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Abstract

Event-based cameras bring a unique capability to track-
ing, being able to function in challenging real-world condi-
tions as a direct result of their high temporal resolution and
high dynamic range. These imagers capture events asyn-
chronously that encode rich temporal and spatial informa-
tion. However, effectively extracting this information from
events remains an open challenge. In this work, we pro-
pose a spiking transformer network, STNet, for single ob-
ject tracking. STNet dynamically extracts and fuses infor-
mation from both temporal and spatial domains. In par-
ticular, the proposed architecture features a transformer
module to provide global spatial information and a spik-
ing neural network (SNN) module for extracting temporal
cues. The spiking threshold of the SNN module is dynami-
cally adjusted based on the statistical cues of the spatial in-
formation, which we find essential in providing robust SNN
features. We fuse both feature branches dynamically with
a novel cross-domain attention fusion algorithm. Extensive
experiments on three event-based datasets, FE240hz, EED
and VisEvent validate that the proposed STNet outperforms
existing state-of-the-art methods in both tracking accuracy
and speed with a significant margin. The code and pre-
trained models are at https://github.com/Jee-
King/CVPR2022_STNet.

1. Introduction
Event-based cameras are bio-inspired sensors that offer

attractive properties compared to conventional frame-based

cameras: high temporal resolution (in the order of μs), high

dynamic range (140 dB vs. 60 dB), low power consump-

tion, and high pixel bandwidth (on the order of kHz) re-

sulting in drastically reduced motion blur [18]. With these

unique sensing capabilities, event-based cameras can ro-

bustly function in degraded conditions, such as low-light,

fast motion, and high dynamic range scenes. Recently,

event-based cameras have been proposed for object track-

ing tasks [2,7–9,24,36,38], especially in adverse conditions
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Figure 1. A comparison of our method (STNet) with state-of-

the-art (SOTA) trackers. Unlike existing SOTA approaches, our

method dynamically fuses temporal and spatial cues, resulting in

robust tracking performance.

that conventional imagers struggle with.

Event-based cameras measure per-pixel brightness

changes and output events asynchronously. As a result,

existing CNN-based approaches cannot directly work with

event-based sensors, as they require synchronous input.

Several works proposed to convert asynchronous events

to conventional frames for downstream processing, mainly

based on handcrafted features [27, 34, 41]. Unfortunately,

in contrast to images captured with traditional cameras, the

accumulated event frames are much sparser and lack texture

information. Thus, directly applying CNN-based methods

designed for conventional images does not offer a solution,

as evidenced by extensive experiments in this work.

Recently, a line of works focused on developing

learning-based object tracking approaches tailored to event

frames. Zhang et al. [50] proposed to combine conventional

and event frames with a cross-domain attention fusion algo-

rithm to track objects under different degraded conditions.

However, their approach requires both traditional and accu-

mulated event frames as inputs. More importantly, the ap-

proach ignores the rich temporal information encoded in the

event domain. In contrast, another body of work focused on

the event domain only and introduced various event prepro-

cessing approaches to encoding both temporal and spatial

information into the processed event frames [8, 9, 30, 36].

However, these existing approaches do not consider the

downstream network, making it challenging to choose suit-

able preprocessing methods for a specific computer vision

task. Perhaps even more importantly, existing methods may

suppress informative events from a downstream network
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perspective.

In this work, we propose a spiking transformer network,

dubbed STNet, for single object tracking, which only re-

quires events as input. The proposed STNet does not require

handcrafted event preprocessing but instead is designed to

directly extract spatial and temporal information from the

event positions over a small interval of time. The temporal

information is extracted based on global spatial cues, and

it plays an essential role in generalizing to different exter-

nal conditions. The extracted temporal and spatial features

are fused by a novel cross-domain attention method, which

dynamically suppresses events based on the current scene.

In particular, the proposed architecture features a LIF-

based spiking neural network (SNN) [45] for extracting

temporal features and a reduced Swin-transformer [33] for

extracting spatial information. We find it critical to oper-

ating the SNN based on spatial cues for this to function

as intended. Specifically, the SNN neurons maintain mem-

brane potential, which is increased by accumulating incom-

ing spikes and decreased based on a decay function in the

time domain [1, 21, 23]. A spike is generated when the ac-

cumulated potential is higher than a spiking threshold, and

the potential is reset based on a refractory function [26,42].

The potential accumulation, decay, and resting process can

be regarded as a temporal memory, motivating us to treat

the SNN as a temporal feature extractor. We ensure effec-

tive dynamic temporal features extraction by proposing to

assign spiking thresholds to the LIF neurons based on the

statistical cues of the spatial information.

Extensive experiments on the FE240hz [50], EED [36],

and VisEvent [16] datasets validate the effectiveness of the

proposed STNet (see Figure 1), which outperforms exist-

ing state-of-the-art methods by significant margins in rep-

resentative success rate (RSR), representative precision rate

(RPR), and processing speed (see Figure 7). Ablation ex-

periments evidence the importance of each key component

of STNet. More importantly, we show the spatial-aware dy-

namic spiking threshold is essential for robust tracking. Our

work is the first work to verify the importance of the SNN

dynamic threshold in object tracking tasks.

In summary, we make the following contributions:

• We propose a novel spiking transformer architecture

for event-based single object tracking, allowing us to ex-

tract and fuse temporal and spatial information based on the

dynamically defined informativeness of both temporal and

spatial domains.

• We dynamically adjust the spiking threshold of a LIF-

based SNN according to statistical cues of global spatial

scene information.

• Extensively experimental results validate that the pro-

posed approach outperforms state-of-the-art methods. Our

ablation study evidences the effectiveness of each key com-

ponent of the proposed STNet.

2. Background and Related Work

Event-based Cameras An event-based camera is a bio-

inspired sensor that reports per-pixel brightness changes in

log scale as a stream of asynchronous events [18,20]. Com-

pared to frame-based conventional cameras, event-based

cameras offer a very high dynamic range (140 dB versus 60

dB) and high temporal resolution (in the order of μs). An

event, e, encodes three pieces of information: the pixel loca-

tion, (x, y), of the event, the timestamp, t, records the time

when the event is triggered, and the polarity, p ∈ {−1, 1},

of an event, which reflects the direction of the changes. For-

mally, a set of events can be defined as

E = {ek}Nk=1 = {[xk, yk, tk, pk]}Nk=1. (1)

In constant lighting conditions, events are triggered by mov-

ing edges (e.g., object contour and texture boundaries),

making an event-based camera a natural edge extractor.

However, this attractive feature is also a unique challenge.

As the events predominately stem from edges, the measured

events are inherently sparse. CNN-based approaches de-

signed to work with conventional frames cannot work ef-

fectively with asynchronous and sparse events.

Spiking Neural Networks A spiking neural network

(SNN) models biological information processing, in which

neurons exchange information via spikes. Existing spiking

neuron models mathematically describe the properties of a

cell in the nervous system with varying degrees of detail.

Typically, these models take three conditions into account:

rest, depolarization, and hyperpolarization. When a neu-

ron is resting, it keeps a constant membrane potential. The

change in membrane potential can be either a decrease or

an increase from the resting potential. An increase in mem-

brane potential is called depolarization. In contrast, hyper-

polarization describes a reduction in membrane potential,

making a cell less likely to generate an action potential. All

inputs and outputs to a spiking neuron model are sequences

of spikes, which are called spike trains. A spike train is

defined as s(t) = Σt(f)∈Fδ(t − t(f)), where F is the set

of times of the individual spikes [42]. Typical spiking neu-

ron models set the resting potential as 0. However, existing

models achieve depolarization and hyperpolarization in dif-

ferent ways.

In the following, we review the leaky integrate-and-fire
(LIF) [22] spiking neuron model. LIF models are a simpli-

fied variant of Spike Response Models (SRMs) [21]. We

can define an nl-layer feedforward SNN architecture with

LIF neurons. Given N l incoming spike trains at layer l,
sli(t), the SNN forward propagation is mathematically de-

fined as
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wherewij is the synaptic weight between the j-th neuron on

the l-th layer and the i-th neuron on the layer l + 1; bl+1
i is

an adjustable bias; and D is a constant. The operator fs(·)
is a spike function defined as

fs(v) : v → s, s(t) := s(t) + δ(t− t(f+1)), (3)

tf+1 = min{t : v(t) = Θ, t > t(f)}, (4)

where Θ is the membrane potential threshold which is static

and the same to all neurons in the network.

2.1. Event-based Object Tracking
Deep-learning-based algorithms have shown great suc-

cess in object tracking tasks with conventional frame-based

cameras [3, 4, 6, 10, 11, 14, 19, 25, 28, 29, 37, 48, 51]. How-

ever, conventional frame-based cameras suffer from de-

graded conditions (e.g., high dynamic range scene, motion

blur). Thereby, it requires significant algorithmic effort to

achieve optimal tracking performance under these adverse

conditions. In contrast, event-based cameras can naturally

cope with these degraded conditions and gain substantial

attention from the object tracking community. A line of

works relies on different clustering algorithms to group cap-

tured events into clusters, including Gaussian Mixture Mod-

els [38], mean-shift [2], and particle filters [24]. However,

these methods involve handcrafted strategies, requiring dif-

ferent tedious tuning for different application scenarios.

Another line of work converts the captured raw events

to a specially designed format to encode both temporal and

spatial cues for downstream tracking algorithms, such as

time-surface [8], adaptive time-surface [9], and time im-

age [36] formats. However, these event formats do not con-

sider the downstream network, which may suppress infor-

mative cues from a downstream network perspective. Re-

cently, Zhang et al. [50] proposed a cross-domain attention

object tracking method, which can robustly function in de-

graded conditions. However, their approach did not lever-

age temporal information and required intensity frames. By

contrast, our approach does not rely on special event prepro-

cessing or input from other domains but on a novel network

to dynamically extract and fuse temporal and spatial infor-

mation for robust object tracking.

3. Spiking Transformers
Exploiting events captured by an event-based camera

for object tracking requires tackling the following two

CI
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Figure 2. Overview of STNet. It has a template branch and

a search branch, and they share the same architecture. Each

branch contains a novel SNNformer Feature Extractor (SFE) and

a novel Temporal-Spatial Feature Fusion (TSFF) module. The

event-frames, {Ec
TE , E

i
TE}, are the inputs for template branch,

and {Ec, Ei} are the inputs for search branch, where i ∈ [1, n].

challenges: 1) The event domain provides rich tempo-

ral information but in an asynchronous manner. Exist-

ing deep-learning-based approaches convert these asyn-

chronous events to conventional intensity images for ex-

tracting spatial features [8, 9, 31, 36]. However, during the

process, the original temporal information is partially lost;

2) Even if temporal information can be extracted from the

events, dynamically fusing temporal and spatial cues re-

mains challenging. In this work, to cope with these chal-

lenges, we propose a spiking transformer network (STNet)

for single object tracking in the event domain, consisting of

two key components: SNNformer feature extractor (SFE)

and temporal-spatial feature fusion (TSFF).

The proposed SFE relies on a 3-layer LIF-based

SNN [45] and a reduced Swin-transformer [33] to capture

informative cues from the temporal and spatial domains.

An SNN neuron accumulates its membrane potential from

other directly connected neurons in a weighted sum man-

ner, and the membrane potential is decayed based on dif-

ferent decay schemes [1, 21, 23]. When the accrued po-

tential is higher than a spiking threshold, an action poten-

tial (i.e., spike) is triggered, and then the membrane poten-

tial is rested based on various refractory strategies [26, 42].

This spiking mechanism acts as a natural noise filter. More

importantly, we can regard the potential accumulation and

decay as a temporal memory, which can effectively grasp

temporal information. The original LIF’s spiking thresh-

old is pre-defined and fixed during training and testing.

However, dynamic threshold schemes can be observed in

the different biological nervous systems, which play an es-

sential role in the adaptability to various external condi-

tions [12, 17, 39, 43]. This observation inspires us to ad-

just the LIF threshold dynamically. We estimate a spiking

threshold periodically based on the statistical cues of the

spatial features, which are provided by a reduced Swin-

transformer. As such, the proposed SFE can effectively

counter the first key challenge from above.

We devise the fusion module TSFF to deal with the

second challenge, which leverages three dynamic attention

schemes to fuse the extracted temporal and spatial cues.

Specifically, inspired by non-local self-attention [44], we
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Figure 3. The architecture of the proposed SFE. Given a set of

events of a time period, we generate Ec and Ei i ∈ [1, n] based on

Eq. 7 and Eq. 11, respectively. The SNN takes input event-frame

one by one in time order and maintains its membrane potential V t.

The SFE dynamically changes the SNN threshold V t
th.

propose a temporal-attention (TA) module to process the

temporal features provided by the SNN inside the SFE,

which utilizes channel-wise dependencies to enhance the

temporal information. Next, a specifically designed cross-

domain integrator (CI) combines enhanced temporal cues

with spatial features. Essentially, CI generates an attention

map based on spatial and temporal information to bridge

the two domains. In doing so, low entropy information in

the temporal domain can be future suppressed from the per-

spectives of both spatial and temporal domains. Finally, the

fused features go through a spatial-attention (SA) module,

where pixel-wise dependencies are leveraged to strengthen

the discriminability of spatial features further.

For single object tracking, we adopt SiamFC++ [47] as

our base network and replace the original frame-domain

spatial feature extractors on both template and search

branches with the proposed spiking transformer network.

The proposed STNet is illustrated in Figure 2.

3.1. SNNformer Feature Extractor (SFE)

The proposed SFE has two branches: the transformer

and SNN branches. In between, we offer a dynamic spiking

threshold module for dynamically adjusting the SNN spik-

ing threshold. We first introduce the input format and then

give more details for each component. The overall architec-

ture of the SFE is illustrated in Figure 3.

Event Input Format Given a set of events in a period, we

split them into an n-bin voxel grid to discretize the time

dimension. For each bin, we generate two frames, Eneg

and Epos, by recording the spatial positions of all occurred

negative and positive events during the period, respectively.

Transformer Branch The transformer branch is used for

extracting global spatial features from events. In contrast

to frames captured by a conventional camera, the accumu-

lated event frames are sparse and lack texture cues, which

have been proved difficult for local feature extraction in to-

day’s CNN-based algorithms. We focus on global features

and adopt the first two blocks of the Swin-transformer [33]

as the feature extractor in the spatial domain. In partic-

ular, given n positive-negative pairs of accumulated event

frames, the global spatial feature, FG, is extracted as

FG = ψ(C3(FST)), (5)

FST = T (C1(Ec)), (6)

Ec = [E1
pos, E

2
pos, ..., E

n
pos,

E1
neg, E

2
neg, ..., E

n
neg],

(7)

where [·] is channel-wise concatenation; Ck denotes a con-

volutional layer with a kernel size of k× k; T is the simpli-

fied Swin-transformer [33]; ψ is an operator consisting of

Batch Normalization (BN) and a ReLU activation function.

SNN Branch The SNN network is based on the Spiking

CNN [45] architecture, and it consists of three conv-SNN-

blocks. In each block, a convolutional layer is followed by

a LIF-based SNN layer, where the convolutional layer con-

verts spikes to membrane potentials as input to the SNN

layer. With n pairs of positive-negative event frames, the

SNN branch sequentially processes them in time order. For

each new input pair, the membrane potentials of all SNN

neurons remain in their previous status instead of resetting

to the initial potential status, which allows for capturing

temporal cues. The membrane potentials are rest after pro-

cessing all n pairs.

Mathematically, for a conv-SNN-based network, the

membrane potentials, V t,l, of the neurons in the l-th layer

at the timestamp, t, is formulated as

V t,l = Ht−1,l + C
(
Zt,l−1

)
, (8)

Zt,l = f
(
V t,l − Vth

)
, (9)

Ht,l =
(
αV t,l

) (
1− Zt,l

)
, (10)

Zt,0 = Et = ∨(Et
pos, E

t
neg), (11)

where f(·) is a Heaviside step function; Vth is the mem-

brane potential threshold; α is the leakage factor of a LIF

neuron; ∨ is an element-wise OR operator. At the last time-

stamp n, we calculate the mean of the last layer membrane

potentials across all timestamps, from 1 to n, and use it to

estimate the temporal features. The process is defined as

FT = ψ(C1(
1

n

n∑
t=1

V t,l=3)). (12)

We note that the SNN with conv-SNN-blocks is different

from the one with only LIF neurons. Hence, we cannot use

the Eq. 2 to describe the conv-SNN-based network.

Dynamic Spiking Threshold The dynamic spiking poten-

tial threshold is a spontaneous regulation mechanism to in-

hibit over-excited (i.e., high firing rate) and dead (i.e., low

firing rate) neurons. We adjust the spiking threshold of a

LIF neuron based on spatial features of a scene. In particu-

lar, we use the representative value K and the entropy E of

a given global spatial feature, FG, to dynamically define a
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Figure 4. The architecture of the proposed TSFF. The module

fuses extracted temporal and spatial features by specially designed

channel and spatial attentions.

spiking threshold, Vt
th as

Vt
th = (K + E)Vth, (13)

K = σ(A(Sm
t )), (14)

E = − 1

N

255∑
i=0

Pi(N (Sm
t ))

HW
log(

Pi(N (Sm
t ))

HW
+ ξ), (15)

where Vth is the pre-defined threshold, σ is a Sigmoid func-

tion, A is adaptive average pooling, Sm
t is a H ×W matrix

record the channel-wise means of the output features from

the transformer, N is normalization operation, converting a

value to the range of [0, 255], Pi is the number of the pixels

whose value is i on Sm
t ; ξ is a numerical epsilon value.

Intuitively, K reflects the contextual information. The

higher value of K reflects more contextual spatial informa-

tion. In this case, we should reduce the neuron firing rate,

allowing more accumulation and grasping temporal cues

from a longer temporal window and vice versa. E reflects

the randomness of the feature, which may be caused by spa-

tial noise. For higher entropy observations, we want to in-

crease the spiking threshold to filter out potential noise. In

the opposite case, the spikes are more likely to be triggered

by informative cues. Hence, we want to lower the threshold

for increasing the sensitivity to these spikes.

3.2. Temporal-Spatial Feature Fusion (TSFF)
The proposed TSFF has three key components:

Temporal-Attention (TA) module, Cross-Domain Integrator

(CI), and Spatial-Attention (SA) module; see Figure 4.

Temporal-Attention (TA) Module Given the input tempo-

ral features, the proposed TA module utilizes channel-wise

dependencies to produce the corresponding enhanced tem-

poral cues, inspired by self-attention schemes [32, 35, 40,

44, 49]. Formally, given input temporal features, FT ∈
R

C×H×W , TA module is formulated as

F ′
T = R((C,H,W ))(GY ) + FT , (16)

G = ϕ(QK), (17)

where Y = Q = R((C,HW ))(FT ),K = R((HW,C))(FT );
R((·)) is reshape function with a target shape (·); ϕ denotes

a softmax function.

Cross-Domain Integrator (CI) The CI is designed to fuse

spatial and temporal cues with a cross-domain attention

scheme. In particular, we generate an attention map based

on both input spatial and temporal information and then ap-

ply it to the temporal cues. As such, we can suppress low-

entropy information in the temporal domain based on the

perspective of both spatial and temporal domains. Then,

the CI fuses the input spatial and the optimized temporal

features by element-wise addition. Given the input tempo-

ral features F ′
T , and spatial features FG, this is

F ′
G = XF ′

T + FG, (18)

X = σ(M(A([FG, F
′
T ]))), (19)

where M is a three-layer multilayer perceptron (MLP) op-

erator with one linear input layer, one ReLU activation func-

tion, and one linear output layer.

Spatial-Attention (SA) Module The fused features are fed

into a self-attention-based SA module to further enhance the

discriminative spatial features. The SA module is similar

to the TA module, but its attention map is based on pixel-

wise dependencies rather than channel-wise dependencies.

Formally, the SA module is

F ′′
G = R((C,H,W ))(Y ′G′) + F ′

G, (20)

G′ = ϕ(Q′K ′), (21)

where Y ′ = R((C,HW ))(F ′
G), Q

′ = R((HW,C))(F ′
G), and

K ′ = Y ′.

3.3. Loss Function

To train the proposed STNet, we adopt the loss function

of SiamFC++ [47], which contains three components: clas-

sification loss (Lcls), cross-entropy loss (Lctr), and regres-

sion loss (Lreg). The classification ground truth (GT), c∗x,y ,

is set to 1 if the position (x, y) is a positive sample (i.e., in-

side the GT bounding box), 0 otherwise. The cross-entropy

loss relies on the GT q∗x,y , which is obtained by setting a

Gaussian function centered at the target bounding box. The

loss function is defined as

L =
λ1
Np

∑
x,y

Lcls

(
cx,y, c

∗
x,y

)

+
λ2
Np

∑
x,y

f(c∗x,y)Lctr

(
qx,y, q

∗
x,y

)

+
λ3
Np

∑
x,y

f(c∗x,y)Lreg

(
tx,y, t

∗
x,y

)
, (22)

where Np is the number of positive samples; f(·) is the

Heaviside step function; t∗x,y is the GT bounding box. λ1,

λ2, and λ3 are the weight factors, set empirically.

Implementation We implement the proposed network in

PyTorch. The model is trained using a stochastic gradi-

ent descent (SGD) optimizer with a momentum of 0.9 and
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a weight decay of 5e−5. The STNet is trained for 20

epochs with batch size 38 on a 20-core i9-10900K 3.7 GHz

CPU, 64 GB RAM, and an NVIDIA RTX3090 GPU. With

this configuration, for each batch, STNet requires 26.9s for

training. The learning rate is increased in [1e−7, 2e−3] as

the training progresses; for the first five epochs, it is linearly

increased; for the rest 15 epochs, it is adjusted by a cosine

annealed learning rate scheduler.

4. Experiments
4.1. Experimental Setup

We use three datasets, FE240hz [50], EED [36], and Vi-

sEvent [16], for assessing the effectiveness of the proposed

STNet. The FE240hz dataset is an extensive event-frame-

based dataset for single object tracking, including more than

1132K annotations on more than 143K images and corre-

sponding recorded events. It is captured under different de-

graded conditions (e.g., motion blur, HDR) to cover diverse

real-world scenarios. The EED dataset is a small dataset

with only 199 bounding boxes, used only for validation pur-

poses with STNet trained on FE240hz. As the FE240hz and

EED datasets only contain rigid objects, we leverage the

VisEvent dataset further to validate the effectiveness of our

STNet with non-rigid objects. After removing sequences

that miss event data or have misaligned timestamps, the Vi-

sEvent dataset includes 377 sequences for training and 172
for testing. Among the 172 testing sequences, 63 of them

contain non-rigid objects. We preprocess event-frames as

suggested by SiamFC++ [47] and use the following hyper-

parameter settings: λ1, λ2, and λ3 in Eq. 22 are set to 1,

1 and 3, respectively; 0.2 for the decay factor α in Eq. 10.

The spiking threshold Vth in Eq. 13 is set to 0.3. We split a

given time window to 5 bins, i.e., n is set to 5 in Eq. 7. The

impact of the hyperparameters α, Vth and n are discussed

in the Supplementary Material.

Evaluation Metrics Tracking performance is quantitatively

measured by the following three metrics: success rate (SR),

precision rate (PR), and overlap precision (OPT ). The SR

focuses on the frame where the overlap between ground

truth and predicted bounding box is larger than a thresh-

old; OPT matches SR but with a specific overlap threshold

T . The PR counts the frame on which the center distance

between ground truth and predicted bounding box is within

a given threshold. We use the area under the curve as repre-

sentative SR (RSR). Representative PR (RPR) is defined as

a PR score associated with a 20-pixel threshold.

4.2. Evaluation

We evaluate the effectiveness of the proposed STNet

from three perspectives: 1) overall tracking performance in

terms of RPR and RSR, 2) tracking performance under dif-

ferent degraded conditions, and 3) tracking accuracy with

respect to tracking speed. We compare our approach against
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(b) Precision (left) and Success (right) plot on EED [36]

D
is

ta
nc

e 
Pr

ec
is

io
n

[%
]

O
ve

rla
p

Pr
ec

is
io

n
[%

]

Location error threshold [pixels] Overlap threshold
0 10 30 40 5020 0.0 0.2 0.6 0.8 1.00.4

0

20

40

60

80

100

0

20

40

60

80

100
Success plotPrecision plot

Ours [35.5,49.2]

TransT [32.9,47.1]

PrDiMP[32.7,45.7]

STARK-S [32.7,41.8]

DiMP [32.2,43.4]

KYS[31.3,42.4]

SiamFCpp [30.9,45.6]

EFE[30.0,42.3]

ATOM[29.1,46.2]

OCEAN [27.9,40.4]

SiamRPN [25.2,37.2]

Methods [RSR,RPR]

(c) Precision (left) and Success (right) plot on VisEvent [16]

Figure 5. Precision (left) and Success (right) plot on the FE240hz,

EED, and VisEvent datasets.

ten existing state-of-the-art trackers on the FE240hz [50],

EED [36], and VisEvent [16] datasets.

Overall Performance The overall tracking performance is

reported in Figure 5 and Table 1, which indicate the pro-

posed STNet offers state-of-the-art tracking performance on

all three datasets. In particular, on the FE240hz dataset,

STNet outperforms the runner-up by 1.8%, 3.9%, 2.8%,

and 0.6% in RSR, OP0.50, OP0.75, and RPR, respectively.

On the EED dataset, TransT [10] has a higher RPR than

ours. However, our method outperforms the TransT in the

other three metrics with a significant margin, 4.0% in RSP,

15.8% in OP0.50, and 1.8% in OP0.75. It should be noted

that, compared to the FE240hz, EED is substantially less

indicative due to the small set of annotations (1132K vs.

199 annotations). Finally, on the VisEvent dataset, the pro-

posed STNet remains the best performer in RSR, OP0.50,

and RPR, outperforming the runner-up by 2.6%, 0.2%, and

2.1%, respectively. The analysis related to rigid and non-

rigid objects is provided in the Supplementary Material.

Degraded Conditions Tackling real-world adverse condi-

tions is one of the main motivations for using event-based

cameras in object tracking tasks. We report the tracking

performance of the top five methods on FE240hz in the fol-

lowing degraded conditions: (a) scenes with objects similar

to the object being tracked; (b) severe camera motion; (c)

scenes illuminated with a strobe light (i.e., periodically turn

on/off lights); and (d) high dynamic range (HDR) scenes.

As shown in Figure 6, our approach fares best in all four
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Dataset Metrics SiamRPN [28] ATOM [13] DiMP [4] SiamFC++ [47] OCEAN [51] KYS [5] PrDiMP [15] STRAK-S [48] TransT [10] EFE [50] STNet

FE240hz

RSR ↑ 41.6 52.8 53.4 54.5 50.2 55.3 55.2 55.4 56.7 55.0 58.5
OP0.50 ↑ 37.5 67.7 66.6 68.6 63.9 69.9 68.9 69.2 70.7 68.8 74.6
OP0.75 ↑ 5.1 25.0 15.0 20.6 22.9 22.1 22.9 26.2 25.3 25.5 28.1
RPR ↑ 75.5 80.0 88.2 85.3 76.4 87.8 86.8 83.7 89.0 83.5 89.6

EED

RSR ↑ 27.5 31.4 31.2 30.9 29.9 30.1 33.9 34.3 36.1 34.9 40.1
OP0.50 ↑ 35.6 20.9 31.4 27.3 29.8 30.8 35.0 35.2 32.7 28.7 48.5
OP0.75 ↑ 10.9 7.6 7.6 7.6 9.9 10.9 11.2 8.9 9.9 7.6 11.7
RPR ↑ 43.1 65.2 57.2 62.7 54.0 55.5 62.0 61.2 72.8 69.3 70.3

VisEvent

RSR ↑ 25.2 29.1 32.2 30.9 27.9 31.1 32.7 32.7 32.9 30.0 35.5
OP0.50 ↑ 28.5 30.0 37.4 34.8 31.5 35.5 36.3 34.8 39.5 33.9 39.7
OP0.75 ↑ 15.4 7.1 23.7 11.2 18.7 22.9 17.5 21.4 18.0 21.1 20.4

RPR ↑ 37.2 46.2 43.4 45.6 40.4 42.4 45.7 41.8 47.1 42.3 49.2

Table 1. State-of-the-art comparison on the FE240hz [50], EED [36], and VisEvent [16] datasets in representative success rate (RSR),

representative precision rate (RPR), and overlap precision (OP).
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Figure 6. The top five methods tracking performance under four

different adverse conditions provided by the FE240hz dataset [50].

(x, y) denotes a minimum value x and a maximum value y.

degraded conditions. The two most challenging conditions

are (b) and (c), and all competing methods struggle here.

Under constant illumination, a static event-based camera is

only sensitive to moving objects, making it an ideal sen-

sor for tracking. However, when an event camera moves

drastically (i.e., condition (b)), almost all edges in a scene

trigger events and make tracking challenging. In contrast,

condition (c) offers no informative events when the light is

off, which is challenging for all competing trackers. Fig-

ure 8 further qualitatively demonstrates the benefits of our

method in these degraded conditions.

Tracking Speed We report the RPRs and RSRs with respect

to the tracking speed of the top five methods on FE240hz

in Figure 7 (larger area means better). The circle center’s x
and y coordinates indicate tracking speed and RPR/RSR, re-

spectively. The results validate that our approach offers the

best performance in both accuracy and speed. We note that

the time for preprocessing event time is not included when

estimating the tracking speeds of all trackers. We report the

raw tracking speed evaluations in the Supplementary Mate-

rial.

4.3. Ablation Study

To analyze our STNet, we investigate (a) the impact of

spatial and temporal cues on single object tracking in the

event domain; (b) the benefits of using SNN as a temporal

feature extractor; and (c) the influence of each component

in STNet. For each experiment, we re-train and test the
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Figure 7. The RPR (left) and RSR (right) with respect to tracking

speed of the top five methods on the FE240hz dataset [50].

modified models on the FE240hz [50] dataset. A complete

list of ablation study experiments is reported in Table 2.

Impact of Spatial and Temporal Cues. We conduct the

following experiments to demonstrate the effects of spatial

and temporal cues on single object tracking with events:

(A) Removing the transformer branch (TB) but keeping the

SNN branch (SB) with a fixed spiking threshold; (B) The

same settings as (A), except with dynamic spiking thresh-

old; (C) Removing SB, but keeping TB. Comparing the

original STNet (N ) to (A), (B), or (C), we witness a signif-

icant performance degradation, validating that temporal and

spatial cues are essential for tracking accuracy. The differ-

ence between (A) and (B) proves that the dynamic thresh-

old is essential in extracting effective temporal cues.

Networks RSR ↑ OP0.50 ↑ OP0.75 ↑ RPR ↑
A SFE w/ SB only w/o DT 55.2 69.5 20.9 86.2

B SFE w/ SB only w/ DT 55.8 70.7 21.7 87.5

C SFE w/ TB only 55.9 70.4 25.7 86.7

D SFE SB −→ CNN-3 56.2 70.3 24.4 87.5

E SFE SB → AlexNet 56.7 72.1 24.2 88.1

F SFE SB → LSTM 57.1 71.8 23.7 89.2

G w/o DTB 57.3 72.3 26.1 86.6

H DTB w/o K 57.9 73.2 27.8 89.0

I DTB w/o E 57.6 73.0 26.4 88.9

J w/o TSFF 57.2 72.0 27.3 86.5

K TSFF w/o TA 57.8 72.8 28.0 87.3

L TSFF w/o CI 57.5 72.3 27.6 86.8

M TSFF w/o SA 58.0 72.8 27.5 88.2

N STNet 58.5 74.6 28.1 89.6

Table 2. Quantitative ablation comparisons: (a) leveraging SNN as

temporal feature extractor improves single object tracking perfor-

mance; (b) all components of STNet contribute to the overall per-

formance. We denote SNN branch as ‘SB’; Transformer branch as

‘TB’. ‘DTB’ denotes dynamic threshold block;
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(a) Similar Object (b) Severe Camera Motion (c) Strobe Light (d) HDR

KYS PrDiMP STARK-S TransT GTSTNet
Figure 8. Qualitative comparison of STNet against SOTA trackers on the FE240hz [50] dataset. To better visualize the scene, we manually

apply a gamma correction on the conventional frames (left). Note that only event frames (right) are used as input for all competing methods.

Benefits of SNNs. To provide further insights into the ben-

efits of using SNN as a temporal feature extractor, we con-

duct three experiments by replacing the SNN branch of the

SFE with (D) a 3-layer CNN, (E) an AlexNet [3], and (F )

an LSTM [46] with one convolutional layer in each cell. We

select these networks for fair comparisons as the SNN in the

SB has three layers. Compared to the original STNet, we

observe the accuracy degradation in all three experiments.

As CNN and AlexNet [3] cannot grasp temporal cues, the

performance degradation verifies the importance of tempo-

ral cues. In contrast, the LSTM [46] can extract temporal

cues, resulting in better tracking performance but not as ef-

fective as the SNN. Notably, the spiking mechanism of an

SNN neuron acts not only as temporal memory but also as

a natural noise filter, which is beneficial to robust tracking.

Influence of STNet Components. We evaluate the influ-

ence of the SNN branch (SB) and transformer branch (TB)

next. Here, we get insights into the dynamic threshold block

(DTB), designed for dynamically assigning spiking thresh-

olds. The effectiveness of the DTB is validated by the fol-

lowing experiments: (G) removing the entire DTB; (H) re-

moving the representative value K; and (I) removing the

spatial entropy E . Of the three experiments, (G) decreases

the tracking performance the most. We also notice the per-

formance degradation from (H) and (I) settings. These re-

sults reflect the effectiveness of the proposed DTB. More

importantly, we show that leveraging spatial statistical cues

for adjusting the threshold is an effective way to enforce

spatial contextual information in an SNN.

Next, we investigate the impact of our TSFF module by

removing it from the STNet. The corresponding experimen-

tal results are shown in the rows from J to M of Table 2.

We see that the proposed TSFF module and its components

contribute to STNet’s tracking performance. We notice L
as the worst performer in the last three settings, highlight-

ing that the CI enhances the extracted features by bridging

the temporal and spatial domains.

4.4. Limitations

Our method is not without limitations. When events are

not available or too sparse, the effectiveness of our approach

decreases, and Figure 9 shows such a case. However, other

SOTA methods also suffer in these conditions. Design-

ing methods that further leverage the SNN temporal mem-

ory may be a promising approach to tackling these failure

modes.

KYS PrDiMP STARK-S TransT GTSTNet

Figure 9. The performance of STNet falls off in scenes with sparse

events, especially in the area of the object being tracked.

5. Conclusion
We present a spiking transformer network for single ob-

ject tracking from event frames, STNet, that is capable of

dynamically fusing temporal and spatial cues encoded in the

events. The proposed network relies on several novel mod-

ules. We devise an SNN-based temporal feature extractor,

which exploits statistical cues of spatial information to ad-

just the spiking threshold dynamically. We also introduce

a novel temporal-spatial feature fusion module for dynami-

cally fusing the features from the two domains, which relies

on a novel cross-domain attention scheme. Extensive vali-

dation and ablation experiments verify the effectiveness and

robustness of STNet in real-world scenarios. In addition,

we experimentally confirm the effectiveness of SNNs as a

temporal feature extractor and validate the benefit of adjust-

ing spiking thresholds dynamically. The proposed STNet

is the first in a line of work that explores learning dynamic

spatio-temporal SNNs for event-based vision.
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