
PokeBNN: A Binary Pursuit of Lightweight Accuracy

Yichi Zhang∗

Cornell University
yz2499@cornell.edu

Zhiru Zhang
Cornell University
zhiruz@cornell.edu

Łukasz Lew∗

Google Research
lew@google.com

Abstract

Optimization of Top-1 ImageNet promotes enormous net-
works that may be impractical in inference settings. Binary
neural networks (BNNs) have the potential to significantly
lower the compute intensity but existing models suffer from
low quality. To overcome this deficiency, we propose Poke-
Conv, a binary convolution block which improves quality
of BNNs by techniques such as adding multiple residual
paths, and tuning the activation function. We apply it to
ResNet-50 and optimize ResNet’s initial convolutional layer
which is hard to binarize. We name the resulting network
family PokeBNN1. These techniques are chosen to yield fa-
vorable improvements in both top-1 accuracy and the net-
work’s cost. In order to enable joint optimization of the
cost together with accuracy, we define arithmetic compu-
tation effort (ACE), a hardware- and energy-inspired cost
metric for quantized and binarized networks. We also iden-
tify a need to optimize an under-explored hyper-parameter
controlling the binarization gradient approximation.

We establish a new, strong state-of-the-art (SOTA) on
top-1 accuracy together with commonly-used CPU64 cost,
ACE cost and network size metrics. ReActNet-Adam [33],
the previous SOTA in BNNs, achieved a 70.5% top-1 ac-
curacy with 7.9 ACE. A small variant of PokeBNN achieves
70.5% top-1 with 2.6 ACE, more than 3x reduction in cost; a
larger PokeBNN achieves 75.6% top-1 with 7.8 ACE, more
than 5% improvement in accuracy without increasing the
cost. PokeBNN implementation in JAX/Flax [6, 18] and re-
production instructions are open sourced.2

1. Introduction

A need for Pareto optimization. Deep learning re-
search is largely driven by benchmarks and metrics. In the

∗Work performed while at Google, equal contribution.
1Poke/’p6kI/ is pronounced similarly to pocket. PokeConv, PokeBNN,

and Pokemon are abbreviations of Pocket Convolution, Pocket Binary
Neural Network, and Pocket Monster, respectively.

2Source code and reproduction instructions are available in AQT repos-
itory: github.com/google/aqt.

104

ACE (Million)

55

60

65

70

75

80

To
p-

1(
%

)
XNOR++

BiReal18

BiReal34
IR18

IR34

SQBWN18
PCNN

MeliusNet29

MeliusNet42
MeliusNet59

RealtoBin

ReActNet-Adam

ReActNet

2.0x

1.75x
1.5x

1.4x
1.25x
1.0x

0.75x

0.5x (PokeBNN)

Figure 1. Comparison of BNNs using top-1 and ACE (Sec. 3).

past a single metric per benchmark, e.g., top-1 accuracy
on ImageNet, was sufficient. Today one needs to account
for various model architectures, sizes, and computational
costs. This promotes optimizing the Pareto frontier of a
quality metric such as top-1 and another cost metric such
as FLOPS, latency, or energy consumption.

The choice of the optimization metric. Since the in-
dustry is currently the main user of large-scale inference,
the cost metric should be correlated to dollar cost per infer-
ence. As the ML hardware gets more mature, what becomes
evident is that the energy use is the key metric proportional
to the inference cost, especially in the data centers. In Sec. 3
we define a new proxy metric called arithmetic computa-
tion effort (ACE), which aims to estimate inference cost ab-
stracting of concrete ML hardware.

The impact of quantization and binarization. In nu-
merical formats such as int8 or float16, the less significant
bits do not affect a network’s output as much as the more
significant bits. Yet, processing them consumes the same
amount of energy. This might not be optimal. The possible
inference cost reduction (or equivalently performance im-
provement) with each halving of the quantization bits (e.g.,
16b to 8b to 4b to 2b to 1b) is at least 2x (e.g., NVIDIA
Ampere is 8x faster in int1 than in int8 [38]) and up to 4x as
estimated by the ACE metric. For comparison, this is signif-
icantly larger than the improvements yielded by upgrading
the GPU or TPU by one or two generations.

12475

Binarization pushes this benefit to the extreme by replac-
ing floating-point dot products with logical XNOR and bit
counting operations. If binary neural networks (BNNs) can
reach high quality, they are likely to gain a large footprint
for inference both in the data center and at the edge.

BNN optimization is hard. Pioneering modern BNNs
used to suffer from a more than 20% top-1 accuracy gap
compared to their floating-point counterparts [23]. Only re-
cently BNNs have become comparable in quality to the pop-
ular ResNet-18 model [33, 34]. One reason is that BNNs
tend to have a chaotic, discontinuous loss landscape that
renders their optimization challenging [31, 33]. In fact, for
the binarization to work one has to change many things
compared to standard DNN practices. BNNs require multi-
phase training, approximation of gradients, and various ar-
chitectural adjustments that avoid binarization information
bottlenecks.
Our main contributions are as follows:
• We propose PokeConv, a binary convolutional block that

can substantially improve BNN accuracy. We replace
most of the convolutions in ResNet [17] with PokeConv.

• We propose PokeInit block to replace ResNet’s initial
convolutional layer that is hard to binarize. PokeInit
significantly reduces the network’s cost. PokeInit and
PokeConv form the foundation of the PokeBNN family.

• We optimize an under-explored clipping bound hyper-
parameter in BNNs that controls the binarization gradi-
ent approximation. Ablation in Sec. 6 shows we gain
more than 3% in top-1 accuracy through this parameter.

• We motivate and define a novel hardware and energy
inspired cost metric called ACE, which is informed by
inference costs on hardware yet at the same time it
is agnostic to the existing hardware platforms. ACE
improves alignment of the research on energy-efficient
neural networks and research on ML hardware. We use
ACE to quantify the inference cost of PokeBNN.

• We empirically show that on ImageNet [43] PokeBNN
establishes the Pareto-SOTA of top-1 together with cost
metrics: CPU64, ACE, and network size. We improve
over the SOTA ReActNet-Adam by 5.1% top-1 at the
same ACE cost (Fig. 1).

2. Related Work
There is a large and active body of research investigating

the training and acceleration of BNNs. We only review a
subset of the past efforts that have a high influence on the
network design presented in this paper. A comprehensive
survey can be found in [49].

BNN feasibility. The pioneering works [9, 23, 27]
demonstrated the feasibility of BNNs. They established
the training framework for neural networks with binarized
weights and activations and demonstrated promising results

on small datasets such as MINIST and CIFAR-10. How-
ever, their preliminary ImageNet results show a large top-1
accuracy drop from 62.5% to 36.1% on AlexNet [29] and
from 68.9% to 47.1% on GoogleNet [45].

Multi-phase training. A key effective technique is the
multi-phase training [8, 33, 34, 37], where one starts with
training an unquantized model and only later enables bina-
rization. Some approaches employ a three-phase training —
from the unquantized version, to binarized activations only,
to binarized weights and activations [37]. Knowledge dis-
tillation is another technique that has commonly been used
to improve the accuracy of BNNs [8, 33, 34, 37].

BNN architecture. Another comprehensive line of work
explores architectural changes to strive for better model
quality. Many of them aim to incur negligible compute
and parameter overhead. For example, a channelwise real-
valued rescaling of the binarized tensors can effectively mit-
igate the quantization loss [2,7,42]. Connecting the unquan-
tized input activations of a binarized convolutional layer to
its output with a shortcut enhances the gradient flow and the
model representation capacity [35]. Squeeze-and-excitation
(SE) [22] is another computationally cheap technique that
promises quality improvement on small convolutional mod-
els including BNNs [37]. FracBNN [50] includes additional
BatchNorm Layers [24] in a BNN to speed up convergence.
Authors in [8] first show that using a PReLU function [16]
after each convolutional layer improves binary model qual-
ity. Along this line, it is recently reported that introducing
learnable biases into the PReLU function leads to extra im-
provements in model accuracy [33, 34]. With the evolution,
current BNNs have finally exceeded 70% top-1.

3. Arithmetic Computation Effort
In this section we motivate and define ACE, which is de-

signed to reflect neural network inference cost on idealized
ML hardware implemented with CMOS methodology.

ACE metric definition. ACE is defined as follows:

ACE =
∑

i∈I,j∈J
ni,j · i · j (1)

where ni,j is the number of multiply-accumulate operations
(MACs) between a i-bit number and j-bit number and can
be automatically derived from model structure. I and J are
sets of all bitwidths used in the inference of a given neural
network, typically I = J = {1, 2, 4, 8, 16}.

The energy use is highly correlated with the total cost
of the computation. The inference could be happening in
a data center or on edge devices and it can be served from
CPUs, GPUs or TPUs. For edge devices, the battery us-
age is the main concern, which makes the energy use a key
bottleneck in many ML applications. In the case of data
centers, surprisingly, energy is also the main cost driver. In
order to run inferences in a data center, one needs to pay for:

12476

hardware, electricity and power provisioning, and other in-
frastructure costs. A GPU card may cost 1000 USD and
be used for 3-5 years consuming 400W. Electricity bill at
65% utilization and 15 cents per kWh for three years would
amount to 0.4kW * 24h * 365 * 3 * 0.65 * 0.15 USD/kWh
= ∼1000 USD as well. Interestingly, the cost of the power
provisioning in data centers (cooling, transformers, batter-
ies, backup generators) is reported to be more than twice
that of the electricity bill (at least in case of Google data
centers) [25]. Also, a correlation of ML chip cost is re-
ported to be over 90% with its TDP. Overall, the cost of
running inferences is indeed mainly driven by the energy
consumption.

The bulk of the computation energy usage is in arith-
metic operations energy. Contrary to classic CPUs, ML
hardware running inference spends a high fraction of its
energy on the actual arithmetic (e.g., multiplications, ad-
ditions, other functions). For instance, in the case of TPUs,
the cost of computation control is amortized over enormous
SIMD sizes of 16K to 64K [25,26]. This is usually achieved
using systolic arrays [30]. In stark contrast, CPUs have a
typical SIMD size of 4 to 32 (e.g., SSE, AVX). We discuss
other non-arithmetic energy sinks in the appendix in a full
version of paper.

Arithmetic operation energy is proportional to the
number of active bit-adders. To multiply two unsigned
integers a < 2I , b < 2J , one first computes a value of I · J
bits using logical AND operations and sum them in groups:∑

0≤i<I

ai2
i
∑

0≤j<J

bj2
j =

∑
0≤i<I
0≤j<J

(ai ∧ bj) 2i+j (2)

In order to evaluate the sum, one uses bit-adders, carefully
taking into account to add bit triplets within one signifi-
cance group. Bit-adder sums three bits and outputs a two
bit result: p1 + p2 + p3 = 2q1 + q2 where pi, qi ∈ {0, 1}.
Bit-adders are the main building block of all multipliers and
adders. Each adder removes one bit from the pool, so taking
into account addition into the accumulator (AC in MAC), a
multiplication will activate I · J bit-adders.3 Notably, cir-
cuits that are not switching leak negligible amounts of en-
ergy, so one only pays for what they use. One may verify
that the number of active bit-adders is measured by ACE.

CPU64 metric. Previous BNN research typically use
FLOPs + 1

64BOPs as a cost metric [33–35, 42]. It was mo-
tivated by the fact that one 64-bit CPU register can do 64
BOPs in one cycle, compared to one float64 (double pre-
cision) operation per cycle. We extend CPU64 to int4 and
int8 formats using coefficients 1/16 and 1/8, respectively.

Independent verification of energy use. Remarkably,
the actual energy measurements on Google TPUs hardware

3While there are many orders in which one can construct adder trees
(e.g., Wallace tree [46], Dadda tree [11]), affecting latency and clock
speed, the particular order has a limited effect on the energy use.

Table 1. ADD/MUL energy use in femto-Joules (fJ) [19, 25],
and the corresponding CPU64 and ACE metrics. The cor-
relation coefficient between ACE and the sum of ADD and
MUL energy is 0.992 for 7nm and 0.946 for 45nm, whereas
the CPU64-energy correlation is much smaller: 0.703 for 7nm
and 0.724 for 45nm.

ADD Energy (fJ) MUL Energy (fJ) MAC
45nm 7nm 45nm 7nm CPU64 ACE

float32 900 380 3700 1310 1 1024
float16 400 160 1100 340 1 256
bfloat16 - 110 - 210 - 256
int32 100 30 3100 1480 - 1024
int8 30 7 200 70 1/8 64
int4 - - - - 1/16 16
int2 - - - - 1/32 4
binary - - - - 1/64 1

are reasonably correlated with the ACE metric, grounding it
in reality. Tab. 1 reproduces energy measurement reported
by Google and Horowitz [19,25] on 45nm and 7nm process
node and attaches both ACE and CPU64 metrics. Inter-
estingly, bfloat16 and to a large extent float16 and float32
are also well correlated with ACE both in 45nm and 7nm
process nodes. We therefore choose to not special-case the
ACE formula for MAC cost on floating-point formats.

Implementation of high precision with binary arith-
metic. If we interpret ai, bi as binary matrices and ai ∧ bi
as binary matrix multiplication, then Eq. (2) can be used
to implement higher precision matrix multiplication on bi-
nary hardware. The cost of that emulation is I · J , which is
consistent with ACE metric. The result holds for all linear
operations including convolution.

Comparison to other metrics. Informed by the arith-
metic energy use, ACE for MACs of N-bit and N-bit is
quadratic in N as opposed to our CPU64 extension which
is linear in N. ACE generalizes FLOPS and CPU64 allow-
ing for evaluation of mixed quantization models. ACE al-
lows for evaluation of MACs with different bitwidths for
weights and activations. This is useful as one of them is of-
ten much easier to quantize or binarize. ACE is informed by
CMOS hardware design and manufacture constraints yet at
the same time is hardware target agnostic. With that we aim
to better predict the performance of energy-efficient neural
networks on the future ML hardware. This is an advantage
over popular methods of tuning the model for latency on
GPUs or mobile hardware such as smartphones [20, 44].

4. PokeBNN
In this section, we introduce the design methodology

of PokeBNN family. As a preliminary, we first define
the quantization and binarization math used throughout the
design. We then introduce PokeConv — a binarization
friendly convolution replacement, and PokeInit — a quan-
tized and cost-optimized initial layer replacement. Finally,
we combine the proposed techniques and use ResNet as a

12477

template to present the entire PokeBNN architecture. We
quantize the final layer to 8 bits, in effect, all the linear and
convolutional layers are quantized to 8, 4 bits, or binarized.

4.1. Quantization and Binarization Equations

While both quantization and binarization methods are
well studied [1, 23], we summarize them for completeness.
In case of binarization, the clipping bound B is usually
hardcoded to 1 [23] or 1.3 [4]. In Sec. 6 we show the im-
portance of optimizing B.

Quantization. In order to use energy-efficient integer
and binary convolutions and matrix multiplications, one
needs to convert floating-point numbers into integers. We
define the casting operation as follows:

clip(x, xmin, xmax) = min(xmax,max(xmin, x))

intb(x) = round(clip(x,−Cb + ε, Cb − ε))

where b denotes the bitwidth, Cb = 2b−1 − 0.5 is the end
point of the quantization grid, and ε is a small floating-point
number making sure that the rounding avoids overflow. For
unsigned values, one uses uintb(x) = floor(clip(x, 0, 2b −
ε)). For simplicity, we will focus on the signed case in the
subsequent discussions.

During the backpropagation, the round function is ig-
nored, i.e., d round

dx (x) = 1. This is known as the straight-
through estimator (STE) [23]. The derivative of clip opera-
tion is the usual 1 inside of the clip interval and 0 outside.

Applying casting directly to the arguments of convolu-
tion is inappropriate as their dynamic range can be different
than the clipping bounds. Instead, one assumes (or esti-
mates) bound B based on the distribution of argument and
then appropriately rescale it:

Qb(x) = intb(x ·
Cb

B
) · B
Cb

(3)

One may note that the gradient is: dQb

dx (x) = 1x∈(−B,B).
For non-binary activations, we obtain B by calculating

the maximum absolute value in a batch, and using exponen-
tially moving average (α = 0.9). Importantly, we freeze B
when we enable activation quantization. Without freezing,
we observe a feedback loop leading to inferior results or di-
vergence. For binary activations, we show in Sec. 6 that the
value ofB makes a remarkable impact on the model quality.
We use a fixed B = 3 in the experiments.

For all weights we use output-channel-wise bounds:
Bo = maxi|wi,o| (where i, o are indexing input and output
channels). They are never frozen. As equations indicate, we
do not center the distribution. It is sufficient to just scale it.

Binarization. When b = 2, Eq. (3) yields ternarization,
but for binarization (b = 1) it would round every number to
0. Instead we useQ1(x) = sign(x). Its gradient is the same
as that of Eq. (3). Importantly, while the forward pass does

not depend on bound B, the gradient does. There is a line
of work that studies a continous gradient estrimators to the
discrete functions above [13, 35, 41, 51].

4.2. PokeConv

We now propose the core convolutional (Conv) build-
ing block in our BNN, PokeConv. Fig. 2 shows its diagram
and the corresponding pseudocode. The design of Poke-
Conv strictly follows the goal of optimizing the accuracy
and ACE trade-off. The additional operations around the
binarized Conv layer are designed to be computationally
lightweight and to help BNN training converge faster.

H x W x Cin

1-bit Conv_op

BatchNorm

DPReLU

BatchNorm

Sign

H x W x Cout

4-bit SE

def PokeConv(
x, r1, conv_op, ch, st=1):

r = x
x = Conv_op(x, ch, st)
x = BatchNorm(x)
x = ReshapeAdd(x, r, pad_ch)
The next line has an effect
only in the 3rd PokeConv call
x = ReshapeAdd(x, r1, tile_ch)
x = DPReLU(x)
x = x * SE_4b(r, ch)
x = BatchNorm(x)
return x

Figure 2. PokeConv building block — ”r1” is the original ResNet
shortcut; ”ch” is the number of channels or features; and ”st” is
stride.

Adding residuals around each binary convolution.
We connect the unquantized input activations to the output
of the Conv and BN combination with a shortcut. Since
the Conv layer is binarized, this shortcut is important as
it removes the information bottleneck to the succeeding
layer [35].

A practical question emerges naturally — how do we de-
sign the shortcut if there is a mismatch between the input
and output channel or spatial dimensions? Unfortunately,
there is a lack of study on the general solution to it. A
commonly-used method is adding a 1×1 Conv layer with
proper strides [17]. However, this should be avoided since
these layers are needed around most of the PokeConv blocks
and they will increase ACE tremendously. ReActNet [34]
proposes to duplicate activations when the number of chan-
nels doubles, although this is only feasible when the channel
number is exactly doubling.

We propose to use a simple zero padding when the num-
ber of channels expands. Namely, given a channel ex-
pansion factor of K, an input tensor x with n channels is
padded as follows: pad(x)i = xi · 1i<n. We find that
zero padding works the best for local shortcuts, and tiling
proposed by ReActNet [34] works the best for the origi-
nal ResNet shortcuts. Using a single method in both cases

12478

yields inferior results.
When the channel number decreases by a factor of K,

we use an average pooling of the neighboring K channels:
avg ch(x)i = 1

K

∑
0≤k<K xi·K+k.

On the spatial dimension, we use an average pooling on
the shortcut for downsampling. The pseudocode of aggre-
gating the spatial and channel reshaping on residuals (the
argument ”r”) is shown below:

def ReshapeAdd(x, r, expand_ch_op):
if r is None: return x
if r.ch < x.ch: r = expand_ch_op(r, x.ch)
if r.ch > x.ch: r = avg_ch(r, x.ch)
if r.shape != x.shape:
r = avg_pool_3x3(r, x.ch, st=2)

return x + r

Using binarization-friendly nonlinearity. While the
binarization function is nonlinear itself, inserting additional
nonlinearity can further improve the BNN model quality as
reported by prior studies [8, 34], especially if the function
learns to shift and reshape the activation distribution [34].

We propose to add a nolinear function — Dynamic
PReLU (DPReLU) [36] after the residual addition, defined
as follows:

DPReLU(x) :=

{
η(x− α)− β x− α > 0
γ(x− α)− β otherwise (4)

Here α, β, γ, and η are all channelwise learnable param-
eters. They are initialized to 0, 0, 0.25, 1.0, respectively.
Aside from the activation shifting, DPReLU has learnable
slopes on both linear pieces. It introduces an additional re-
shaping flexibility compared to RPReLU proposed by Re-
ActNet [34].

Squeeze-and-excitation (SE) [22] helps scaling. SE
is a computationally cheap technique that improves model
quality. It allows the network to incorporate global knowl-
edge on given inputs. BNN such as real-to-binary [37] uses
a different variant of SE as well.

In our design we apply an SE block as used in Mo-
bileNetV3 [20]. The diagram and pseudocode are shown
in Fig. 3.

Spatial Mean

4-bit Linear

ReLU

4-bit Linear

Hard Sigmoid

1 x 1 x Cin

1 x 1 x (Cin/8)

1 x 1x (Cin/8)

1 x 1 x Cout

H x W x Cout

H x W x Cin

def SE_4b(x, ch)
s = SpatialMean(x)
s = Linear_4b(s, x.ch/8)
s = ReLU(s)
s = Linear_4b(s, ch)
s = ReLU6(s+3)/6
return s

Figure 3. Squeeze-and-Excitation: quantized to 4-bit.

Importantly, the ACE metric reports that SE dense layers
incur a non-negligible cost. We therefore propose to quan-
tize the SE blocks to 4 bits, and set the hidden projection

length to 1/8 of the input. Experiments indicate that this
modification incurs no accuracy loss.

Additional normalization layers. We place an addi-
tional BatchNorm layer [24] on the output (i.e., before the
residual split). FracBNN [50] suggests this modification in
order to speed up the convergence. This extra layer is even
more important for PokeBNN. Firstly, its bias term learns
to shift the distribution properly so that it balances the sign
activations to the next PokeConv layer. Secondly, its adjust-
ment on the distribution allows the aggressive 4-bit quanti-
zation of the first SE dense layer. Moreover, it normalizes
the shortcut around binary convolutions and facilitates the
gradient flow.

Limitations. We use the default zero padding for Conv
layers, which introduces a third value for a small fraction
of pixels. We believe that most of the prior works suffer
from the same limitation. Padding with alternating 1 and
-1 proposed and evaluated in FBNA [15] would resolve this
limitation.

4.3. PokeInit and Projection Layer Optimization

After replacing regular Convs with PokeConvs, we find
two other components in ResNet-50 that are ACE-costly:
(1) the input 7×7 Conv layer; (2) the 1×1 projection Conv
layers for shortcuts in downsampling blocks. These layers
are conventionally excluded from binarization [32].

Replacing 1×1 projection Conv layers with Resha-
peAdd. The 1x1 projection Conv layers would incur 360
million MACs.

We propose to completely remove these downsampling
projection layers and replace them with the ReshapeAdd
function defined for shortcuts. We use tiling instead of zero-
padding for channel expansion, i.e., for an input tensor x
that has n channels, tile(x)i = x(imodn).

PokeInit. The unquantized input layer alone requires
118 million MACs. The main sources of the large number
of MACs are (1) the 7×7 kernel size and (2) the large output
spatial resolution 112×112.

To optimize the ACE cost, we fuse the stride-2
max-pooling with the first stride-2 convolution, yielding
stride=4. This reduces the output spatial resolution by 4×.
We then reduce the kernel size from 7×7 to 4×4. Further
downsizing the kernel will lead to an information loss as
there will be pixels not convolving with the kernels. To in-
crease the receptive field of the input block, we follow it
with a 3×3 depthwise Conv layer. We denote such an input
layer combination as PokeInit. Its pseudocode is shown in
Fig. 4.

To further reduce the cost, we quantize PokeInit to 8 bits.
This optimization reduces the cost of the input layer from
118 million float MACs to 6.6 million int8 MACs.

12479

8-bit Conv4x4

BatchNorm

DPReLU

8-bit DWConv3x3

BatchNorm

DPReLU

def PokeInit(x):
x = Conv4x4_8b(x, ch=32, st=4)
x = BatchNorm(x)
x = DPReLU(x)
x = Conv3x3_depthwise_8b(x, ch=64)
x = BatchNorm(x)
x = DPReLU(x)
return x

Figure 4. PokeInit: quantized to 8-bit.

4.4. Model Assembly

We assemble PokeConv and PokeInit with ResNet-50
template with an 8-bit linear classifier head as shown in the
pseudocode.

As discussed in the previous sections, we now apply
PokeConv and PokeInit to the base ResNet-50, and remove
the 1×1 projection Conv layers therein. Apart from those
we also quantize the classifier to 8 bits. A pseudocode of
the final network is as follows:

CH = 64 * M

def PokeBNN50(x):
x = PokeInit(x)
for i in range(16):
st = 2 if i in (3, 7, 13) else 1
if i < 3: ch = CH
elif: i < 7: ch = CH * 2
elif: i < 13: ch = CH * 4
r = x
x = PokeConv(x, None, Conv1x1_1b, ch, st=1)
x = PokeConv(x, None, Conv3x3_1b, ch, st=st)
x = PokeConv(x, r, Conv1x1_1b, 4*ch, st=1)

x = SpatialMean(x)
x = Linear(x)
return x

Note that all Conv and linear layers do not use biases
except for those that are not followed by BatchNorms. We
follow ResNet [17] to configure BatchNorm initializations.

5. Experiments
In this section, we empirically evaluate PokeBNN on the

ILSVRC12 ImageNet [43] classification dataset with a res-
olution of 224×224. We only apply random crop and flip
as data augmentation.

5.1. Training Setup

We conduct experiments on 64 TPU-v3 chips with a
batch size of 8192. We use Adam optimizer [28] (β1 =
0.9, β2 = 0.99) with a linear learning rate decay. The ini-
tial learning rate is 6.4e-4. The weight decay is set to 5e-5
throughout the training. BatchNorm momentum is set to
0.9. To estimate the clipping boundB for activation of non-
binary quantized layers, we follow the method in [1] and

use exponentially moving average (α = 0.9) of maximum
value in a batch.

We train PokeBNN for a total of 750 epochs and em-
ploy the two-phase training. We find that the first semi-
unquantized phase is needed for only as little as 50 epochs.
4-bit and 8-bit activations are quantized at epoch 50. All
weights (8-bit, 4-bit, and binary) are quantized at epoch 50.
1-bit activations are always 1-bit during the training.

We use the knowledge distillation setting to train
PokeBNN, which requires computing KL-divergence loss.
The modification is as simple as replacing the one-hot
ground truth label with the teacher prediction. We use an
8-bit ResNet-50 as the teacher model. We also tried dis-
tilling from a vision transformer [12], but surprisingly the
result is similar.

In order to measure the accuracy, after decaying the
learning rate to zero, we continue training for a few epochs.
We observe both top-1 oscillating due to the batch normal-
ization statistics being updated further. We find that training
and evaluation top-1 are completely uncorrelated. Hence it
would be unfair to follow a practice of taking the maximum
top-1. All top-1 numbers in this paper are averaged top-
1 over several epochs where learning rate is already zero.
The difference between the mean and maximum accuracy
is about 0.5% to 1%.

5.2. Evaluation Results

To have a fair comparison, we scale the number of out-
put channels in a PokeConv block to change the model size
(e.g., PokeBNN-2x means doubling the number of output
channels). All results are collected in Tab. 2. The standard
deviation of the top-1 across 5 runs of PokeBNN-1x with
different random weights is 0.034%.

Importantly, for the prior work, we assume all FP32 op-
erations could be replaced by BF16 without accuracy loss.
PokeBNN does not use FP32. Based on the data we analyze
Pareto curve of accuracy vs. cost metrics, and compare the
trade-off of PokeBNN to the baselines in the literature. We
have several key observations thereof:

PokeBNN establishes the SOTA Pareto frontier for
BNNs under the ACE metric as visualized in Fig. 1. The
accuracy of PokeBNN scales notably well with the model
size. Though binarized from ResNet-50, scaling the num-
ber of channels by 2× in PokeBNN leads to a 77.2% top-1
accuracy, slightly higher as the 4-bit ResNet-50 (Tab. 2), yet
with a more than 4.6× higher efficiency.

Most BNN models in the literature produce below 65%
top-1 accuracy on ImageNet. ReActNet [34] and ReActNet-
Adam [33] for the first time reach ResNet-18 level accuracy
near 70% by leveraging the MobileNet architecture [21].
With the same ACE budget as the current SOTA ReActNet-
Adam, our PokeBNN-1.4x achieves 75.6% top-1 accuracy,
more than 5% higher. A small variant PokeBNN-0.75x has

12480

the same top-1 as ReActNet-Adam but reduces the ACE by
more than 3×.

Compared to the MeliusNet-59 [4] variant that has the
highest accuracy in the BNN literature (Tab. 2), a large vari-
ant PokeBNN-2x is 6% more accurate and meanwhile still
5.3× more efficient in ACE.

In addition, we test PokeConv on ResNet-18 architecture
and observe that PokeBNN-0.5x Pareto-dominates it.

PokeBNN also establishes the SOTA Pareto frontier
for BNNs under the commonly-used CPU64 metric. We
plot the Pareto curve using the widely adopted CPU64 met-
ric in the literature. As shown in Fig. 5, the trade-off trend
is roughly the same as compared to the proposed ACE met-
ric. Notably, some BNNs (e.g., MeliusNet-29) show a less
favourable trade-off under the CPU64 metric than the one in
Fig. 1. This is because ACE captures the fact that a binary
operation is more than 64× cheaper than a floating-point
operation in terms of energy use.

102

CPU64 Cost (Million)

50

55

60

65

70

75

80

To
p-

1(
%

)

XNOR

XNOR++
BiReal18

BiReal34

IR18

IR34

SQBWN18

PCNN

BDense37

CIBCNN18

CIBCNN34

MobiNet

BinaryMobileNet

MeliusNet29

MeliusNet42
MeliusNet59

RealtoBin

SABNN18

SABNN34

ReActNet-Adam
ReActNet

2.0x
1.75x1.5x

1.4x1.25x
1.0x

0.75x

0.5x (PokeBNN)

Figure 5. Comparison of BNNs using top-1 and CPU64 cost.

PokeBNN outperforms prior BNNs on the size-
accuracy trade-off. Model size is another important di-
mension that indicates the memory requirement. We there-
fore plot the model size vs. top-1 accuracy in Fig. 6, which
shows that PokeBNN is also on the SOTA Pareto frontier
when compared to the prior arts.

6. Ablation Study
In this section we provide a detailed ablation on our pro-

posed techniques. We measure the impact of each individ-
ual technique on PokeBNN-1.0x.

Clipping bound ablation. The clipping bound B, as a
hyperparameter, plays a major role in low-bitwidth quanti-
zation [1,10], but has rarely been explored in the past BNN
research. In BNNs, although few works manually set the
bound for binary activations B = 1.3 [4, 5], there is a lack
of study on it and under most circumstances B = 1 by de-
fault [23, 34, 35].

101

Model Size (MB)

50

55

60

65

70

75

80

To
p-

1(
%

)

XNOR++
BiReal18

BiReal34

IR18

IR34

SQBWN18
PCNN

BDense37

CIBCNN18

CIBCNN34

MobiNet

MeliusNet29

MeliusNet42
MeliusNet59

RealtoBin

SABNN18

SABNN34

ReActNet-Adam
ReActNet

2.0x
1.75x1.5x

1.4x1.25x
1.0x

0.75x

0.5x (PokeBNN)

Figure 6. Comparison of BNNs using top-1 and model size.

In our experiments, we find that B makes a remarkable
impact on the BNN accuracy. We sweepB for the binarized
activations over a set of values ranging from 1.0 to 6.0. Each
PokeConv has the same bound. Results are in Tab. 3.

There is a 3.3% accuracy gap between between B = 3
and most commonly used value B = 1. We hypothesize
that a larger clipping threshold improves Lipschitz constant
of the loss surface and also reduces number of dead neurons
(i.e., neurons with gradient zero). This is consistent with the
prior observation [1,10] that the clipping bound is important
for ultra low-bitwidth quantization.

PokeConv ablation. We remove each component in
PokeConv one at a time and study the impact. The results
are in Tab. 4. Removing DPReLU from PokeConv causes
the largest accuracy drop, even larger than replacing Poke-
Conv with the original binarized ResNet block. We hypoth-
esize that this is because the change eliminates nonlinearity
on both shortcuts, which impedes the model learning. We
also replace DPReLU with RPReLU [34] and ReLU. This
leads to a 0.2% and 0.6% top-1 degradation, respectively.
Since 0.2% is above 3 standard deviations (3 × 0.034%),
DPReLU indeed improves the model quality over the other
two candidates.

The other components (i.e., 4-bit SE, additional shortcuts
and BatchNorms) all have at least 3% top-1 impact on the
model. Given they incur negligible overhead in ACE, they
are favourable design choices.

We also experiment with adding back the 1×1 projection
Conv layers. The top-1 result is 73.5%, only 0.1% higher.
Completely removing these layers is therefore sensible.

PokeInit ablation. In PokeBNN-1.0x, we replace
PokeInit with ResNet’s original 7×7 input Conv layer fol-
lowed by a maxpooling. The top-1 is 73.5%, only 0.1%
higher. Given that PokeInit reduces the number of opera-
tions in the input layer by 18×, it is a favourable trade-off.

We also experiment with removing the 3×3 depthwise
Conv layer in PokeInit. This results in a 73.1% top-1. The

12481

Table 2. Final results and comparison to prior arts — When calculating ACE for FP32 operations, we assume they can be cast to
BF16 without accuracy loss. “–” indicates unavailable data. The standard deviation of top-1 across 5 different seeds for PokeBNN-1.0x is
0.034%. BF16 PokeBNN is a variant where all convolutions and dense layers are in BF16. The bottom four rows show the base models
for context, all other models are binary.

Model MAC Operations (106) ACE (109) CPU64 (106) Size (MB) Top-1 (%)FP32 BF16 INT8 INT4 Binary
AlexNet-BNN [23] - - - - - - - - 36.1
GoogleNet-BNN [23] - - - - - - - - 47.1
XNOR-Net [42] 120 - - - 1700 32.4 146.6 4.2 51.2
XNOR-Net++ [7] 120 - - - 1700 32.4 146.6 4.2 57.1
Bi-RealNet-18 [35] 139 - - - 1680 37.3 165.2 4.2 56.4
Bi-RealNet-34 [35] 139 - - - 3530 39.1 194.2 5.1 62.2
IR-Net-18 [41] - - - - - 37.3 165.2 4.2 58.1
IR-Net-34 [41] - - - - - 39.1 194.2 5.1 62.9
SQ-BWN-18 [48] - - - - - 37.3 165.2 4.2 58.4
PCNN [14] - - - - - 37.3 165.2 4.2 57.3
BDenseNet37-Dilated [5] - - - - - - 220.0 5.1 63.7
CI-BCNN-18 [47] - - - - - - 154.0 4.2 59.9
CI-BCNN-34 [47] - - - - - - 182.0 5.4 64.9
MobiNet [39] - - - - - - 52.0 4.6 54.4
BinaryMobileNet [40] - - - - - - 154.0 - 60.9
MeliusNet-29 [4] 129 - - - 5470 38.5 214.5 5.1 65.8
MeliusNet-42 [4] 174 - - - 9690 54.2 325.4 10.1 69.2
MeliusNet-59 [4] 245 - - - 18300 81.0 530.9 17.4 71.0
Real-to-Binary Net [37] 156.4 - - - 1676 41.7 182.6 5.1 65.4
SA-BNN-18 [32] - - - - - - 169.0 4.2 61.7
SA-BNN-34 [32] - - - - - - 201.0 5.5 65.5
SA-BNN-50 [32] - - - - - - - - 68.7
QuickNetSmall [3] - - - - - - - 4.0 59.4
QuickNet [3] - - - - - - - 4.2 63.3
QuickNetLarge [3] - - - - - - - 5.4 66.9
ReActNet-A [34] 11.9 0 0 0 4816.9 7.9 87.2 7.4 69.4
ReActNet-Adam [33] 11.9 0 0 0 4816.9 7.9 87.2 7.4 70.5
PokeBNN-2.0x 0 0 10.7 14.5 14412.2 15.3 227.4 20.7 77.2
PokeBNN-1.75x 0 0 10.2 11.1 11037.1 11.9 174.4 16.3 76.8
PokeBNN-1.5x 0 0 9.7 8.2 8111.7 8.9 128.5 12.4 75.9
PokeBNN-1.4x 0 0 9.5 7.1 7037.2 7.8 111.6 10.9 75.6
PokeBNN-1.25x 0 0 9.2 5.7 5635.8 6.3 89.6 9.0 75.0
PokeBNN-1.0x 0 0 8.7 3.6 3609.5 4.2 57.7 6.2 73.4
PokeBNN-0.75x 0 0 8.2 2.0 2032.7 2.6 32.9 3.8 70.5
PokeBNN-0.5x 0 0 7.6 0.9 905.6 1.4 15.2 2.0 65.2
FP32 ResNet-50 [17] 4089.2 0 0 0 0 1046.8 4089.2 97.3 76.7
BF16 ResNet-50 [1] 0 4089.2 0 0 0 1046.8 4089.2 48.6 76.7
INT4 ResNet-50 [1] 0 0 120.1 3969.1 0 71.2 263.1 13.1 77.1
BF16 PokeBNN 0 3621.8 0 0 0 927.2 3621.8 50.3 79.2

Table 3. Impact of the activation clipping bound B in the bina-
rization function.

Clipping Bound B 1.0 1.3 2.0 3.0 4.0 5.0 6.0

Top-1 (%) 70.1 71.4 72.9 73.4 73.3 72.8 72.4

Table 4. Ablate each component in PokeConv. ”All” indicates
replacing PokeConv with the original 1-bit ResNet Conv block.

Remove Module SE DPReLU Shortcuts BN All

Top-1 (%) 70.6 60.4 68.1 70.2 61.9

depthwise layer trades 2.7% of the total ACE cost for 0.3%
accuracy, which is also a fair trade-off.

Precision ablation. Increasing the weight or activation
precision in PokeConv from 1-bit to 4-bit results in a 75.2%
and 76.8% top-1, respectively. Both of these variants have
an ACE cost of 15, and both are significantly better than
INT4 ResNet [1] but worse than PokeBNN-1.75x. This re-
sult indicates that binarization indeed allocates energy bet-
ter than int4 formats.

7. Conclusion

The main ingredients of PokeBNN: PokeConv, PokeInit,
and the clipping bound (B = 3), together establish a strong
SOTA in the domain of cost-efficient networks. ACE metric
improves alignment of research on cost-efficient neural net-
works with future ML hardware. Our results indicate that
binarization may indeed be a good choice in cost-accuracy
trade-off. The main price of these benefits is a 750-epoch
long training.

There are several unanswered questions. How to take
energy of memory access into account in a synthetic met-
ric? How could the Poke architecture be further simplified
or improved? Could architecture templates different than
ResNet-50 or perhaps neural architecture search yield sig-
nificantly better networks?

Acknowledgements. The authors would like to thank
Catalyst, JAX, and Flax teams for valuable implementation,
discussions, and suggestions on AQT library. This work is
supported in part by NSF Award #2007832.

12482

References
[1] AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal,

Jonathan Malmaud, Oleg Rybakov, Chas Leichner, and
Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, 2021. 4, 6, 7, 8

[2] Yash Akhauri. HadaNets: Flexible quantization strategies
for neural networks. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, 2019. 2

[3] Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin,
Leon Overweel, Jelmer Neeven, and Koen Helwegen. Larq
compute engine: Design, benchmark and deploy state-of-
the-art binarized neural networks. Machine Learning and
Systems, 2021. 8

[4] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen,
and Christoph Meinel. MeliusNet: An improved network
architecture for binary neural networks. IEEE Winter Con-
ference on Applications of Computer Vision (WACV), 2021.
4, 7, 8

[5] Joseph Bethge, Haojin Yang, Marvin Bornstein, and
Christoph Meinel. BinaryDenseNet: Developing an archi-
tecture for binary neural networks. International Conference
on Computer Vision (ICCV) Workshops, 2019. 7, 8

[6] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+ NumPy programs. Version 0.1,
2018. 1

[7] Adrian Bulat and Georgios Tzimiropoulos. Xnor-
net++: Improved binary neural networks. arXiv preprint
arXiv:1909.13863, 2019. 2, 8

[8] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and
Maja Pantic. Improved training of binary networks for hu-
man pose estimation and image recognition. arXiv preprint
arXiv:1904.05868, 2019. 2, 5

[9] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhenzhong
Lan. Training binary multilayer neural networks for im-
age classification using expectation backpropagation. arXiv
preprint arXiv:1503.03562, 2015. 2

[10] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 7

[11] L. DADDA. Some schemes for parallel multipliers. Alta
Frequenza, 1965. 3

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. International Conference on Learning Representa-
tions (ICLR), 2021. 6

[13] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit

neural networks. International Conference on Computer Vi-
sion (ICCV), 2019. 4

[14] Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin
Cao, Jianzhuang Liu, and David Doermann. Projection con-
volutional neural networks for 1-bit cnns via discrete back
propagation. AAAI Conference on Artificial Intelligence,
2019. 8

[15] Peng Guo, Hong Ma, Ruizhi Chen, Pin Li, Shaolin Xie, and
Donglin Wang. FBNA: A fully binarized neural network ac-
celerator. International Conference on Field Programmable
Logic and Applications (FPL), 2018. 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. International Conference
on Computer Vision (ICCV), 2015. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2016. 2, 4, 6, 8

[18] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-
ter, Bertrand Rondepierre, Andreas Steiner, and Marc van
Zee. Flax: A neural network library and ecosystem for jax.
Version 0.3, 2020. 1

[19] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). International Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2014. 3

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. International Conference
on Computer Vision (ICCV), 2019. 3, 5

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 6

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2, 5

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in Neural Information Processing Systems (NeurIPS),
2016. 2, 4, 7, 8

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. International Conference on Machine Learning
(ICML), 2015. 2, 5

[25] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark
Gottscho, Thomas B. Jablin, George Kurian, James Laudon,
Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant
Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and
David Patterson. Ten lessons from three generations shaped
google’s tpuv4i : Industrial product. International Sympo-
sium on Computer Architecture (ISCA), 2021. 3

[26] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc

12483

Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-
worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Nor-
rie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-
sudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-datacenter performance analysis of a
tensor processing unit. SIGARCH Comput. Archit. News,
2017. 3

[27] Minje Kim and Paris Smaragdis. Bitwise neural networks.
arXiv preprint arXiv:1601.06071, 2016. 2

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems
(NeurIPS), 2012. 2

[30] HT Kung and Charles E Leiserson. Systolic arrays (for vlsi).
Sparse Matrix Proceedings 1978, 1979. 3

[31] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan
Samet, and Tom Goldstein. Training quantized nets: A
deeper understanding. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2017. 2

[32] Chunlei Liu, Peng Chen, Bohan Zhuang, Chunhua Shen,
Baochang Zhang, and Wenrui Ding. SA-BNN: State-aware
binary neural network. Proceedings of the AAAI Conference
on Artificial Intelligence, 2021. 5, 8

[33] Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen,
Dong Huang, and Kwang-Ting Cheng. How do adam and
training strategies help bnns optimization? International
Conference on Machine Learning (ICML), 2021. 1, 2, 3,
6, 8

[34] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. ReActNet: Towards precise binary neural net-
work with generalized activation functions. European Con-
ference on Computer Vision (ECCV), 2020. 2, 3, 4, 5, 6, 7,
8

[35] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-
mance of 1-bit cnns with improved representational capabil-
ity and advanced training algorithm. European Conference
on Computer Vision (ECCV), 2018. 2, 3, 4, 7, 8

[36] Kien Mai Ngoc, Donghun Yang, Iksoo Shin, Hoyong Kim,
and Myunggwon Hwang. Dprelu: Dynamic parametric rec-
tified linear unit. The 9th International Conference on Smart
Media and Applications, 2020. 5

[37] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-to-
binary convolutions. International Conference on Learning
Representations, 2020. 2, 5, 8

[38] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture,
2020. 1

[39] Hai Phan, Dang The Huynh, Yihui He, Marios Savvides, and
Zhiqiang Shen. MoBiNet: A mobile binary network for im-
age classification. IEEE Winter Conference on Applications
of Computer Vision (WACV), 2020. 8

[40] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides,
Kwang-Ting Cheng, and Zhiqiang Shen. Binarizing mo-
bilenet via evolution-based searching. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 8

[41] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 4, 8

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet classification using
binary convolutional neural networks. European Conference
on Computer Vision (ECCV), 2016. 2, 3, 8

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV), 2015. 2, 6

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018. 3

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015. 2

[46] C. S. Wallace. A suggestion for a fast multiplier. IEEE Trans-
actions on Electronic Computers, 1964. 3

[47] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.
Learning channel-wise interactions for binary convolutional
neural networks. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 8

[48] Jianguo Li Yinpeng Dong and Renkun Ni. Learning accurate
low-bit deep neural networks with stochastic quantization.
British Machine Vision Conference (BMVC), 2017. 8

[49] Chunyu Yuan and Sos S Agaian. A comprehensive review
of binary neural network. arXiv preprint arXiv:2110.06804,
2021. 2

[50] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen,
Deming Chen, and Zhiru Zhang. FracBNN: Accurate and
FPGA-efficient binary neural networks with fractional ac-
tivations. ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2021. 2, 5

[51] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He
Wen, and Yuheng Zou. DoReFa-Net: Training low bitwidth

12484

convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016. 4

12485

