which are highlighted in the cube and the sub-cubes determined
by these vertices are distinguished by different colors. The vertex
bbb3

′′
= 00001101 is a pseudo upper zero (see definition in Section

3). Note that all vertices below level 3, i.e., less than 3 points are
fitted, must be feasible.

bi of a Boolean function f is defined [19] as,

Infi[f ] := Pbbb∼{0,1}n

[
f(bbb) ̸= f(bbb⊕i)

]
, (3)

where bbb⊕i denotes flipping the i-th bit in bbb, bbb ∼ {0, 1}n
means bbb is uniformly distributed on the Boolean cube.

To estimate the influences in equation (3), the most ob-
vious and natural way would be to uniformly sample, and
use the empirical counts as (unbiased) estimates. The whole
Boolean Cube is, unfortunately, so vast, that spreading the
samples uniformly is not an efficient sampling strategy.
This undoubtedly led to the “uniform at level p′” (for p′

slightly larger than the combinatorial dimension p) sam-
pling strategy of [24], which will produce biased estimates.

1.2. Motivation of this paper

Given the above, one can thus view the method of [24]
as employing biased estimates of uniform measure influ-
ence (equation (3)). Alternatively, one could take the sam-
pling distribution used in [24] as implicitly defining a new
(weighted) influence measure (and the sampling strategy is
now an unbiased estimator of this new influence measure).
Both views are really two sides of the same coin. However,
the primary issue is whether the biased estimates of uniform
measure influence (first viewpoint: biased estimator - sec-
ond viewpoint: new influence measure) actually preserve
the ordering of the sizes of influences.

Put simply, in [24] there is a disconnect between the
measure used in the definition (and also in the proof of influ-
ence being greater for outliers) and the measure used in the
empirical estimation: but one can reconcile this by using a
definition of influences that entails the same biased measure
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as would be used in sampling (to estimate the influences).
We are thus led to a more systematic and coherent study of
a topic called “weighted” (or biased) influences.

In section 2.1, we equip the Boolean cube {0, 1}n with
the Bernoulli(q) measure µq , namely, the probability of
bi = 1 is q and the probability of bi = 0 is 1 − q, which
includes the uniform measure as a special case (q = 1

2 ). For
this, an unbiased estimator is:

Inf
(q)
i [f ] = E

xxx∼µq(xxx)
[I(f(xxx) ̸= f(xxx⊕i))], (4)

where I(·) is the indicator function, E[·] is the sample mean
of random variables. Empirical evidence (see section 4)
shows that a Bernoulli weighted influence based method
can achieve similar optimal solutions with less runtime or
even better results with similar runtime. But perhaps more
importantly, we analytically prove that this weighted mea-
sure preserves the necessary ordering of influences - see
section 3. In fact, since the expressions we derive for
Bernoulli weighted influence subsume uniform influence as
a special case, and since we cover more general data charac-
teristics (section 3.2) than that in the corresponding sections
of [24], this paper provides a more comprehensive theoreti-
cal analysis of the uniform measure as well.

Another family of measures, we call Hamming(k), puts
equal mass on subsets of a fixed size (fixed Hamming norm)
k, and zero elsewhere. A particular case of which is applied
in [24]. For these measures, it turns out that we do not need
to conduct an analysis from scratch. The expressions we
have for Bernoulli(q) weighted influence naturally stratify
by level (as do of course the corresponding equations in [24]
which are the special case Bernoulli(0.5)). This allows us to
obtain the number of feasibility/infeasibility flips per level
by inspection (and the corresponding weighted influence is
then just the appropriate normalisation produced by divid-
ing these counts by the number of vertices/subsets in the
given level). Nonetheless, this was not pointed out in [24],
nor were any resulting observations made. Moreover, since
we analyse a more general set of data assumptions we also
have a more comprehensive picture than can be deduced
simply by inspection of equations in [24].

Our main contributions can be summarised as:

• We characterize the influence of outliers/inliers in
MaxCon by the concept of weighted influence. We
prove that the weighted influences of points belonging
to the larger structure in the data are generally smaller
for both ideal and non-ideal cases (see section 3 for
definitions). Note that our analysis is much more gen-
eral, than that in [24].

• We empirically test modifications made to the basic
algorithm of [24], to accommodate weighted sampling
by Bernoulli measure. On several robust fitting tasks,

our weighted influence based variant is an effective al-
ternative to the version in [24].

We also provide a conjecture, motivated by the structure of
the equations we derive, that possibly links and explains the
inherent structural complexity of MaxCon, by some recent
constructs of what characterises hard problems - see Con-
jecture 3.1 section 3.2.

The aim of the paper is to investigate MaxCon under
new definitions of influence, and corresponding estimation
strategies. The spirit is the study of those issues - not of
producing a “leaderboard winning” algorithm.

1.3. Notation

We adopt the following notation: (1) Bold bbb denotes a
vertex (a vector of n bits) in the Boolean cube {0, 1}n and
its i-th component is denoted by bi. (2) [n] = {1, 2, · · · , n}.
(3) Lk := {bbb ∈ {0, 1}n| ∥bbb∥1 = k} denotes level k of the
Boolean cube {0, 1}n for 0 ⩽ k ⩽ n. (4) L⩽k := {bbb ∈
{0, 1}n| ∥bbb∥1 ⩽ k} represents levels below level k + 1 in
the cube {0, 1}n. Similar definitions for L<k, L⩾k, L>k.
(5) For b∗b∗b∗ ∈ Lk, Bb∗b∗b∗ := {bbb ∈ {0, 1}n|∆(bbb, b∗b∗b∗) = l, bbb ∈
Lk−l, 1 ⩽ l ⩽ k− p− 1} denotes the sub-cube determined
by b∗b∗b∗, where ∆(bbb, b∗b∗b∗) = |{i : bi ̸= b∗i }| is the Hamming
distance between bbb and b∗b∗b∗. (6) Sj

bbbki
:= {l ∈ [n] | bki

l = j},
where j = 0, 1. S1

bbbki
and S0

bbbki
represent the set of indices

of data points who are inliers and outliers with respect to
bbbki ∈ Lki , respectively. (7) Cn

k denotes the number of k-
combinations of a set with n elements, which is n!/k!/(n−
k)!, where 1 ⩽ k ⩽ n.

2. Weighted Influences
In this section, we will introduce the definitions of

(Bernoulli) weighted influences of monotone Boolean func-
tions (section 2.1) and (Uniform Hamming) weighted influ-
ences (section 2.2).

2.1. Bernoulli(q) weighted influences

Let Ωn = {0, 1}n be the discrete n-dimensional cube
endowed with the Bernoulli measure µq , where µ({bbb : bi =
1}) = q ∈ (0, 1), namely, µq(bbb) = q∥bbb∥1(1 − q)n−∥bbb∥1 .
Then, we can define a metric on Ωn [19],

⟨f1, f2⟩ :=
∑
bbb∼Ωn

f1(bbb)f2(bbb)µq(bbb)

for any f1, f2 defined on Ωn. The parity functions

χq
S(bbb) := q

∑
i∈S bi

− · q|S|−
∑

i∈S bi
+

form a basis of the space (Ωn, ⟨·, ·⟩), where S is a subset of

[n], bbb ∈ Ωn, q− = −
√

1−q
q , q+ =

√
q

1−q . χq
∅(bbb) ≡ 1 by

convention.
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The weighted first-order Fourier coefficient of a Boolean
function f on i-th variable can be given by

f̂q({i}) = ⟨f, χq
{i}⟩ =

∑
bbb∼Ωn

f(bbb)qbi−q1−bi
+ µq(bbb). (5)

With respect to the Bernoulli measure µq , the weighted
influence of the i-th variable on a Boolean function f de-
fined on Ωn is defined as (see Page 9 in [14])

Infqi [f ] := µq({bbb : f(bbb) ̸= f(bbb⊕i)}), (6)

where f̂q({i}) and Infqi [f ] are related by1:

Theorem 2.1. If f : {0, 1}n → {0, 1} is a monotone
Boolean function, then Infqi [f ] = − 1√

q(1−q)
f̂q({i}).

In practice, it is not very realistic to calculate the exact
value of (5) or (6) since the summation contains 2n possible
bbb to evaluate. Since we will take advantage of the order in-
formation of all weighted influences rather than their exact
values to design algorithms for MaxCon, it is sufficient to
get approximated weighted influences of good quality.

The way we estimate weighted influences is illustrated
as follows: Given a sample size h > p and a weight

q ∈ (0, 1), we sample half of a set of vertices {bbbj}
⌊h

2 ⌋
j=1 on

the Boolean cube Ωn according to the Bernoulli measure
µq and then flip i-th bit in all bbbj to generate another half
samples {bbbj}hj=⌊h

2 ⌋+1
. The monotone Boolean function f

is evaluated on these vertices. Therefore, by (5), (6) and
Theorem 2.1, we estimate the weight influence Ĩnf

q

i [f ] as

Ĩnf
q

i [f ] = − 1

h
√

q(1− q)

h∑
j=1

f(bbbj)q
bj,i
− q

1−bj,i
+ µq(bbbj), (7)

where bj,i is the i-th component of bbbj . Note: evaluation
can be simplified by the monotonicity of f : if f(bbbj) = 0
and bj,i = 1, then f(bbb⊕i

j ) = 0; if f(bbbj) = 1 and bj,i = 0,
then f(bbb⊕i

j ) = 1. Figure 2 shows the estimated and exact
weighted influences of data points illustrated in Figure 1,
where influences are normalized by maximal influence.

One might ask - can we recommend the best q to use?
Unfortunately, though we can illustrate that there is an op-
timal q for a toy problem (see for example Fig. 3), the best
q is probably problem dependent. Moreover, sampling the
measure is another complication.

2.2. Hamming(k) weighted influences

Defining a Fourier transform (and in general analysis) re-
stricted to the Boolean slice (level of equal Hamming norm)
is actually a more complex topic, only recently researched.

1Refer to the supplementary material for the proof. A similar result can
be found in [14] (Page 20) but without proof.
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Figure 2. Comparison of normalized exact and estimated weighted
influences of all data points used in Figure 1, where q is set to
0.375 and we set the number of samples h = 100.

Figure 3. Example (3 outliers) of various q for separating MaxCon
inliers and outliers. Left: Influences of all data points - top 3 out-
liers. Right: The separation function (distance between smallest
outlier and largest inlier influence): the best choice for q is 0.46
in terms of separation, and for this data set. Note: sampling to
estimate this measure is a different issue altogether.

See for example, [8, 9, 27] - arguments that might appeal
to Fourier theory for the uniform cube, often side-step the
more complicated Fourier picture on the slice. Likewise,
we will make no reference to Fourier coefficients.

In essence, one can go “direct” from the definition of ex-
pectations of the counts of transitions (from feasibility to
infeasibility) by flipping the i-th bit (including or excluding
the i-th data point) to the appropriate definition of influence
for the slice-concentrated measures (and thereby for sam-
pling/estimation strategies). Moreover, since these transi-
tions are counted by level (slice) in the appropriate formulae
for the Bernoulli(q) influences (given in section 3 or in [24]
for the Bernoulli(0.5) measure): one does not have to repeat
complicated derivations/analysis but can merely “pick off”
the relevant counts for the level under consideration, and
then normalize by the total count measure on a slice CN

k for
slice k. Moreover, since one is only interested in relative
sizes of influences, normalization can be omitted.

3. Analysis of weighted influence
In this section, we theoretically show that points belong-

ing to larger structures have smaller weighted influences:
intuitively, the weighted influence of an “inlier” data point
is smaller than that of an “outlier” data point. Proofs of
all theoretical results in the following two subsections can
be found in the supplementary material. Informed by our
analysis, once can search for the MaxCon solution, using
weighted sampling for influence: with some assurance the
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estimates have the right relative order to identify outliers.

3.1. Bernoulli(q) - Ideal case

Real datasets are “non-ideal”, i.e., there are multiple
structures in the dataset and these often share many data
points; yet the ideal case is a useful starting point.

Definition 3.1. Suppose {bbbki}n0
i=1 are upper zeros of a

monotone Boolean function, where bbbki ∈ Lki
, p + 1 ⩽

k1 ⩽ k2 ⩽ · · · ⩽ kn0
⩽ n. Then

f is called ideal if ∀ i, j ∈ [n0], |S1
bbbki

∩ S1
bbbkj

| ⩽ p,
namely, the structures have very small overlap.

f is called non-ideal if ∃ i, j ∈ [n0], |S1
bbbki

∩ S1
bbbkj

| > p.
Namely, at least two structures have significant overlap. We
call bbbα = (bα1 , · · · , bαn) defined by

bαl :=

{
1, l ∈ S1

bbbki
∩ S1

bbb
kj
,

0, otherwise,
∀ l ∈ [n],

a pseudo upper zero with respect to bbbki and bbbkj , where α :=
|S1

bbbki
∩S1

bbbkj
| is the level that the pseudo upper zero belongs

to. Let {bbbαi}m0
i=1 (p + 1 ⩽ α1 ⩽ α2 ⩽ · · · ⩽ αm0 < kn0)

be the set of all pseudo upper zeros if f is non-ideal.

Theorem 3.1. (Ideal Single Structure) If n0 = 1, namely,
f is ideal with respect to a single maximum upper zero bbbk1 ,
then, for i ∈ S1

bbbk1
(inliers),

Infqi [f ] = (Cn−1
p − Ck1−1

p )qp(1− q)n−p−1, (8)

and for i ∈ S0
bbbk1

(outliers),

Infqi [f ] = Cn−1
p qp(1− q)n−p−1 +

k1∑
l=p+1

Ck1
l ql(1− q)n−l−1,

(9)
which implies Infqi1 [f ] − Infqi2 [f ] = Ck1−1

p qp(1 −
q)n−p−1 +

∑k1

l=p+1 C
k1

l ql(1 − q)n−l−1 > 0, where i1 ∈
S0
bbbk1

, i2 ∈ S1
bbbk1

.

This theorem indicates that if there is only one ideal
structure, namely, points are either inliers or outliers with
respect to that structure, the weighted influences of outliers
(all outliers share the same influences) are strictly larger
than those of inliers (all inliers share the same influences).

Theorem 3.2. (Ideal Multiple Structure) If n0 > 1, i.e.,
f is ideal with several upper zeros, then, ∀ i ∈ ∩n0

l=1S
il
bbbki

(if
non-empty), Infqi [f ] is

(Cn−1
p −

∑
is=1

Cks−1
p )qp(1− q)n−p−1

+
∑
is=0

ks∑
l=p+1

Cks
l ql(1− q)n−l−1.

(10)

Put simply, we can see (from the summations over is)
that the influence of a data point decreases when belonging
to a structure (and the decrease is more the larger the struc-
ture is) and increases for every structure the point does not
belong to (again, by more if that structure is large). These
increases and decreases are weighted differently (terms in-
volving q), complicating the relationship.

Note: with multiple structures, one has to be careful to
qualify “inlier” and “outlier”. These only have meaning
with respect to a nominated single structure. For that struc-
ture, all points “inlier” to other structures are actually outlier
to the nominated one.

From (10), the influence Infqi [f ] of data point i is larger
if it is an outlier with respect to more upper zeros (and data
outlier to all structures will have the largest influence of all).

Here, we introduce a new Boolean cube {0, 1}n0 , for any
i ∈ ∩n0

l=1S
il
bbbki

, it corresponds to a vertex (i1, i2, · · · , in0
) ∈

{0, 1}n0 . Then, Infqi [f ] is a real-valued Boolean function
on {0, 1}n0 . To shorten notation, we denote Infqi [f ] for i ∈
∩n0

l=1S
il
bbbki

by f̃q(Siii).

Corollary 3.2.1. The influences (10) have the following or-
der relationship

∀ iii, jjj ∈ {0, 1}n0 , iii ≻ jjj =⇒ f̃q(Siii) < f̃q(Sjjj). (11)

Note that f̃q(S•) exists only if S• is non-empty.

3.2. Bernoulli(q) - Non-ideal case

Given a pseudo upper zero bbbαi , we introduce the notation
Sj
bbbαi = {l ∈ [n]|bαi

l = 1 − j}, where j = 0, 1. For any
i ∈ (∩n0

l=1S
il
bbbkl

)∩ (∩m0

l=1S
il
bbb
αn0+l ) (if non-empty), denote the

influence Infqi [f ] of i-th variable on f by f̃q(Siii), where
iii = (i1, i2, · · · , in0+m0

).
Observe that if bbbαi0 is a pseudo upper zero with respect

to upper zeros bbbki1 and bbbki2 , a data point i is an inlier with
respect to bbbki1 and bbbki2 , then it must be an inlier with respect
to bbbαi0 ; if i is an outlier with respect to any upper zero, then
it must be an outlier with respect to bbbαi0 .

Theorem 3.3. If f is non-ideal, then the weighted influence
f̃q(Siii) is given by

(Cn−1
p −

∑
is=1

1⩽s⩽n0

Cks−1
p +

∑
in0+s=0
1⩽s⩽m0

Cαs−1
p )qp(1− q)n−p−1

+ (
∑
is=0

1⩽s⩽n0

ks∑
l=p+1

Cks
l −

∑
in0+s=1
1⩽s⩽m0

αs∑
l=p+1

Cαs
l )ql(1− q)n−l−1.

where f̃q(S•) doesn’t exist if S• = ∅.

The core strategy to prove this theorem is by induction
on the number of pseudo upper zeros and taking advantage
of Theorem 3.2. Similar to the ideal case, by Theorem 3.3,
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we can see that the weighted influences of points belong-
ing to larger structures are smaller. What becomes appar-
ent is that with many structures, the expressions become
hugely complicated by the combinatorics of possible inter-
sections/overlap between them - complicating the measure
of inlier/outlier dichotomy (with respect to any given struc-
ture). This leads us to conjecture:

Conjecture 3.1. (Complexity of MaxCon and Overlap
Gap Property (OGP)) In [11] (and the works referred
therein), the computational complexity of many algorithms
has been linked to what is called the OGP. Essentially it
is argued that if the solution space is highly clustered (and
here locality is measured by overlap of the solutions) then
the problem will be hard for whole classes of algorithms.
In short, the existence of potential solutions that are ei-
ther very similar/have large overlap, or are widely sepa-
rately (few intermediate separated) - is a “signature” of a
hard problem to solve. We conjecture that this is true of
the MaxCon landscape of possible data configurations, and
the above reflects (through the lens of influence) how this
complicated data instance scenario manifests in a property
related to the sought solution - influence.

This conjecture is particularly intriguing because of the
link between maximum independent set (studied in [11])
and MaxCon - it can be shown that the MaxCon solution is
the maximum independent set of the (hyper)graph formed
by the infeasible minimal sized subsets (and also to the min-
imum vertex cover of the complement hypergraph).

3.3. Uniform Hamming measure Influence

Consider the ideal single structure case define in Theo-
rem 3.1. Firstly, it is easy to see the for the ideal single
structure, any algorithm that starts with a feasible set of size
large than the combinatorial dimension, and then greedily
adds points if the larger set remains feasible, will obtain the
MaxCon solution. So it is an easy problem with obvious so-
lution strategies. But if we did decide to use influences we
can note that from equation (8) the inlier influences came
from counting feasible/infeasible transitions between levels
p and p + 1 only. Thus for sampling uniform Hamming
level above level p+ 1, there are no feasibility/infeasibility
transitions caused by inliers. In other words, the Uniform
Hamming influence measure, at that level or above, will be
exactly zero for inliers. Since the influences of outliers, for
the same measure will be non-zero, this seems to promise
a remarkably efficient sampling strategy - one could elimi-
nate outliers at the first sample that revealed a count for the
associated influence - without the need to continue with the
full estimation process. Of course, practically, this is too
good to hold for real data - it is very brittle to our strict as-
sumptions here. Nonetheless, it does hint at the usefulness
of a less brittle strategy of early termination of the counting

process once a count reaches some degree of statistically
significantly higher than the rest, rather than a set number
of samples always being used: a future research topic.

Now consider the ideal multiple structure setting. From
equation 10, the influence accrued by being inlier to some
structure (first term) is only accrued between level p and
p + 1. The subtraction is due to feasibility transitions “that
didn’t occur” because the subset with added inlier remains
within the same structure). So once again, sampling above
level p will not “see” those counts. But since inliers to one
structure are outliers to another (we assumed no significant
overlap): hence the influence of inliers to any structure will
not be zero - different to the single structure case, as all
structures are outliers to to (all) other structures and thus
accrue influence from the second term in the equation. It is
also easy to see that so long as the level is “not too high”
(above the largest structure) the Hamming sampled influ-
ences will be an appropriate guide (influence of inliers of a
larger structure will be smaller). (In that second term the
largest structure is excluded from the sum over is = 0,
when calculating influence for that structure.)

Further discussion is in the supplementary material.

4. Experiments with Bernoulli measure
In this section, we empirically demonstrate that

Bernoulli weighted influence behaves generally as our anal-
ysis predicts (essentially retaining the correct ordering of
influences for inlier/outlier separation) across several robust
model fitting tasks on both synthetic and real datasets.The
main algorithm we use is presented in the supplementary
material (Algorithm 1 - which follows [24] ). To reduce the
risk of losing genuine inliers, we also implement the local
expansion (see Algorithm 2 in the supplementary material)
at the last step in Algorithm 1, which likewise follows the
strategy of [24]. Note: the algorithm of [24] is using uni-
form sampling at fixed Hamming level (so is implicitly pro-
viding a Hamming measure based result), though there it
was interpreted as a biased way to estimate uniform mea-
sure influence, rather than, as here, a new measure of in-
fluence. [24] empirically optimised their sampling level -
hence we do not experiment with Hamming sampling here.

For comparison we use: RANSAC [10], Lo-RANSAC
[6], A∗-NAPA-DIBP [2] (We only use it to generate ground
truth solutions for synthetic data with low rate of outliers.),
MBF [24], L1 [20]. Our method using Weighted Influence
is short for WI. Experiments employed Matlab R2020b on
a computer with Intel(R) i7-8700K CPU and 32GB RAM.

4.1. Robust linear regression

Analysis of parameters in weighted influences esti-
mation: Evaluation of the weighted influence (7) requires
two parameters: sample probability q and sample size h.
Here, we study the effect of q and h using synthetic data
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Figure 4. Comparison results for 2-dimensional robust linear re-
gression: Variation of the SF distance with respect to different
(Left) sample probability q and (Right) number of samples h. All
experiments were run 50 times.

on the 2-dimensional line fitting problem. We generate
n = 15 points2 around a straight line and randomly select
30% points as outliers, which are perturbed with uniformly
distributed noise in range [−4,−0.1)∩(0.1, 4]. The remain-
ing points are perturbed with uniformly distributed noise in
[−0.1, 0.1]. We set the inliers threshold ε as 0.1 in all ex-
periments throughout this subsection.

Let rrres and rrrex be the top k (in decreasing order) of es-
timated weighted influences (calculated by (7)) and exact
weighted influences (calculated by (6)) of all points, respec-
tively. The value k is determined by the number of outliers
(found by A∗-NAPA-DIBP). We measure the difference be-
tween rrres and rrrex by the normalized Spearman Footrule
(SF) distance [7]. Denote a set of elements contained in3 rrr•
by R(rrr•) and the position of the element z ∈ R(rrr•) in rrr•
by zrrr• . The normalized SF distance between rrres and rrrex is
given by

F (rrres, rrrex) =
1

k(k + 1)

∑
z∈R(rrres)∩R(rrrex)

|zrrres − zr
rrex |,

where we use k + 1 for zrrr• if z ̸∈ R(rrr•). The smaller
the SF distance is, the more likely that rrres and rrrex share the
same top k order of weighted influences.

For fixed number of samples (h = 300, 1000, 3000), we
vary the probability q from 0.1 to 0.9; and for fixed prob-
ability (q = 0.3, 0.5, 0.7), we vary the number of samples
from 100 to 5000. The results are shown in Figure 4, from
which we can see that the SF distance is relatively small
when q ∈ (0.2, 0.4); and for more samples, the SF distance
is smaller. In the following experiments, we will set the
probability q between (p+ 1)/n and 0.4 and sample size h
between 100 to 500 to maintain a trade-off between estima-
tion accuracy and run time. Note that the SF distance is not
able to distinguish points in rrres or rrrex who share the same
weighted influences. These experiments also show the ne-
cessity of iteratively re-estimate weighted influences since
evaluating all weighted influences once does not match the
order of exact weighted influences perfectly.

2We choose the number of data points very low since the exact
weighted influences require exponential time to compute as n increases.

3• means es or ex.

Figure 5. Comparison results for 8-dimensional robust linear re-
gression: Compare (Left) consensus error and (Right) run time
with different number of outliers. The ground truth is found by
A∗-NAPA-DIBP. All experiments were repeated 50 times.

Relative Performance: In this experiment, we consider
8-dimensional linear regression problem, where the syn-
thetic data are generated in the same way as we did in
last experiments. The number of data points n is cho-
sen as 200 and we vary the number of outliers from 10
to 40, which is limited by the computation time of A∗-
NAPA-DIBP for generating ground truth. From Figure 5,
we can find both Bernoulli weighted influences and the orig-
inal MBF can achieve optimal solutions and the Bernoulli
weighted method is faster than MBF in general. The effect
of local expansion is compared in the supplementary.

4.2. Linearised fundamental matrix estimation

We further test the Bernoulli weighted influence based
approach on five image pairs from sequence “00” of the
KITTI Odometry dataset [12] in this subsection. For two
given image pairs, SIFT keypoints [18] are detected and
matched by the VLFeat toolbox [26]. Suppose ppp1, ppp2 are
two features that are matched, where pppi = (xi, yi, 1)

T is
the coordinate in view i, i = 1, 2, then each correspon-
dence provides a linear constraint on the fundamental ma-
trix FFF ∈ R3×3 as pppT1FFFppp2 = 0. In this experiment, we
consider the linearised version of fundamental matrix esti-
mation [13], where the inliers threshold is set to 0.02 for all
image pairs. The iteration numbers of RANSAC and Lo-
RANSAC are set to match the runtime of WI.

We report in Table 1 the average (running all algorithms
20 times) consensus and runtime . Observe that: (1) Al-
though L1 is generally very fast, the consensus size found
is smaller than that of the Bernoulli based approach WI; (2)
RANSAC and Lo-RANSAC are allowed to run the same
time as WI, yet WI is still better in terms of returned consen-
sus size; (3) WI achieves almost the same consensus size as
MBF but with less time cost (on image pairs 198-201, 417-
420, 579-582, WI finds a slightly higher average consensus
size than MBF). Further detail is in the supplementary.

4.3. Homography estimation

This experiment considers homography estimation to-
gether with linear residual model. For a set of corre-
spondences from two views represented by {(xxxi, yyyi)} with
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Table 1. Results for linearised fundamental matrix estimation. Runtime of RANSAC and Lo-RANSAC is set to that of WI.

104-108104-108104-108 198-201198-201198-201 417-420417-420417-420 579-582579-582579-582 738-742738-742738-742

L1 Consensus 252 264 317 497 429
Time (s) 0.85 0.07 0.04 0.06 0.09

RANSAC Consensus 266.55 284.00 353.30 497.05 432.60
(262,270) (283,285) (351,356) (492,503) (428,440)

Lo-RANSAC Consensus 268.55 284.90 355.25 501.45 439.35
(266,273) (284,287) (354,356) (496,506) (432,443)

MBF Consensus 271.70 287.70 358.95 507.15 444.20
(268,274) (284,289) (357,360) (503,510) (442,446)

Time (s) 3.17 1.88 2.36 3.61 3.19
(2.65,4.41) (1.65,2.47) (1.96,2.66) (3.17,4.36) (2.68,3.56)

WI Consensus 271.55 288.35 359.05 507.65 444.15
(269,274) (286,289) (356,360) (502,510) (442,446)

Time (s) 2.64 1.75 2.10 3.42 3.09
(2.26,3.31) (1.43,2.03) (1.82,2.51) (2.93,4.15) (2.80,3.57)

xxxi, yyyi ∈ R2, let x̃xxi = (xxxi, 1)
T , ỹyyi = (yyyi, 1)

T be the
homogeneous representation, homography estimation is to
find a matrix HHH ∈ R3×3 such that ỹyyi = HHHx̃xxi for in-
liers. Since HHH is 8 dimensional uniquely defined up to
scale, it is possible to express homography estimation with
linear residual as a linear regression problem (see Chap-
ter 4 in [13] for details). We use 4 image pairs from the
Zurich Buildings datasets (Building 5, 22, 28, 37). Similar
to linearised fundamental matrix estimation, VLFeat tool-
box is used for extracting SIFT features and correspondence
matching. Note that each correspondence match produces
two residual functions, which means the number of data
points, inliers/outliers are doubled in optimisation.

Figure 6. Comparison results for linearised homography estima-
tion on 4 Zurich Building image pairs: (Left) Compare consensus
size and (Right) run time. All experiment were repeated 20 times.

In this experiment, we allow RANSAC and Lo-
RANSAC to run for the same time as WI - simply to show
what they are capable of with such a budget. The inliers
threshold is set to 0.1. From Figure 6, we find that WI
can achieve (roughly) the best performance among the four
sampling based methods. The run time of WI is smaller
than that of MBF on average. Further comparison between
WI and MBF can be found in the supplementary material.

5. Conclusion

We studied weighted influence in relation to the Max-
Con problem. Our analysis is more general than [24] in
terms of both the inclusion of weighted measures and in the
study of the “non-ideal case”. Incorporating weighted in-
fluences into the algorithm of [24], is straightforward. As
demonstrated by experiments on both synthetic and real
data, doing so is an effective alternative of [24] (roughly,
saving some run time while achieving similar consensus or
achieve better consensus with similar time budget). How-
ever, the main message is that, rather than viewing biased
sampling as some way to (more efficiently) estimate uni-
form influence, and “trusting” that the bias (in the estimates)
thereby introduced has no detrimental effect on the ordering
of influences (specifically of outliers having larger influence
than inliers), a proper study of biased measures allows us
to characterise the changes in these influence measures and
check for retention of the correct ordering. We address this
for two “natural” families of biased measures: Bernoulli
and Uniform at a fixed Hamming level.

Of course our work has two obvious limitations: our
analysis (of ideal cases) necessarily involves assumptions
whose relevance to real world data could be challenged, and
our experiments are not exhaustive.
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