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Abstract

Consistency-based Semi-supervised learning (SSL) has
achieved promising performance recently. However, the
success largely depends on the assumption that the labeled
and unlabeled data share an identical class distribution,
which is hard to meet in real practice. The distribution mis-
match between the labeled and unlabeled sets can cause
severe bias in the pseudo-labels of SSL, resulting in signif-
icant performance degradation. To bridge this gap, we put
forward a new SSL learning framework, named Distribu-
tion Consistency SSL (DC-SSL), which rectifies the pseudo-
labels from a distribution perspective. The basic idea is
to directly estimate a reference class distribution (RCD),
which is regarded as a surrogate of the ground truth class
distribution about the unlabeled data, and then improve the
pseudo-labels by encouraging the predicted class distribu-
tion (PCD) of the unlabeled data to approach RCD gradu-
ally. To this end, this paper revisits the Exponentially Mov-
ing Average (EMA) model and utilizes it to estimate RCD
in an iteratively improved manner, which is achieved with
a momentum-update scheme throughout the training proce-
dure. On top of this, two strategies are proposed for RCD to
rectify the pseudo-label prediction, respectively. They cor-
respond to an efficient training-free scheme and a training-
based alternative that generates more accurate and reli-
able predictions. DC-SSL is evaluated on multiple SSL
benchmarks and demonstrates remarkable performance im-
provement over competitive methods under matched- and
mismatched-distribution scenarios.

1. Introduction

Recent consistency-based semi-supervised learning
(SSL) methods have seen fast progress and shown compet-
itive performance to supervised learning [21, 22]. These
methods commonly utilize the model trained on labeled
samples to generate pseudo-labels on unlabeled samples,
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Figure 1. (a) and (b) show the class distributions on CIFAR10 in
the matched and mismatched distributions settings, respectively.
(c) and (d) show the corresponding test performance on the recent
SOTA SSL methods and our proposed DC-SSL with training-free
(TF) and training-based (TB) strategies.

and then enforce prediction consistency against their cor-
responding perturbed variants. An implicit assumption in
such methods is that the labeled and unlabeled data share
the same class distribution. However, such a strong assump-
tion cannot hold in real practice. The scarcity of labeled
samples or the sampling errors can inevitably lead to a dis-
tribution mismatch between the labeled and unlabeled data.
This could, unfortunately, invalidate most of the advanced
SSL methods.

To illustrate this problem, this paper conducted a per-
formance comparison under matched and mismatched dis-
tribution scenarios. As shown in Figure 1c, two state-
of-the-art (SOTA) SSL methods, FixMatch [26] and Co-
Match [18], can achieve promising results on CIFAR-10
with only 40 labeled samples when the labeled and unla-
beled class distributions are matched, e.g., a high test accu-
racy of 93.21% of CoMatch. However, when there exists
a distribution mismatch as shown in Figure 1b, the test ac-
curacy can drop sharply by around 30% on FixMatch and
severely more than 40% on CoMatch. It is because the
pseudo-labels on the unlabeled set are severely biased and
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unreliable in a mismatched distribution setting, resulting in
a significant performance degradation.

Inspired by distribution alignment (DA) [4], we aim to
improve the biased pseudo-labels from a distribution per-
spective. The basic logic is to modify the pseudo-labels
by encouraging the predicted class distribution (PCD) of
the unlabeled data to be close to the underlying ground-
truth class distribution (GCD) across the training. How-
ever, the existing works using DA [4, 11, 18, 28] widely as-
sumed that the labeled and unlabeled data fall in the same
class distribution, and therefore took the provided labeled
class distribution (LCD) as the GCD on the unlabeled set
to rectify pseudo-labels. As shown in Figure 1c, built into
FixMatch, although DA significantly improves the perfor-
mance in the matched distribution setting (i.e. LCD=GCD),
it causes severe negative impact under the mismatched dis-
tribution scenario (i.e. LCD̸=GCD) with a sharp accuracy
drop as shown in Figure 1d. A key rescue and challenge
is to employ an accurate distribution to guide PCD on the
unlabeled data, whereas the unlabeled GCD is commonly
unknown and the known LCD is biased and unreliable.

To address the above limitations, we propose a simple
but effective method, named Distribution Consistency SSL
(DC-SSL), which can effectively rectify the pseudo-labels
from a distribution perspective. The design of DC-SSL is
based on two main components. First, instead of using
LCD, DC-SSL directly estimates a reference class distri-
bution (RCD) from the unlabeled data, which is regarded
as a surrogate of the unknown GCD. To this end, we re-
visit the exponentially moving averaged (EMA) model in
SSL and carefully study i) why the EMA model is employed
merely for the testing instead of the training process in re-
cent SOTA SSL methods [1, 13, 14, 18, 26], and ii) how the
EMA model can benefit the distribution estimation on unla-
beled samples. Based on this investigation, we design our
framework to involve EMA to estimate a robust RCD by
a momentum-updated scheme over historical label predic-
tions. As shown in Figure 2, the estimated RCD gradually
approaches GCD with the progression of the training pro-
cedure. Second, on top of the estimated distributions, two
direct and indirect updating strategies are proposed, respec-
tively, to modify the pseudo-labels, corresponding to the
training-free and the training-based strategies shown in Fig-
ure 3. The training-free (TF) strategy directly modifies the
pseudo-labels by scaling them with a ratio of RCD to PCD,
while the training-based (TB) strategy minimizes a distribu-
tion consistency loss between PCD and RCD to indirectly
enhance the SSL performance. Both strategies are orthogo-
nal to existing consistency-based SSL methods and can be
easily applied with minimal change of implementation.

Despite of it simplicity, our method can consistently im-
prove the SOTA SSL methods, especially when the labeled
and unlabeled data follow different distributions. For ex-
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Figure 2. (a)-(d) compares the RCD in DC-SSL (TB) and GCD at
different training stages with the mismatched setting in Fig. 1b.

ample, in conventional matched distribution settings, DC-
SSL (TF) can achieve a higher average accuracy of 95.31%
on CIFAR10 (40 labels) compared to the previous SOTA
of 93.21% and the baseline FixMatch of 86.19%. In the
mismatched settings, our methods consistently outperform
other SSL methods, e.g., DC-SSL (TB) can obtain an av-
erage accuracy of 63.95% on CIFAR10 in a mismatched
setting as in Figure 1b, compared to Fixmatch of 57.54%
and CoMatch of 52.73%. Our main contributions are sum-
marized as follows:

• We revisit the EMA model in SSL and observe that
it can be helpful in estimating unlabeled class distribu-
tions, although it may not produce more accurate high-
confidence pseudo-labels directly.

• We propose a new method, DC-SSL, to enhance SSL
performance from a distribution perspective. Two ef-
fective strategies are designed to improve the pseudo-
labels by encouraging PCD of unlabeled data to ap-
proach an iteratively-improved RCD gradually.

• Our method can obtain new SOTA performance across
different amounts of labeled data on standard SSL im-
age classification benchmarks under both matched and
mismatched distribution scenarios.

2. Related work
Semi-supervised Learning. The key of SSL is to lever-

age unlabeled data and cooperate with few labeled data
to train models. Recent studies have mainly focused on
using pseudo-labels for unlabeled data and achieved great
success. In specific, self-training-based approaches [6, 17,
19, 23, 30] use the model’s predictions on unlabeled data
and add high-confidence ones to the labeled data to re-
train the model in a two-stage manner. Differently, recent
consistency-based approaches [16, 18, 20, 26, 27, 29] can si-
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Figure 3. (a) shows the diagram of FixMatch, a widely adopted consistency-based SSL method. (b) and (c) are our proposed two strategies
to enforce distribution consistency on top of FixMatch. Sepcifically, uw

b and us
b are the weakly and strongly augmented variants of an

unlabeled image ub, respectively. f denotes the network model and g is the EMA of f . p is the network’s probability prediction and τ is
a high-confidence threshold. q represents the class distribution derived from historical predictions by the scheme ϕ. Without introducing
new network components, our models estimate class distributions on unlabeled data, and enforce distribution consistency by either the
training-free update denoted as ψ in (b) or the training-based consistency loss denoted by Ld in (c). Dash lines indicate “stop gradient”.

multaneously train models on labeled and unlabeled data
and achieve competitive performance to supervised learn-
ing. The work in [3] initially proposed the idea of con-
sistency regularization, which enforces the prediction con-
sistency on two augmented views derived from the same
instance. Early extensions like PI-Model [16] and Mean-
Teacher [27] intended to improve the quality of pseudo-
labels by saving several checkpoints or maintaining an
EMA teacher model. The work in [5] proposed a hybrid
framework MixMatch and involved generic regularization
techniques like mixup [31]. After that, [29] proved a crit-
ical conclusion that using strong data augmentations can
significantly promote SSL performance. Later SSL stud-
ies like ReMixMatch [4] and noisy-student [30] exploited
this finding and integrated techniques like sharpening, and
entropy minimization [12] into an unified framework, re-
sulting in better performance. Furthermore, FixMatch [26]
inherited previous findings and significantly simplified the
hybrid framework, but achieved the state-of-the-art perfor-
mance. Most recent studies tend to integrate other ad-
vanced deep learning techniques into SSL. The work [25]
adopted the uncertainty evaluation to further select more
accurate pseudo-labels. The work [1] used transfer learn-
ing to enhance the SSL performance. Most complicated,
the work [18] unified the ideas of consistency regulariza-
tion, entropy minimization, contrastive learning, distribu-
tion alignment, and graph-based SSL, and proposed Co-
Match to jointly train two contrastive representations on un-
labeled data and smooth the pseudo-labels under the help of
a large memory bank. Differently, our methods only require
minimal changes to the fundamental consistency-based SSL
methods but achieve the new SOTA performance under the

same setting (i.e., with matched distribution). The very re-
cent work [28] investigated the imbalanced SSL where both
labeled and unlabeled data are long-tailed distributed in a
same manner. However, none of these works have studied
the situation that the labeled and unlabeled data follow two
different class distribution, where such mismatched setting
will significantly degrade the SSL performance.

Distribution alignment. Distribution alignment [7]
(DA) and has become an important component in the re-
cent state-of-the-art semi-supervised learning (SSL) meth-
ods. ReMixMatch [4] was the first one that introduced the
idea of distribution alignment in SSL by encouraging the
distribution of predictions on unlabeled data to be close to
the distribution of provided labeled data or some pre-known
distribution. This technique has then been widely utilized
in the latest studies for either balanced SSL [11, 18, 26]
or imbalanced SSL settings [28]. However, the success
of DA relies heavily on a strong assumption that the po-
tential class distribution of the unlabeled data is identical
to the marginal class distribution of the provided labeled
data. Unfortunately, such an assumption cannot always hold
in practice, especially when the amount of labeled data is
severely scarce. Therefore, we get rid of this assumption in
our methods and propose the distribution estimation directly
from the unlabeled data.

3. Method
In anN -class classification task, the labeled dataDx and

unlabeled data Du are given to train a model with the em-
bedding function f(·). In a mini-batch, suppose we have
B labeled samples, X = {(xb, yb)|(xb, yb) ∈ Dx}Bb=1, and
µB unlabeled samples, U = {ub|ub ∈ Du}µBb=1, where µ
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represents the size ratio of U to X . In most SSL studies, the
total loss can be formulated as:

L = Lx(X ) + λuLu(U), (1)

where Lx is a supervised loss and Lu is an unsupervised
loss within a mini-batch, measured on X and U respectively.
λu is a weighting parameter to balance the relative impor-
tance between the labeled and the unlabeled data. Com-
monly, Lx can be obtained by

Lx =
1

B

B∑
b=1

H(yb, f(xb)), (2)

where H denotes the cross entropy loss. Whereas, the
form of Lu depends on specific SSL methods. In this sec-
tion, we first review how Lu is formulated in the backbone
consistency-based SSL learner, FixMatch. After that, we
introduce the crucial components in our method on top of
the backbone: RCD estimation and two updating strategies.

3.1. Backbone SSL learner

Recent consistency-based SSL methods typically use
weakly-augmented unlabeled images to generate pseudo-
labels and enforce consistency against their correspond-
ing strongly-augmented variants. As shown in Figure 3a,
uwb and usb are obtained through weakly and strongly aug-
mented operations on an unlabeled instance ub. The weakly
augmented operations consists of standard flip-and-shift
augmentation strategies, while the strongly augmented op-
erations usually refer to RandAugment [10] or CTAug-
ment [4]. Subsequently, the model f outputs probabil-
ity predictions pw,f

b and ps,fb for uwb and usb , respectively.
As the most simplified but effective consistency-based SSL
method, FixMatch [26] adopted a fixed high-confidence
threshold to alleviate the confirmation bias [2] of pseudo-
labels. Given a predefined high-confidence threshold τ , the
unsupervised loss in FixMatch can be calculated as,

Lu =
1

µB

µB∑
b=1

1(max(pw,f
b ) ≥ τ)H(p̂w,f

b , ps,fb ), (3)

where p̂w,f
b = argmax(pw,f

b ) denotes the hard pseudo-
labels (i.e., in a one-hot form) for unlabeled samples, and
the operation 1(·) retains the pseudo-labels whose maxi-
mum probability is higher than the threshold τ . Besides, an
exponential-moving-averaging model g is maintained along
with the model f . However, in FixMatch, g is only used
for the testing process and independent from the training
process, as in many recent SSL methods.

3.2. Distribution Estimations

Properly estimating the class distribution (i.e., frequency
of each class on unlabeled data) is the most important prob-
lem in our design. Inspired by distribution alignment [4],

our primary idea is to encourage the predicted class distri-
bution (PCD) on unlabeled data to be close to the ground-
truth class distribution (GCD). However, the lack of la-
bel information makes this GCD unknown and challeng-
ing to obtain. Almost all existing works, either in balanced
SSL [18] or imbalanced SSL tasks [25], adopt the marginal
distribution of the provided labeled data as the GCD of the
unlabeled data, which will inevitably produce severely bi-
ased pseudo-labels, and largely degrade the SSL perfor-
mance in mismatched distribution settings. Differently, in
our work, instead of relying on labeled data, we purely work
on unlabeled data to propose a referenced class distribution
(RCD) as a surrogate of GCD. Specifically, we carefully
involve the EMA model during the training period to esti-
mate the RCD on unlabeled data. As shown in Figure 2,
the iteratively-improved RCD can be gradually approach-
ing the GCD across the training process. In this section,
we first revisit the EMA model in SSL and then describe
the momentum-updated scheme to estimate the distribution
from the model’s predictions.

3.2.1 Revisiting the EMA model

In the literature, an EMA model with a typical decay of
0.999 is widely adopted in SSL methods for performance
enhancement. To investigate its effectiveness, based on Fix-
Match and using CIFAR-10 with 40 labeled samples, we
compare the test accuracies of the trained model f and the
EMA model g across different training epochs. As shown
in Figure 4a, unsurprisingly, the EMA model g can consis-
tently outperform the trained model f . Based on this, we
revisit the EMA model in details by answering two ques-
tions the the following.

Question 1: Since the EMA model can achieve a higher
test accuracy, will it be beneficial to directly exploit the
predictions of the EMA model as pseudo-labels for train-
ing? Surprisingly, the answer is NO. In recent SSL stud-
ies [4, 13, 18, 26], the EMA model is only used for testing
rather than proposing pseudo-labels. However, the poten-
tial reasons are not clearly explained in the literature. Thus
we perform another experiment to directly use the EMA
model’s predictions as pseudo-labels. However, this method
significantly degrades the SSL performance, achieving a
testing accuracy of 45.31% compared to 82.50% of the orig-
inal FixMatch. We then explore the reasons in term of the
accuracy of high-confidence pseudo-labels throughout the
training, denoted by Q. As shown in Figure 4b, we mea-
sure the accuracy difference of the high-confidence pseudo-
labels from f and g throughout a same training process,
i.e. Qf − Qg . As seen, Qf is higher than Qg for above
70% of the training period. Therefore, directly using the
EMA model’s predictions leads to poor quality of the high-
confidence pseudo-labels, which explains why recent SSL
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Figure 4. (a) Comparison of testing accuracy between the trained model f and its corresponding EMA model g. (b) Accuracy difference
(Qf −Qg) of the high-confidence pseudo-labels in a mini-batch between f and g at each iteration. Statistically, g obtains a lower accuracy
than f at about 70% iterations. (c) Accurate difference (Af −Ag) of all pseudo-labels between f and g at each iteration. The model g can
generate more accurate pseudo-labels in 96% iterations.

methods exclude the EMA model in the training process.
Question 2: How can our method use the EMA model

to estimate a better class distribution on unlabeled data? By
further analyzing the above experimental results, we find
that, compared with f , although EMA model g obtains a
lower accuracy on high-confidence predictions, it can pro-
duce a higher accuracy on all unlabeled data (with both
high-confidence and low-confidence predictions), i.e., ob-
taining larger amounts of accurate predictions. Let A be
the pseudo-label accuracy on all unlabeled data in a mini-
batch instead of just high-confidence ones. We investigate
Af − Ag across the training process in Figure 4c. It is ob-
served that in most iterations, g can achieve a higher value
of A (see the negative values of Af − Ag), i.e. more ac-
curate predictions. That is indeed what we need for better
distribution estimation, since the class distribution ought to
be estimated on the whole unlabeled data rather than just the
high-confidence ones. Therefore, we can rely on the EMA
model’s predictions to make a better class distribution esti-
mation on unlabeled data. In the supplement, we also show
the same observations with different settings and datasets.

Then can we directly use all predictions from the EMA
model as pseudo-labels of the unlabeled data to train mod-
els? No, it will also largely decrease the test accuracy due to
the well-known issue in SSL, i.e., the confirmation bias [2].
Combining the entropy minimization [12], it is claimed in
[26] and [2] that retaining only the pseudo-labels with high-
confidence predictions can effectively alleviate the bias. In
the following section, we provide our solution to estimate
the class distribution by the predictions of EMA model.

In summary, we observe that the EMA model can
achieve a higher accuracy of pseudo-labels on all unlabeled
data but a lower accuracy on high-confidence ones.

3.2.2 Estimating distribution from predictions

The next problem is how we derive the class distribution
from EMA’s predictions on unlabeled data. Since the class

distribution between different mini-batches can vary con-
siderably, a natural way to improve the estimation is to
involve multiple mini-batches. As proposed in ReMix-
Match [4], a direct way to estimate the class distribution
is to average over historical predictions. However, such a
method requires maintaining a memory bank to store the
model’s predictions from the most recent K mini-batches.
More importantly, it ignores temporal differences among
historical predictions, i.e., the more recent predictions are
more accurate throughout the training. Therefore, we adopt
a momentum-updated strategy, denoted by ϕ in Figure 3b
and Figure 3c, to estimate the class distribution, requiring
calculations only on the current mini-batch. ϕ is essentially
a weighted averaging scheme and will assign higher weights
on more recent predictions. Given the prediction results
{pw,f

b }µBb=1 on the trained model f within a mini-batch, its
corresponding class distribution qf can be estimated as

qf := α qf +
(1− α)

µB

µB∑
b=1

pw,f
b , (4)

where α is a momentum coefficient. In such ways, we can-
not only decrease the memory cost but also prioritize the
most recent predictions. Likewise, given the EMA model’s
prediction {pw,f

b }µBb=1, we can obtain another distribution
estimation, qg ,

qg := α qg +
(1− α)

µB

µB∑
b=1

pw,g
b . (5)

3.3. Updating strategies

At each mini-batch, we produce two distribution estima-
tions from the unlabeled samples: 1) the predicted class
distribution (PCD), qf , estimated by the trained model via
Eq. (4), and 2) the reference class distribution (RCD), qg ,
derived by the EMA model via Eq. (5). Based on qf and
qg , we design two alternative training strategies to improve
pseudo-labels either directly or indirectly.
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3.3.1 Training-free Strategy

Inspired by ReMixMatch [4], we design a training-free
strategy to enhance the quality of pseudo-labels from a dis-
tribution perspective. We measure the distribution dissimi-
larity between RCD and PCD by a ratio qg/qf . Then, the
training-free strategy, denoted by ψ in Figure 3b, can be
performed via two steps: 1) revise the pseudo-label by the
distribution dissimilarity ratio, and 2) normalize the revised
pseudo-label in a valid probability form. Consequently, the
ultimate pseudo-label p̄w,f

b can be calculated as

p̄w,f
b = Normalize(

qg

qf
pw,f
b ), (6)

where Normalize(xi) = xi/
∑
xi. Then the unsupervised

loss Ltf
u in this strategy is,

Ltf
u =

1

µB

µB∑
b=1

1(max(pw,f
b ) ≥ τ)H(p̄w,f

b , ps,fb ). (7)

To the end, the total loss for this strategy is Lx+λuLtf
u . No

additional training efforts are introduced by this strategy.

3.3.2 Training-based Strategy

As shown in Figure 3c, we also propose a training-based
strategy to encourage PCD to gradually approach RCD.
Specifically, given RCD and PCD, we can minimize a dis-
tribution consistency loss Ld:

Ld = H(pg, pf ), (8)

where we use the cross entropy loss H(·, ·) to measure the
discrepancy between the two distributions. Besides, we also
reserve the consistency loss at the instance level,

Ltb
u =

1

µB

µB∑
b=1

1(max(pw,f
b ) ≥ τ)H(pw,f

b , ps,fb ), (9)

where we use the soft pseudo-labels pw,f
b for calculations

compared to the hard labels p̂w,f
b used in Eq. (3). In sum-

mary, the total loss is,

L = Lx + λuLtb
u + λdLd, (10)

where λu and λd are two weights of the consistency loss at
the instance level and at the distribution level, respectively.

Remarks: Our proposed DC-SSL is conceptually anal-
ogous to an Expectation-Maximization (EM) procedure. In
the E-step, DC-SSL produces distribution estimations pg

and pf by taking f and g as available models with fixed
parameters. In the M-step, DC-SSL updates the models f
and g by minimizing the total loss in Eq. (1) or Eq. (10) on
top of the two distributions estimated in the E-step. The al-
gorithm can alternately improve the distribution estimations
and the trained models.

4. Experiments

This section presents our experimental setup and imple-
mentation details, followed by extensive evaluations of our
methods with mismatched and matched class distributions.

4.1. Experimental setup

Dataset and Backbone. We evaluate our methods on
four SSL image classification benchmarks, CIFAR-10 [15],
CIFAR-100 [15], Mini-Imagenet [24], and STL-10 [9]. Of
these, CIFAR-10 and CIFAR-100 contain 50,000 32x32
training images and 10000 32x32 testing images, with 10
and 100 classes, respectively. STL-10 is composed of
5,000 labeled images of size 96x96 from 10 classes, along
with 10,000 unlabeled images. Mini-Imagenet consists of
50000 training images and 10000 testing images, evenly
distributed across 100 classes. For fair comparison [18,26],
we use Wide ResNet-28-2 for CIFAR-10, Wide ResNet-28-
8 for CIFAR-100, ResNet-18 for Mini-Imagenet and STL-
10, respectively. We use Fixmatch as our backbone (the
fundamental consistency-based SSL method) and compare
our methods with multiple SSL baselines.

Mismatched Settings. Since the original datasets are
all class-balanced, we sample the training images to inves-
tigate two mismatched cases: 1) balanced labeled samples
with imbalanced unlabeled samples, and 2) balanced unla-
beled samples with imbalanced labeled samples. Inspired
by CIFAR-LT [8], we utilize an exponential function to
mimic the imbalanced distribution. For imbalanced labeled
samples, we use Γi = Γ0γ

− i
N−1

x , i ∈ [0, N − 1] to generate
the labeled number for the ith class. We use different Γ0 to
investigate different scale of imbalance, while the γx is cal-
culated by the constraint

∑
i Γi = |Dx|. On the other hand,

we refer to CIFAR-LT [8] to generate imbalanced unlabeled

samples, with Mi = Mmaxγ
− i

N−1
u , where Mmax is set as

the image number of the ith class in the original datasets.
By adjusting the value of γu for difference scales of im-
balance, we control the degree of distribution mismatch be-
tween the labeled and unlabeled samples, i.e., the larger the
γu , the higher the severity of distribution mismatch.

Parameters. Our proposed methods introduce two new
hyper-parameters: the momentum coefficient α for both
strategies and the loss weight λd for the training-based
(TS) strategy. By default, we simply set α = 0.999, and
λd = 1.0. Ablation studies on these parameters are pro-
vided in the next section. The default values of other train-
ing hyper-parameters are B = 64, µ = 7, λu = 1, τ = 0.9.
We train our methods for 512 epochs and utilize a SGD op-
timizer with a momentum of 0.9 and a weight decay of 5e-4
to train the model. A learning rate scheduler with a cosine
decay is used to decrease the learning rate from an initial
value of 0.03. In addition, we train the model for 30 epochs
to warm up before applying our proposed distribution con-
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Method CIFAR10,|Dx|=40 CIFAR10,|Dx|=250 CIFAR100, |Dx|=2500 MiniImageNet, |Dx|=1000
γu = 50 100 200 γu = 50 100 200 γu = 100 200 γu = 100 200

FixMatch 57.54 54.82 50.67 76.54 73.51 70.89 52.46 50.24 25.52 21.65
FixMatch+DA 54.08 46.71 41.37 70.78 66.25 61.69 48.96 46.59 22.92 19.82
CoMatch 52.73 46.20 38.85 69.36 64.47 60.05 47.03 43.89 20.37 19.03

Ours (TF) 62.44 56.47 52.32 79.25 76.10 72.01 56.43 52.01 27.44 23.53
Ours (TB) 63.95 57.16 53.27 81.82 77.26 73.34 59.02 52.70 29.12 24.41

Table 1. Mean test accuracy (%) with mismatched class distribution: balanced labeled data and imbalanced unlabeled data. |Dx| is the
number of labeled samples. The higher the γu, the more the imbalance, and the more severe the distribution mismatch.

sistency.

4.2. Results for mismatched distribution

Imbalanced unlabeled samples. In Tab. 1, we test the
performance in a mismatched distribution setting where we
have balanced labeled data but imbalanced unlabeled data.
It can be clearly seen that, as the γu gets larger , i.e., the mis-
match issue is more severe, the test accuracy decreases con-
siderably on all SSL benchmarks across different amounts
of labeled samples. The mismatched distribution in SSL is a
very challenging problem indeed. Compared to other SOTA
SSL methods, our methods with either TF or TB strategies
can achieve a remarkable performance improvement. In all
our tested cases, our TB strategy can boost the mean accu-
racy of FixMatch by around 3%, and the accuracy of Co-
Match by around 11% on average. Interestingly, we find
that CoMatch obtains the worst results in all the tests among
different baselines. This is because CoMatch extensively
exploits the label information carried on the labeled sam-
ples to modify the pseudo-labels of unlabeled samples. In
addition to the standard DA technique, it maintains a large
memory bank to smooth the pseudo-labels by aggregating
information from nearby labeled samples in the embedding
space. However, relying heavily on labeled samples can
only be helpful when the labeled and unlabeled distribu-
tions are identical. In the mismatched distribution setting,
closely dependending on label information can cause se-
vere negative effects, as can be seen from the test results.
Although our methods share a similar idea of the DA to
improve pseudo-labels from a distribution perspective, our
methods significantly outperform other DA-based baselines
(i.e., Fixmqtch+DA and Comatch) due to our proposed bet-
ter RCD estimated directly on unlabeled samples.

Imbalanced labeled samples. We also investigate an-
other mismatch setting in Tab. 3: imbalanced labeled data
but balanced unlabeled data. It can be seen that our meth-
ods can effectively improve the performance by rectifying
the pseudo-labels from a distribution perspective. The over-
all results further demonstrate the superiority of our meth-
ods, e.g., TB strategy can obtain a mean accuracy of 40.13%
on MiniImageNet with imbalanced 1000 labeled samples,

Method STL-10

|Dx|=1000
FixMatch 65.38
FixMatch+DA 66.53
CoMatch 79.80

Ours (TF) 84.61
Ours (TB) 82.47

Table 2. Mean test accuracy (%) for STL-10 averaged on 5 differ-
ent folds. All the related works are reported in CoMatch [18].

against 36.20% of FixMatch and 30.24% of CoMatch.

Observing the results from Tabs. 1 and 3, we can also
find that, our TB strategy can mostly achieve better per-
formance than our TF strategy at different degrees of dis-
tribution mismatch. This stems from their different lev-
els of influence on the pseudo-labels. The TF strategy can
pose strong effects on the pseudo-labels by directly modi-
fying them with a ratio of RCD to PCD. Differently, the TB
strategy does not directly adjust the pseudo-labels but indi-
rectly improves the pseudo-labels by enforcing their aggre-
gated distribution to gradually approach the RCD. That is,
the TB strategy can take effects in a more moderate man-
ner. In the mismatched case, as shown in Fig. 2, our es-
timated RCD may not be very accurate at the early stages
of the training process, but can be gradually improved to
approach the ground-truth distribution across the training
process. Therefore, our TB strategy is more suitable for the
mismatched cases and can gradually enhance the SSL per-
formance along with the iteratively-improved RCD.

STL10. This dataset contains out-of-distribution images
in the unlabeled set, where the distribution mismatch be-
tween labeled and unlabeled sets inherently exists. Follow-
ing [18], we evaluate on the five pre-defined folds and Tab. 2
shows that DC-SSL with both strategies can consistently
outperform the SOTA methods, with more than 15% av-
erage accuracy improvements against FixMatch and more
than 3% improvements against CoMatch.
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Method CIFAR10, |Dx|=250 CIFAR100, |Dx|=2500 MiniImageNet, |Dx|=1000
Γ0 = 100 200 Γ0 = 100 200 Γ0 = 40 80

FixMatch 69.76 46.53 61.31 41.38 36.20 28.33
FixMatch+DA 61.80 27.61 50.94 31.82 33.87 23.53
CoMatch 57.87 26.77 48.02 30.08 30.24 21.47

Ours (TF) 72.21 52.59 64.63 41.23 39.07 31.75
Ours (TB) 73.04 48.49 65.24 42.09 40.13 32.82

Table 3. Mean test accuracy (%) with mismatched class distribution: imbalanced labeled data and balanced unlabeled data. |Dx| is the
number of labeled samples. The higher the Γ0, the more the imbalance, and thus the more severe the distribution mismatch.

4.3. Results for matched Distribution

Method CIFAR10 CIFAR100 MiniImageNet

|Dx|=40 250 400 2500 1000

MixMatch [5] 52.46 88.95 33.39 60.06 33.74∗

FixMatch [26] 86.19 94.93 51.15 71.71 39.03∗

AlphaMatch [11] 91.35 95.03 61.26 74.98 -
CoMatch [18] 93.21∗ 95.14∗ 60.71∗ 74.36∗ 43.72∗

Ours (TF) 95.31 95.87 62.47 75.10 45.19
Ours (TB) 93.89 95.24 61.33 74.62 44.23

Table 4. Mean test accuracy (%) in conventional SSL settings with
balanced and matched distributions, i.e., Γi =

|Dx|
N

and γu = 1.
Results with ∗ in baselines are provided by our own testings.

α 0.8 0.9 0.99 0.999

Accuracy (%) 93.14 94.82 95.38 95.07

Table 5. Effect of the EMA ratio in our TF strategy

In Tab. 4 we also compare our strategies with recent
SOTA SSL methods on conventional SSL settings. Fol-
lowing AlphaMatch and CoMatch, we also exploit the
pre-known GCD as RCD to test our proposed two strate-
gies. Surprisingly, without introducing more advanced
techniques like alpha-divergence or contrastive learning
techniques, our two strategies can consistently achieve a
higher test accuracy than these SOTA methods, especially
when the labeled data is severely scarce. On CIFAR10
with only 40 labels, our TB strategy can obtain a high aver-
age accuracy of 95.31%, which is significantly better than
86.19% of FixMatch. It can also be seen from the table that
AlphaMatch and CoMatch (both integrating the DA tech-
nique) can also achieve remarkable performance gains over
FixMatch, demonstrating that modifying the pseudo-labels
from a distribution perspective can effectively enhance the
SSL performance. Comparing the results in Tab. 1, we fur-
ther verify our claim that an accurate distribution of unla-
beled samples is the key. Unsurprisingly, since we have the

accurate distribution information in conventional SSL set-
tings, directly modifying the pseudo-labels in our TB strat-
egy can be more effective than our TF strategy that indi-
rectly improves the pseudo-labels in a more moderate way.

4.4. Effects of Hyper-parameters

λd 1.0 3.0 5.0 7.0

TB (matched) 93.92 94.33 94.67 94.81
TB (mismatched) 64.01 62.79 59.03 61.55

Table 6. Effect of the loss weight of Ld in our TB strategy.

We first examine the effects of two hyper-parameters in-
troduced in our proposed strategies using CIFAR10 with 40
labels in the conventional SSL setting. The momentum co-
efficient α affects how the class distribution is estimated
from historical predictions. A larger value of α can involve
more historical predictions and relatively weaken the impor-
tance of the current predictions, therefore leading to more
stable results as shown in Tab. 5. Meanwhile, the effect of
the loss weight λd can be seen from Tab. 6: different values
of λd can slightly affect the accuracy in the matched case
while a smaller λd can better favor the mismatched case
(following the same mismatched distribution setting as in
Figure 1b). It is simply because a lower weight can better
fit the iteratively-improved RCD and improve the pseudo-
labels smoothly. By default, we set λd = 1 in all tests.

5. Conclusion
In this paper, we carefully study how to improve SSL

especially when there is a class distribution mismatch be-
tween the labeled and unlabeled sets. Our proposed DC-
SSL method can improve the pseudo-labels from a dis-
tribution perspective and achieves the state-of-the-art per-
formance across many SSL benchmarks under matched
and mismatched class distribution scenarios. Thanks to its
simplicity, DC-SSL can be easily applied to fundamental
consistency-based methods with minor changes.
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