This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

PatchFormer: An Efficient Point Transformer with Patch Attention

Cheng Zhang'; Haocheng Wan'*, Xinyi Shen?, Zizhao Wu'"
'Hangzhou Dianzi University, Hangzhou China
2University College London, London UK
{zhangcheng828,wuzizhao}@hdu.edu.cn {wanhaocheng2022,xinyishen2018}@163.com

Abstract

The point cloud learning community witnesses a mod-
eling shift from CNNs to Transformers, where pure Trans-
former architectures have achieved top accuracy on the ma-
jor learning benchmarks. However, existing point Trans-
formers are computationally expensive since they need to
generate a large attention map, which has quadratic com-
plexity (both in space and time) with respect to input size. To
solve this shortcoming, we introduce Patch ATtention (PAT)
to adaptively learn a much smaller set of bases upon which
the attention maps are computed. By a weighted summation
upon these bases, PAT not only captures the global shape
context but also achieves linear complexity to input size. In
addition, we propose a lightweight Multi-Scale aTtention
(MST) block to build attentions among features of differ-
ent scales, providing the model with multi-scale features.
Equipped with the PAT and MST, we construct our neural
architecture called PatchFormer that integrates both mod-
ules into a joint framework for point cloud learning. Ex-
tensive experiments demonstrate that our network achieves
comparable accuracy on general point cloud learning tasks
with 9.2x speed-up than previous point Transformers.

1. Introduction

Transformer has recently drawn great attention in natural
language processing [7,34] and 2D vision [8,21,33,38] be-
cause of its superior capability in capturing long-range de-
pendencies. Self-Attention (SA), the core of Transformer,
obtains an attention map by computing the affinities be-
tween self queries and self keys, generating a new fea-
ture map by weighting the self values with this attention
map. Benefitting from SA module, Transformer is capa-
ble of modeling the relationship of tokens in a sequence,
which is also important to many point cloud learning tasks.
Hence, plenty of researches have been done to explore

*These authors contributed equally.
Corresponding author: wuzizhao@hdu.edu.cn.

Figure 1. A large indoor scene often consists of small instances
(e.g., chair and typewriter) and large objects (e.g., table and black-
board), building the relationships among them requires a multi-
scale attention mechanism.

Transformer-based point cloud learning architectures.

Recently, Nico et al. proposed PT! [9] to extract global
features by introducing the standard SA mechanism, which
aims to capture spatial point relations and shape informa-
tion. Guo et al. proposed offset-attention (PCT [10]) to cal-
culate the offset difference between the SA features and the
input features by element-wise subtraction. Lately, more
and more researchers have applied SA module to various
point cloud learning tasks and achieved significant perfor-
mance such as [24,56]. However, existing point Transform-
ers are computationally expensive because the original SA
module needs to generate a large attention map, which has
high computational complexity and occupies a huge num-
ber of GPU memory. This bottleneck lies in that both the
generation of attention map and its usage require the com-
putation with respect to all points.

Towards this issue, we propose a novel lightweight atten-
tion mechanism, namely PAT which calculates the attention
map via low-rank approximation [17,52]. Our key obser-
vation is that a 3D shape is composed of its local parts and
thus the features of points in the same part should have sim-
ilar semantics. Based on this observation, we first exploit
the intrinsic geometry similarity, cluster local points on a
3D shape as one patch and estimate a base by aggregating
the features of all points in the same patch. Then we use a
product of self queries and self bases to approximate the

11799

global attention map, which can be obtained by comput-
ing self queries and self keys. Notably, the representation
of such product is low-rank and discards noisy information
from the input.

In addition, to aggregate local neighborhood informa-
tion, Zhao et al. [56] proposed PT? to build local vector
attention in neighborhood point sets, Guo et al. (PCT [10])
proposed to use a neighbor embedding strategy to improve
point embedding. Though PT? and PCT have achieved sig-
nificant progress, there exist problems that restrict their ef-
ficiency and performance. First, they wastes a high percent-
age of the total time on structuring the irregular data, which
becomes the efficiency bottleneck [23]. Second, they fails
to build the attentions among features of different scales
which is very important to 3D visual tasks. As shown in
Fig 1, a large indoor scene often contains small instances
(e.g., chair and lamp) and large objects (e.g., table), build-
ing the relationships among them required a multi-scale at-
tention mechanism. However, the input sequence of PT?
and PCT is generated from equal-sized points, so only one
single scale feature will be preserved in the same layer.

To solve these issues, we present a lightweight Multi-
Scale aTtention (MST) block for point cloud learning,
which consists of two steps. In the first step, our MST block
transforms point cloud into voxel grids, sampling boxes
with multiple convolution kernels of different scales and
then concatenates these grids as one embedding (see Fig
4). Specifically, we propose to use the depth-width convo-
lution (DWConv [11]) on boxes sampling beacuse of both
few parameters and FLOPs. In the second step, we incorpo-
rate 3D relative position bias and build attentions to non-
overlapping local 3D window, providing our model with
strong multi-scale features at a low computational cost.

Based on these proposed blocks, we construct our neural
architecture called PatchFormer (see Fig 2). Specifically,
we perform the classification task on the ModelNet40 and
achieve the strong accuracy of 93.5% (no voting) with 9.2x
faster than previous point Transformers. On ShapeNet and
S3DIS datasets, our model also obtains strong performance
with 86.5% and 68.1% mloU, respectively.

The main contributions are summarized as following:

* We present PatchFormer for efficient point cloud learn-
ing. Experiments show that our network achieves
strong performance with 9.2x speed-up than prior
point Transformers.

* We propose PAT, the first linear attention mechanism
in the point cloud analysis paradigm.

* We present a lightweight voxel-based MST block,
which compensates for previous architectures’ disabil-
ity of building multi-scale relationship.

2. Related works
2.1. Transformer for 2D Vision

Motivated by the success of Transformers in NLP [6, 14,

,34,48], researchers designed visual Transformers for vi-
sion tasks to take advantage of their great attention mecha-
nism. In particular, Vision Transformer (ViT) [&] is the first
such example of a Transformer-based approach to match or
even surpass convolution neural networks (CNNs) for im-
age classification. Later, Wang et al. [37] proposed pyramid
structure into transformers, named PVT, greatly decreasing
the number of patches in the later layers of the model. Liu
etal. [21] proposed Swin Transformer whose representation
is computed with non-overlapping local windows. Subse-
quently, Wang et al. [38] and Chen et al. [2] proposed Cross-
Former and CrossViT to study how to learn multi-scale fea-
tures in Transformers.

Inspired by the cross-scale attention used in Cross-
Former and CrossViT for image analysis, we present a
voxel-based MST block for point cloud learning that com-
bines voxel grids of different sizes to learn stronger local
features.

2.2. Point Cloud Learning

Most existing point cloud learning methods could be
classified into two categories in terms of data representa-
tions: the voxel-based models and the point-based models.
The voxel-based models generally rasterize point clouds
onto regular grids and apply 3D convolution for feature
learning [13, 15, 27,40, 57]. These models are computa-
tionally efficient due to their excellent memory locality, but
suffer from the inevitable information degrades on the fine-
grained localization accuracy [23,31,51]. Instead of vox-
elization, developing a neutral network that consumes di-
rectly on point clouds is possible [12, 20,26, 30, 35,39, 44,

,50,53,54]. Although these point-based models naturally
preserve accuracy of point location, they are usually com-
putationally intensive.

Generally, the voxel-based models have regular data lo-
cality and can efficiently encode coarse-grained features,
while the point-based networks preserve accuracy of loca-
tion information and can effectively aggregate fine-grained
features. In this paper, we propose PatchFormer to incor-
porate both the advantages from the two models mentioned
above.

2.3. Point Transformers

Powered by Transformer [34] and its variants [8,21], the
point-based models have recently applied SA to extract fea-
tures from point clouds and improve performance signifi-
cantly [9, 10, 16,25,49,51]. In particular, PT! is the first
such example of a Transformer-based approach for point
cloud learning. Later, Guo et al. and Zhao et al. pro-

11800

T —— . | t
) 3 " TN)
() (h [) [Layer Norm] [Devoxelize]
. & f
=
2 S o o~ & -
'g = % l>\< o 4 h¢] o~ 'éé ‘Q v 5] E [MSAggreganon] [MLP]
[s) b = g s g g g0 2 g
) 51 E=l's 3 2 % 2 2 S ~ S = 1
g_a’g—»m-?i—-m-—.m;}—.m m:"—'m 2 —5 ¢
= o =] 5 = B = = S = [Voxelize] [Layer Norm]
- w <t W & < Yo << ==
o 2 PN oy i ~ S W A 7 E
- E) & < o ER t —
o, Cal [wmee [wsa]
t T
— —/ N/ —/ A — N/ "/ \ / 1
S
N XC NXD MST Block
Stage-1 Stage-2

Figure 2. The architecture of PatchFormer: PatchFormer is comprised of three stages and each stage contains two blocks: MST block
and PAT bolck. A specialized head (e.g., the classification head) is followed by the final stage for the specific task. MST block: It first
voxelizes point cloud into voxel grids, aggregating multi-scale features, and then conducts 3D window-based SA (W-SA) to capture local
information. Finally, MST block transforms voxel grids to points and feed them into PAT block. Numbers in MST represent the size of
kernels used DWConv, R denotes the relative position bias and W-SA refers to 3D window-based self-attention.

posed PCT and PT? to construct SA networks for general
3D recognition tasks.

However, they suffer from the fact that as the size of
the feature map increases, the computing and memory over-
heads of the original SA increase quadratically. To address
this issue, we propose PAT to compute the relation between
self queries and a much smaller bases, yet captures the
global context of a point cloud as well.

3. Overview

An overview of the PatchFormer architecture is pre-
sented in Fig 2. Our method first embeds a point cloud
P into a D dimensional space F € RV*P using a shared
MLP, where N is the number of points. We empirically
set D = 128, a relatively small value for computational effi-
ciency. Late, we split our model into three stages and each
stage is comprised of two blocks: Multi-Scale aTtention
(MST) block and Patch-ATtention (PAT) block.

As illustrated in Fig 2, the MST block first voxelizes a
point cloud into regular voxel grids and then feeds them into
a multi-scale aggregating module. In this module, we sam-
ple boxes using three DWConv kernels of different size and
concatenate them as one embedding. After that, we limit
SA computation to non-overlapping local boxes in order to
alleviate the quadratic complexity of the original SA. Note
that a LayerNorm (LN) layer is applied before W-SA mod-
ule and MLP module, and a residual connection is applied
after each module. Eventually, we leverage the trilinear in-
terpolation to transform the voxel grids to points.

Like ViT [8], the PAT block treats each point as a “to-
ken” and aggregates global feature by using patch atten-
tion. It receives MST block’s output as input, estimates a
much more compact bases and generates global attention
map upon these bases. Note that, our method reduces the

complexity (both in space and time) from O(N?) of the
original SAto O(M N) (M << N) where M is the number
of bases. As a result, the proposed patch attention can con-
veniently replace the backbone networks in existing point
Transformers for various point cloud learning tasks.

Throughout the next sections we use the following nota-
tions: the original point cloud with N points is denoted by
P = {p;}¥, C RC. In the simplest setting of C' = 3, each
point contains 3D coordinates. F' = {f;}}¥., C RP is the
input embedding feature.

4. Method

In this section, we first analysis the original SA mecha-
nism, then we detail our novel way to define attention: patch
attention. And finally, we discuss the design of MST block
in detail.

4.1. Self-Attention

We first revisit the self-attention (SA) mechanism. The
standard SA, also called scalar dot-product attention, is a
mechanism that calculates semantic affinities among differ-
ent elements within a sequence of data. Following the ter-
minology in [34], let Q, K, V be the query, key and value
matrices, respectively, generated by linear transformations

of the input features F' € RV*P as follows
(Q7K7 V) = (Wq7WkaW’U)F7 (1)
Q, K,V e RN*P, 2)

where W, Wy, and W, are the shared learnable linear trans-
formation as illustrated in Fig 3.

Using the pairwise dot product QK7 € RV* then SA

11801

~

(
: | Y A F Foutpue
2 g
: : £ 5 g
| 5 : St
5 Z S
e
g
&
7
% = A e R OP vouix Multiple\Sub\Add)
- 1y VM

Figure 3. Architecture of PAT block (patch attention). PAT can be seen as an variant to the original self-attention to approximate global

map at a lower computational cost.

can be formulated as:

A = () = softmaz(QKT), 3)
Fouwt = A‘/v “4)

where A € RV s the attention map and «; ; is the pair-
wise affinity between (similarity of) the ¢-th and j-th ele-
ments. It is apparent that the output Foy¢p.: 1S @ weighted
sum of V, where a value gets more weight if the similar-
ity between the keys and values yields a higher attention
weighting score.

However, the high computational complexity of
O(N?D) presents a significant drawback to use of SA. The
quadratic complexity in the number of input points makes it
infeasible to apply SA to point cloud directly.

4.2. Patch Attention

In view of the high computational complexity of the
attention mechanism and limitations, we first propose the
PAT, which is an augmented version of SA. Unlike prior
point Transformers obtain an attention map by computing
affinities between self queries and self keys, our patch at-
tention (PAT) computes the relation between self queries
and a much smaller bases, yet captures the global context of
a point cloud.

For simplicity, we consider an input point cloud P and its
corresponding feature map F' of size N x D, our proposed
PAT is illustrated in Fig 3 which consists of two steps, in-
cluding base estimation and data re-estimation.

Base Estimation. In this step, we estimate a compact
basis set B € RM*P where M is the number of bases.
In particular, we introduce the concept of patch-instance
base. For each point cloud P in the dataset, we over-
segment it into M patches (M << N) and based on which,
we create M patch-instance bases. In this way, the global
shape can be approximated by the set of each patch-instance

base, which have a less total number. For simplicity, we
use the K-Means algorithm to segment P into M patches
{51,852, ..., Sm}, M=96, by default in classification task.
We define each base as b, by aggregating the representa-
tions of all the points in the S,,,, it can be described as:

b = Y wilp(fi), (5)
fi€Sm

B = {b,}M_, CRP. (6)
Here, f; is the representation of point p;, the transformation
function (-) is an MLP with one linear layer and one ReLU
nonlinearity, w; is the normalized degree for f; belonging
to the .S,,,. We use spatial softmax to normalize each patch.
Generally, our base estimation method can adaptively
adjust the contribution of all points in the same patch to the
base via a data-driven way. Such adaptive adjusting facili-

tates to fit the intrinsic geometry submanifold.
Data Re-estimation. After estimating the bases B, we
can replace K matrices with B and re-formulate Eq 3 as:

A = softmaz(QBT), @)

where A € RV*M js the attention map constructed from a
compact basis set. After that, the final bases B and attention
map A are used to re-estimate the inputs F'. We formulate a
new equation to re-estimate the F' using F as follows:

~ M

= > A, ®)
m=1

F={fi}L, cR".)

As F' € RVNXD is constructed from a compact basis set B,
it has the low-rank property compared with the input F'.

11802

N 64 dims
‘ (i 32 dims I
Bx3x3
5xX5 x5 TN T KT
32 dims

Figure 4. Illustration of multi-scale feature aggregating in MST
block on Stage-1. We note that this is a 2D example and can be
easily extended to 3D cases. The input voxel grids is sampled by
three DWConv kernels (i.e., 3 X 3 X 3,5 x5 X 5,7 X 7 x 7) with
stride 1 x 1 x 1. Each embedding is constructed by projecting and
concatenating the three 3D boxes.

Inspired by PCT [10], we calculate the difference be-
tween the estimated features F and the input features F by
element-wise subtraction. Finally, we feed the difference
into MLP layer and adopt residual connection strategy to
help propagate information to higher layers. This step can
be formulated as:

Foutput = ¢(F — F) + F, (10)

where Foupue € RNXD is the outputs of our PAT block
and ¢(-) is an MLP with one linear layer and one ReLU
nonlinearity.

Complexity Analysis. Compared with the standard SA
module, our PAT finds a representative set of bases for
points of a point cloud, which reduces the complexity from
O(N?) to O(MN) (M << N), where M and N are the
number of bases and points, respectively. Moreover, we
only need to calculate K-Means algorithm once on the orig-
inal point cloud P that can be accelerated in parallel by
CUDA. Although the K-Means optimization has an asymp-
totic complexity O(NMC), it can be ignored in our net-
work because M is fixed and C' = 3.

4.3. Multi-Scale Attention

In this subsection, we detail how our MST block learns
multi-scale feature representations in attention models. This
block consists of two steps, including Multi-scale feature
aggregating and Attention building.

Multi-scale Feature Aggregating. This step is used to
generate multi-scale features for each stage. Fig 4 illustrates
the first MST block, which is ahead of the Stage-1, as an

example. we receive voxel grids as input, sampling boxes
using three kernels of different size. The strides of three
kernels are kept the same so that they generate the same
number of embeddings. As can be seen in Fig 4, every
three corresponding boxes own the same center but locate
at different scales. These three boxes will be projected and
concatenated as one embedding. In practice, the process of
sampling and projecting can be implemented through three
DWConv layers. Note that we use a lower dimension for
large kernels while a higher dimension for small kernels.
Fig 4 provides the specific allocation rule in its subtable,
where a 128 dimensional example is given. Compared with
allocating the dimension equally, our scheme reduces com-
putational cost while maintaining the model’s high perfor-
mance. The MST blocks in other stages work in a similar
way. As shown in Fig 2, MST blocks in Stage-2/3 use two
kernels (3 x 3 x 3 and 5 x 5 x 5). The strides are set as
1 x 1 x 1. For computing efficiency, DWConv with kernel
sizes larger than 5 x 5 x b is implemented by stacking mul-
tiple convolutions with kernel size 3 X 3 x 3 and 5 X 5 X 5.

Attention Building. To build the attentions among fea-
tures of different scales. we attempt to conduct the standard
SA on multi-scale feature map. However, the computation
complexity of the full SA mechanism is quadratic to feature
map size. Therefore, it will suffer from huge computation
cost for 3D vision tasks that take high resolution feature
maps as input, such as semantic segmentation.

To solve this shortcoming, our MST block limits the SA
computation to non-overlapping local 3D windows. In addi-
tion, we observe that numerous previous works [21,22,41]
have shown that it can be advantageous to include relative
position bias in SA computation. Thus we introduce 3D
relative position bias R € RY" >V ag

Foutput = softmax(QKT +R)V, (11

where @, K,V € RY*XD are the query, key and value
matrices, and V3 is the number of voxel grids in a local 3D
window. Since the relative position along each axis lies in
the range [-V + 1,V — 1], we parameterize a smaller-sized
bias matrix & € RV -Dx@V-1)x(2V-1) and values in R
are taken from R.

For cross-window information interaction, existing
works [21,33,37] suggested to apply halo or shifted win-
dow to enlarge the receptive filed. However, the elements
within each Transformer block still has limited attention
area and requires stacking more blocks to achieve large re-
ceptive filed. In our network, the local attention is building
in multi-scale input features. Thus, we don’t need to stack
more attention layers for cross-window connection or larger
receptive filed.

11803

Model | Input OA Latency
0A<92.5
PointNet [26] 16x1024 89.2 13.6ms
PointNet++ [28] | 16x1024 919 35.3ms
SpiderCNN [45] | 8x1024 924 82.6ms
PointCNN [18] 16x1024 92.2 221.2ms
PointWeb [55] 16x1024 92.3 —
PVCNN [23] 16x1024 924 24.2ms
OA>92.5
KPConv [32] 16x6500 929 120.5ms
DGCNN [39] 16x1024 929 85.8ms
LDGCNN [53] 16x1024 92.7 —
PointASNL [46] | 16x1024 93.2 923.6ms
PT! [9] 16x1024 92.8 320.6ms
PT? [56] 8x1024 93.7 530.2ms
PCT [10] 16x1024 932 92.4ms
PatchFormer 16x1024 93.5 34.3ms

Table 1. Results on ModelNet40 [43]. Compared with pre-
vious Transformer-based models, our PatchFormer achieves the
promissing accuracy with 9.2 x measured speed-up on average.

5. Experiments

In this section, we evaluate the proposed PatchFormer
for different tasks: classification, part segmentation, and
scene semantic segmentation. Performance is quantitatively
evaluated using four metrics: mean class accuracy, overall
accuracy (OA), per-class intersection over union (IoU), and
mean loU (mloU). For fair comparison, we report the mea-
sured latency and model size on a RTX 2080 GPU to reflect
the efficiency but evaluate other indicators on a RTX 3090
GPU. Please refer to our appendices for more detailed net-
work architecture and experimental results.

Implementation details. We implement the Patch-
Former in PyTorch. We use the SGD optimizer with mo-
mentum 0.9 and weight decay 0.0001, respectively. For 3D
shape classification on ModelNet40 and 3D object part seg-
mentation on ShapeNetPart, we train for 250 epochs. The
initial learning rate is set to 0.01 and is dropped until 0.0001
by using cosine annealing. For semantic segmentation on
S3DIS, we train for 120 epochs with initial learning rate
0.5, dropped by 10x at 50 epochs and 80 epochs.

5.1. Shape Classification

Data. We evaluate our model on the ModelNet40 [42]
dataset. This dataset contains 12,311 computer-aided de-
sign models from 40 man-made object categories, in which
9,843 models are used for training and 2,468 models are
used for testing. We follow the experimental configuration
of Qietal. [26]: (1) we uniformly sample 1,024 points from
the mesh faces for each model; (2) the point cloud is re-

Model Params FLOPs SDA(%) OA(%)
PointNet 347M 045G 0.0 89.2
PointNet++(SSG) | 1.48M 1.68G 43.5 90.7
PointNet++(MSG)| 1.74M 4.09G 47.6 91.9
DGCNN 1.81M 243G 57.2 92.9
PointASNL 398M 5.92G 39.8 93.1
PT! 21.1IM 5.05G 32.5 92.8
PT? 9.14M 17.1G 65.4 93.7
PCT 2.88M 2.17G 24.6 93.2
PatchFormer 245M 1.62G 6.3 93.5

Table 2. Computational resource requirements. SDA means the
rate of total runtime on structuring the sparse data.

scaled to fit the unit sphere; and (3) the (X,y,z) coordinates
and the normal of the sampled points are used in the ex-
periment. During the training process, randomly scaling,
translating and perturbing the objects are adopted as the data
augmentation strategy in our experiment.

Results. The results are presented in Table 1. The over-
all accuracy of PatchFormer on ModelNet40 is 93.5%. It
outperforms strong graph-based models such as DGCNN,
strong point-based models such as KPConv and excellent
attention-based networks such as PointASNL. Remarkably,
compared with existing Transformer-based models such as
PT!,PT? and PCT, our model is 9.2 x faster while achieving
comparable accuracy.

5.2. Computational requirements analysis

We now consider the computational requirements of
PatchFormer and several other baselines by comparing the
floating point operations required (FLOPs) and number of
parameters (Params) in Table 2. We evaluate these indi-
cators on ModelNet40 dataset. From Table 2, we can see
that PatchFormer has the lowest memory requirements with
only 2.45M parameters and also puts a low load on the pro-
cessor of only 1.62G FLOPs, yet delivers comparable accu-
rate results of 93.5%. Notably, we summarize Table 2 the
PatchFormer only spend 6.3% of the total runtime on struc-
turing the irregular data, which is much lower than previ-
ous point Transformers. Compare with its baselines, Patch-
Former has not only strong performance but also the lowest
computational and memory requirements. These character-
istics make PatchFormer suitable for deployment on a edge
devices.

5.3. Object Segmentation

Data. We use the large-scale 3D dataset ShapeNet Parts
[19] as the experiment bed. ShapeNet Parts contains 16,880
models (14,006 models are used for training, and 2874
models are used for testing), each of which is annotated
with two to six parts, and the entire dataset has 50 differ-

11804

Figure 5. Attention map and segmentation results on ShapeNet.
From left to right: attention maps w.r.t. three selected entries in
the bases, segmentation results.

Figure 6. Visualization of semantic segmentation results on the
S3DIS dataset. The input is in the top row, PatchFormer prediction
is on the middle, the ground truth is on the bottom.

Model Input mloU Latency
DGCNN [39] 8x2048 85.4 96.2ms
PT! [9] 6x2048 859 360.4ms
PointCNN [18] | 8x2048 86.1 145.6ms
PointASNL [46] | 6x2048 86.1 1023.2ms
KPConv [32] 6x6500 86.4 127.8ms
PCT [10] 8x2048 86.4 101.1ms
PT? [56] 4x2048 86.6 560.2ms
PatchFormer 8x2048 86.5 45.8ms

Table 3. Results of part segmentation on ShapeNet Part.

ent part labels. We sample 2,048 points from each model
as input, with a few point sets having six labeled parts. We
directly adopt the same train—test split strategy similar to
DGCNN [39] in our experiment.

Results and Visualization. From Table 3, we can see
that with similar accuracy, our PatchFormer is 12.4 x faster

Model Input mloU Latency
DGCNN 8x4096 47.1 178.1ms
PointCNN [18] 4x4096 57.3 282.3ms
PointASNL [46] 4%x4096 62.6 1895.2ms
PT! [9] 4x4096 63.1 1223.6ms
MinkowskiNet [5] - 65.4 —
KPConv [32] 4x6500 67.1 267.5ms
PatchFormer 8x4096 68.1 109.8ms

Table 4. Indoor scene segmentation results on S3DIS, evaluated on
Area5. From this table, we can see that PatchFormer outperforms
most of previous models in accuracy and efficiency.

than PT2 and 2.2x faster than PCT. Notably, with better
accuracy, PatchFormer is 22.7x faster than PointASNL. In
addition, we randomly select three entity from B in the last
layer of our network and show their corresponding attention
score of all points. As we can see, each basis corresponds
to an abstract concept of the point cloud and the learned at-
tention maps focus on meaningful parts for object segmen-
tation as in Fig 5.

5.4. Indoor Scene Semantic Segmentation

Data. We evaluate our model on the S3DIS dataset [1],
which contains 3D RGB point clouds from six indoor ar-
eas of three different buildings. Each point is marked with
a semantic label from 13 categories (e.g., board, bookcase,
chair, ceiling, and beam) plus clutter. Following a common
protocol [26,32], we divide and sample each room into 1 m
x 1 m blocks, wherein each point is represented by a 9D
vector (XYZ, RGB, and normalized spatial coordinates). In
addition, the points in each block are sampled into a uni-
form number of 4,096 points during the training process,
and all points are used in the test.

Results and Visualization. The results are presented
in Tables 4. From this table we can see that our Patch-
Former attains mloU of 68.1%, which outperforms graph-
based methods such as DGCNN [39], sparse convolutional
networks such as MinkowskiNet [5], continuous convolu-
tional networks such as KPConv [32], attention-based mod-
els such as PointASNL [46] and point Transformer such as
PT!. Remarkably, our PatchFormer also outperforms these
powerful model by a large margin in latency.

Fig 6 shows the PatchFormer’s predictions. We can
see that the predictions are very close to the ground truth.
PatchFormer captures detailed multi-scale features in com-
plex 3D scenes, which is important in our network.

5.5. Ablation Studies

We now conduct a number of controlled experiments that
examine specific decisions in the PatchFormer design.
Number of Bases. We first investigate the setting of the

11805

M | ModelNet40(OA) ShapeNet(mloU) Latency
32 91.54 84.92 33.25ms
64 92.94 85.82 33.82ms
96 93.52 86.52 34.32ms
128 93.50 86.54 35.56ms

Table 5. Ablation study: number of bases M in our network. We
report latency on ModelNet40 dataset.

Ablation ModelNet40(OA) ShapeNet(mlIoU)
w/o MS feature 92.85 85.22
MLP 92.62 85.32
EdgeConv 93.10 85.89
self-attention 93.29 86.22
no rel. pos 93.15 86.30
Ours 93.52 86.52

Table 6. Ablation study on the multi-scale feature aggregation,
PAT and relative bias on two benchmarks. w/o MS feature: all
MST block without aggregate multi-scale features. MLP: replace
PAT with MLP layer in our architecture. EdgeConv: replace PAT
with EdgeConv layer in our architecture. self-attention: replace
PAT with self-attention layer in our architecture. rel. pos: the
default settings with an additional relative position bias term.

Ablation ModelNet40(OA) Latency(ms)
A? Net [3] 92.89 36.89
EMA Net [17] 93.02 37.27
Linformer [36] 93.14 40.22
Performer [4] 93.22 35.46
Ours 93.52 34.32

Table 7. We replace our PAT with other linear attention mecha-
nisms. We collect their public code and adapt them to 3D data.

number of bases. The results are shown in Table 5. The
best performance of classification task is achieved when M
is set to 96. On the one hand, when the bases is smaller (M
=32 or M = 64), the model may not have sufficient context
for its predictions. On the other hand, increasing M doesn
not give PatchFormer much accuracy benefit but incurs a
raise on latency. This also demonstrates the efficiency and
effectiveness of our PAT.

Effect of Multi-scale feature aggregating. We conduct
an ablation study on the Multi-scale feature aggregating
step. From Table 6, we can see the performance without this
step on ModelNet40 and ShapeNet are 92.85%/85.22%, in
terms of OA/mloU. It is much lower than the performance
with Multi-scale feature (93.52%/86.52%). This suggests
that the Multi-scale feature is essential in this setting.

Impact of PAT. We investigate the impact of PAT used

in the PAT block. From Table 6, we can see that PAT is more
effective than the no-attention baseline (MLP). The perfor-
mance gap between PAT and MLP baseline is significant:
93.52% vs. 92.62% and 86.52% vs. 85.32%, an improve-
ment of 0.9 and 1.2 absolute percentage points. Compared
with EdgeConv baseline, our PAT also achieves improve-
ments of 0.42 and 0.63 absolute percentage points. Notably,
our PAT outperforms the self-attention baseline with 0.23
and 0.30 absolute percentage points. We also compare PAT
with other linear attention mechanisms in Table 7 and find
it achieves the best accuracy and running speed. PAT has
two obvious advantages. First, we only need to calculate
K-Means once on the original point cloud due to the intrin-
sic geometry similarity, which means that the computational
cost of the base estimation can be neglected. Second. PAT
based on residual learning is more robust to any rigid trans-
formation of objects.

Effect of 3D Relative position bias. Finally, we in-
vestigate the effect of 3D relative position bias used in
the MAS block. Table 6 shows results. We can see that
the PatchFormer with relative position bias yields +0.37%
0A/+0.47% mloU on ModelNet40 and ShapeNe in relation
to those without position encoding respectively, indicating
the effectiveness of the relative position bias.

6. Conclusion and Future Work

In this work, we propose a new type of attention mecha-
nism, namely Patch ATtention (PAT) for point cloud learn-
ing, which computes a much smaller bases by exploit-
ing the geometric similarity of nearby points. The recon-
structed output of our PAT is low-rank and achieves linear
time-space complexity to input size. Further, we propose
a lightweight MST block, building attentions among fea-
tures of different scales and providing our model with multi-
scale features. Based on these modules, we construct Patch-
Former for various point cloud learning task. Experiments
show that our PatchFormer achieves comparable accuracy
and better speed than other point Transformers.

We hope that our work will provide empirical guidelines
for new method design and inspire further investigation of
the properties of point Transformers. For example, perform-
ing K-Means in the points, extracting a patch feature for
each cluster, directly reducing the number of tokens in the
embedding stage.

7. Acknowledgements

This work was partially supported by the Zhe-
jlang Provincial Natural Science Foundation of China
(LGF21F20012), the National Natural Science Founda-
tion of China (No.61602139), and the Graduate Scien-
tific Research Foundation of Hangzhou Dianzi University
(CXJJ2021082, CX1J2021083).

11806

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

I. Armeni, S. Sax, A. R. Zamir, and S. Savarese. Joint 2d-3d-
semantic data for indoor scene understanding. arXiv preprint
arXiv:1702.01105,2017. 7

C. Chen, Q. Fan, and R. Panda. Crossvit: Cross-
attention multi-scale vision transformer for image classifi-
cation. [EEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2

Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng. Az-nets:
Double attention networks. Advances in Neural Information
Processing Systems (NeurlPS), 2018. 8

K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song,
A. Gane, T. Sarl6s, P. Hawkins, J. Q. Davis, A. Mohiuddin,
L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller. Re-
thinking attention with performers. International Conference
on Learning Representations, 2021. 8

C. Choy, J. Y. Gwak, and S. Savarese. 4d spatio-temporal
convnets: Minkowski convolutional neural networks. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019. 7

Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and
R. Salakhutdinov. Transformer-xI: Attentive language mod-
els beyond a fixed-length context. in ACL, 2019. 2

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. in NAACL-HLT, 2018. 1

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. International Conference on Learning Representa-
tions, 2021. 1,2,3

N. Engel, V. Belagiannis, and K. Dietmayer. Point trans-
former. CoRR, abs/2011.00931, 2020. 1,2, 6,7

M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin,
and S.-M. Hu. Pct: Point cloud transformer. Computational
Visual Media, 7(2):187-199, Apr 2021. 1,2, 5, 6,7

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 2

Q. Huang, W. Wang, and U. a. Neumann. Recurrent slice
networks for 3d segmentation of point clouds. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2018. 2

T. Le and D. Ye. Pointgrid: A deep network for 3d shape
understanding. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018. 2

J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and
J. Kang. Biobert: a pre-trained biomedical language repre-
sentation model for biomedical text mining. in Bioinformat-
ics, pages 1234-1240, 2020. 2

J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing
network for point cloud analysis. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

11807

R. Li, X. Li, P. Heng, and C. Fu. Point cloud upsampling via
disentangled refinement. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 344-353, 2021. 2

X. Li, Z. Zhong, J. Wu, Y. Yang, and H. Liu. Expectation-
maximization attention networks for semantic segmentation.
IEEE/CVF International Conference on Computer Vision
(ICCV),2019. 1,8

Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn: Convolution
on x-transformed points. Advances in Neural Information
Processing Systems (NeurIPS), 2018. 6,7

Y. Li, V. G. Kim, D. Ceylan, I. C. Shen, M. Yan, S. Hao,
C. Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable ac-
tive framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (TOG), 35(6cd):210.1-
210.12, 2016. 6

Y. Liu, B. Fan, S. Xiang, and C. Pan. Relation-shape con-
volutional neural network for point cloud analysis. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019. 2

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. IEEE/CVF International Conference
on Computer Vision (ICCV), 2021. 1,2, 5

Z.Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu.
Video swin transformer. CoRR, abs/2106.13230, 2021. 5

Z. Liu, H. Tang, Y. Lin, and S. Han. Point-voxel cnn for
efficient 3d deep learning. Advances in Neural Information
Processing Systems (NeurlPS), 2019. 2, 6

K. Mazur and V. Lempitsky. Cloud transformers. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020. 1

L. Pan, X. Chen, Z. Cai, J. Zhang, H. Zhao, S. Yi, and Z. Liu.
Variational relational point completion network. In /EEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 8524-8533,
2021. 2

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 652-660, 2017. 2, 6,
-

C. R. Qi, H. Su, M. Niebner, A. Dai, M. Yan, and L. J.
Guibas. Volumetric and multi-view cnns for object classifi-
cation on 3d data. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2016. 2

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric
space. Advances in Neural Information Processing Systems
(NeurIPS), 2017. 6

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with
relative position representations. NAACL, 2018. 2

Q. Shi, S. Anwar, and N. Barnes. Semantic segmentation
for real point cloud scenes via bilateral augmentation and
adaptive fusion. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021. 2

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and
H. Li. Pv-rcnn: Point-voxel feature set abstraction for 3d
object detection. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019. 2

H. Thomas, C. R. Qi, J. E. Deschaud, B. Marcotegui, and
L. J. Guibas. Kpconv: Flexible and deformable convolution
for point clouds. ICCV, 2019. 6, 7

A. Vaswani, P. Ramachandran, A. Srinivas, N. Parmar,
B. Hechtman, and J. Shlens. Scaling local self-attention
for parameter efficient visual backbones. In CVPR, pages
12894-12904, 2021. 1,5

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin. Attention is all
you need. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2017. 1,2, 3

L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph
attention convolution for point cloud semantic segmentation.
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2019. 2

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Lin-
former: Self-attention with linear complexity, 2020. 8

W. Wang, E. Xie, X. Li, D. Fan, K. Song, D. Liang, T. Lu,
P. Luo, and L. Shao. Pyramid vision transformer: A ver-
satile backbone for dense prediction without convolutions.
IEEE/CVF International Conference on Computer Vision
(ICCV),2021. 2,5

W. Wang, L. Yao, L. Chen, D. Cai, X. He, and W. Liu. Cross-
former: A versatile vision transformer based on cross-scale
attention. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 1,2

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. ACM Transactions on Graphics, 38(5), 2018. 2, 6,7
Z. Wang and F. Lu. Voxsegnet: Volumetric cnns for seman-
tic part segmentation of 3d shapes. IEEE Transactions on
Visualization and Computer Graphics, pages 1-1, 2019. 2
K. Wu, H. Peng, M. Chen, J. Fu, and H. Chao. Rethinking
and improving relative position encoding for vision trans-
former. IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 5

Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao. 3d
shapenets for 2.5d object recognition and next-best-view pre-
diction. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2014. 6

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumet-
ric shapes. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 6

T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai. Walk in
the cloud: Learning curves for point clouds shape analy-
sis. IEEE/CVF International Conference on Computer Vi-
sion (ICCV),2021. 2

Y. Xu, T. Fan, M. Xu, Z. Long, and Q. Yu. Spidercnn: Deep
learning on point sets with parameterized convolutional fil-
ters. Proceedings of the European Conference on Computer
Vision (ECCV), 2018. 6

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

11808

X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui. Pointasnl: Ro-
bust point clouds processing using nonlocal neural networks
with adaptive sampling. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020.
6,7

B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham,
and N. Trigoni. Learning object bounding boxes for 3d
instance segmentation on point clouds. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019. 2

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le. Xlnet: Generalized autoregressive pretraining
for language understanding. Advances in Neural Information
Processing Systems (NeurlPS), 32,2019. 2

X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. Pointr:
Diverse point cloud completion with geometry-aware trans-
formers. IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2

C. Zhang, H. Chen, H. Wan, P. Yang, and Z. Wu. Graph-
pbn: Graph-based parallel branch network for efficient point
cloud learning. Graphical Models, page 101120, 2021. 2
C. Zhang, H. Wan, S. Liu, X. Shen, and Z. Wu. Pvt: Point-
voxel transformer for 3d deep learning. arXiv: 2108.06076
[cs], 2021. 2

FE. Zhang, Y. Chen, Z. Li, Z. Hong, J. Liu, F. Ma, J. Han,
and E. Ding. Acfnet: Attentional class feature network for
semantic segmentation. I[EEE/CVF International Conference
on Computer Vision (ICCV), 2019. 1

K. Zhang, M. Hao, J. Wang, C. D. Silva, and C. Fu. Linked
dynamic graph cnn: Learning on point cloud via linking hi-
erarchical features. arXiv:1904.10014 [cs], 2019. 2, 6

H. Zhao, L. Jiang, C. W. Fu, and J. Jia. Pointweb: Enhancing
local neighborhood features for point cloud processing. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019. 2

H. Zhao, L. Jiang, C.-W. Fu, and J. Jia. Pointweb: Enhancing
local neighborhood features for point cloud processing. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5565-5573, 2019. 6

H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun. Point trans-
former. IEEE/CVF International Conference on Computer
Vision (ICCV),2021. 1,2,6,7

Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for
point cloud based 3d object detection. IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 4490-
4499, 2018. 2

