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Abstract
In this paper, we propose a coarse-to-fine framework

to reconstruct a personalized high-fidelity human avatar
from a monocular video. To deal with the misalignment
problem caused by the changed poses and shapes in dif-
ferent frames, we design a dynamic surface network to re-
cover pose-dependent surface deformations, which help to
decouple the shape and texture of the person. To cope
with the complexity of textures and generate photo-realistic
results, we propose a reference-based neural rendering
network and exploit a bottom-up sharpening-guided fine-
tuning strategy to obtain detailed textures. Our frame-
work also enables photo-realistic novel view/pose syn-
thesis and shape editing applications. Experimental re-
sults on both the public dataset and our collected dataset
demonstrate that our method outperforms the state-of-the-
art methods. The code and dataset will be available at
http://cic.tju.edu.cn/faculty/likun/projects/HF-Avatar.

1. Introduction
Automatic generation of personalized human avatars has

a wide range of applications in virtual/augmented reality,
virtual try-on, entertainment and gaming. Especially tech-
nologies using a single RGB camera will enable To C (cus-
tomer) applications instead of To B (business).

High-quality human models can be reconstructed with
expensive 3D scanners [1], multi-view studios with con-
trolled lighting [10], or depth cameras [6, 8, 53]. These
systems are usually costly or using non-consumer devices,
leading to restricted applications. Therefore, avatar acqui-
sition from a single RGB camera is the most practical but
challenging. Some methods [38, 39, 51] based on implicit
representations reconstruct both geometry and texture from
a single image, which can handle arbitrary topology but
cannot support animation. Moreover, the reconstructed un-
seen regions tend to be smooth due to the limited obser-
vation. Therefore, many work proposed to reconstruct an
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Figure 1. Given a self-captured RGB video, the state-of-the-art
method [2] fails to produce seamless and reasonable texture maps.
To address this, we propose a coarse-to-fine framework with dy-
namic surface deformation and reference-based neural rendering,
which can generate seamless and sharp texture maps.

avatar from an RGB video. Alldieck et al. [2–4] proposed
to generalize visual hull methods to monocular videos of
people in motion, which optimized a fixed displacement for
each vertex across the video. Although this method is com-
putationally cheap and memory-saving, such a single off-
set shared across all the frames is unreasonable, because
the pose and geometry of the person change with the mov-
ing. Besides the reconstructed geometry, a high-quality tex-
ture map is also an essential component for a personalized
avatar. Alldieck et al. [4] proposed to get a full texture
map by calculating the median of unwrapped texture maps,
which leads to a coarse texture map due to direct averag-
ing. To obtain a sharp texture map, they further proposed to
solve the texture stitching based on graph cut [2, 3]. How-
ever, all the above methods suffer from either blurred tex-
tures or texture artifacts/mistakes, due to the intrinsic com-
plexity of textures and unreasonable processing (shown in
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the middle of Fig. 1).
To address the above problems, in this paper, we propose

a coarse-to-fine framework which consists of a dynamic sur-
face network and a reference-based neural rendering net-
work, to generate a fully-textured high-fidelity avatar from
a monocular video where the person is rotating in front of
the camera. The geometry of the person will change con-
tinuously when the person is moving. This leads to the
misalignment among different frames of the video. To deal
with the misalignment problem, we design a dynamic sur-
face network to recover pose-dependent surface deforma-
tions, which help to decouple the shape and texture of the
person. We learn to optimize both geometry and texture by
the photometric constraint, which guides the vertices to be
close to the right positions and relieves the misalignment of
geometry.

Based on the dynamic surface network, we obtain a
coarse texture map. However, texture is extremely complex:
it resides in high dimensional space and is difficult to rep-
resent. Therefore, to cope with the complexity of textures
and generate photo-realistic results, we propose a reference-
based neural rendering network and exploit a bottom-up
sharpening-guided fine-tuning strategy to obtain detailed
textures. The neural rendering network fuses observations
into a joint representation whose results are used as supervi-
sion to optimize the texture map which avoids the direct av-
eraging of textures and adds more texture details. Besides,
we propose to map the supervisions into a new space by
enhancing its high-frequency information, which improves
the clarity and fidelity of texture maps. Our framework can
reconstruct high-fidelity personalized avatars and generate
photo-realistic results of novel view/pose synthesis, which
is compatible with traditional graphics pipeline. Experi-
mental results on both the public dataset and our collected
dataset demonstrate that our method outperforms the state-
of-the-art methods. An example is given in Fig. 1.

The main contributions are summarized as follows:

• We propose a coarse-to-fine framework which com-
bines neural texture with dynamic surface deformation
to generate a fully-textured avatar from a monocular
video captured by the users themselves.

• We propose a dynamic surface network to model the
pose-dependent surface deformations of a moving per-
son, which deals with the misalignment problem and
disentangles the shape and texture of the person.

• We propose a reference-based neural rendering net-
work and exploit a bottom-up sharpening-guided fine-
tuning strategy, which fuses all the observations into
a consistent representation and enables to generate the
detailed texture map.

2. Related Work
2.1. Avatar Acquisition

The automatic acquisition of personalized human avatars
is critical for many applications such as VR/AR, gam-
ing, teleconferencing and virtual try-on. High-quality hu-
man models can be created with a scanner [1] or a multi-
camera system [20, 40–42], but the cost and the size pre-
vent their practical applications. Although some methods
[8, 22, 48, 53] obtain high-quality 3D reconstruction by re-
lying on depth sensors, RGB-D cameras are less ubiquitous
than RGB cameras.

In order to enable the To C (to customer) applications,
human reconstruction from a common RGB camera is very
important. To reduce the ambiguity in monocular cases,
Zheng et al. [52] proposed an image-guided volume-to-
volume translation CNN and a dense semantic represen-
tation for human reconstruction, but they cannot recover
fine-scale details. To generate detailed reconstruction, some
methods [38, 39, 51] proposed to establish a pixel-aligned
implicit function which can infer both geometry and texture
from a single image. They learn human priors from a syn-
thetic human dataset. Although the implicit field represen-
tations used can handle arbitrary topology, they cannot sup-
port animations. Alldieck et al. [5] and Lazova et al. [19]
reconstructed a detailed parametric human model by solv-
ing an image-to-image translation problem to regress offsets
in UV-space from a single RGB image, but they require a
frontal photo as input and the recovered pose is restricted
to A-pose. To obtain topology-consistent reconstruction for
any pose, Li et al. [21] propose a hierarchical graph trans-
formation network. However, the reconstructed geometry
and texture from a single RGB image is still smooth for
unseen parts. Alldieck et al. [3, 4] proposed a video-based
method to transform bodies into a canonical pose and op-
timized the projected silhouettes, which enables efficient
optimization of consistent 3D shapes. To avoid the time-
consuming optimization of [3, 4], Alldieck et al. [2] pre-
sented a hybrid learning and optimization method, which
infers a personalized avatar from a few frames of an RGB
video. These video-based methods generate promising re-
sults using a single RGB camera, but cannot cope with dy-
namic deformation among different frames and suffer from
blurred textures, stitching artifacts, or texture mistakes.

In this paper, we propose a coarse-to-fine framework to
generate a fully-textured avatar from a monocular video.
To deal with the inconsistent poses and shapes in differ-
ent frames, we develop a novel dynamic surface network
to model pose-dependent deformation, which also enables
to disentangle the shape and texture of the person. To avoid
texture artifacts and generate photo-realistic results, we pro-
pose a reference-based neural rendering network and ex-
ploit a bottom-up sharpening-guided fine-tuning strategy.
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Figure 2. To generate a fully-textured avatar, we design a
coarse-to-fine framework with a dynamic surface network and a
reference-based neural rendering network. The dynamic surface
network disentangles the shape and texture of the person and gen-
erates a coarse texture map for the initialization of neural texture.
Then, we fine-tune the reference-based neural rendering network
with pre-trained weights on a new subject with several epochs. Af-
ter fine-tuning, we generate photo-realistic images and take them
as the supervisions to optimize the texture map through back-
propagation.

2.2. Novel View/Pose Synthesis
Neural representations and implicit fields [13, 17, 23,

24, 26, 31, 43–45] have emerged as powerful tools which
can generate photo-realistic results. NeRF [30] proposed
to model a scene as a continuous 5D function that maps
the spatial position and viewing direction to implicit fields,
which achieves high-quality rendering. Many work tried to
apply NeRF on dynamic scenes by adopting a multi-camera
system to get adequate information. Neural Body [33] pro-
posed a representation where the learned latent codes are
anchored to a deformable mesh to provide the network with
geometric guidance. Other methods [31, 32, 34] proposed
a deformation field to build the correspondence between
different frames and achieved amazing results. Recently,
by combing the surface field and the radiance field, Dou-
bleField [42] achieves high-quality human reconstruction
and rendering from sparse views. To better model the mo-
tion hierarchy of generic clothes, a concurrent work [50]
proposed a method using a set of structured local radiance
fields anchored to a human body template. However, the
multi-camera system is expensive and difficult to maintain.

Recently, generative adversarial networks (GANs) [9,
14, 46] have made great progress in yielding high-fidelity
images of humans. Many approaches formulate the mo-
tion transfer problem as an image-to-image translation task.
Kappel et al. [15] divided the image translation task into
four cascaded generative networks and proposed a struc-
ture network to learn wrinkles of garments, which generates
high-quality results. Zhang et al. [49] proposed a decoupled
GAN to disentangle the shape and texture of clothing. Al-
though these methods achieve inspiring results, unnatural
appearance, lost texture details and temporal inconsistency
sometimes occur due to the lack of 3D information.

To reduce the above ambiguities, ANR [35] and
StylePeople [12] proposed to combine a coarse paramet-
ric human model with the neural texture by extending de-

ferred neural rendering (DNR) [45]. Although DNR is the-
oretically powerful, it requires an accurate geometry which
is impractical in real scenes. ANR and StylePeople tried
to address this problem in the neural rendering network to
paint the texture outside the geometry. However, they do
not disentangle the shape and texture of the person com-
pletely because they only use a coarse mesh to track the
pose. Moreover, an explicit texture map is lost due to the
coarse geometry, and it is also inevitable that the coarse ge-
ometry will cause artifacts.

In this paper, we reconstruct explicit high-fidelity texture
maps by neural networks from monocular videos, and also
achieve photo-realistic novel view/motion synthesis results.
Besides, the shape and texture of the person are disentan-
gled benefiting from our dynamic surface network.

3. Method
The goal of our work is to create a fully-textured high-

fidelity avatar from a single RGB camera. Fig. 2 shows the
framework of our method. The input is a monocular video
where a person rotates with A-pose in front of the camera,
and we extract the human foreground by a state-of-the-art
matting method [16]. The most significant differences with
existing work are that we propose a dynamic surface net-
work to decouple the shape and texture of the person, and
a reference-based neural rendering network with a novel
bottom-up sharpening-guided strategy to fuse all the obser-
vations into a consistent representation to generate a seam-
less and sharp texture map. Our method consists of three
steps: 1) dynamic surface reconstruction and coarse texture
map generation (Sec. 3.1); 2) reference-based neural render-
ing (Sec. 3.2.1); 3) texture map refinement (Sec. 3.2.2). In
order to capture the non-rigid pose-dependent deformations
of the person, we design a dynamic surface function, which
not only captures the pose-dependent deformation but also
disentangles the shape and texture of the person. To gener-
ate a seamless and sharp texture map, we design a reference-
based neural rendering network and exploit a sharpening-
guided fine-tuning strategy in a coarse-to-fine manner. The
neural rendering network learns a joint representation be-
tween geometry and input image, which relieves the mis-
alignment of geometry and enables to generate sharp and
seamless texture maps.

3.1. Geometry and Texture Map Reconstruction

Previous work [2–4] tried to reconstruct personalized
geometry by extending visual hull methods to monocular
cases, which cannot recover dynamic deformations. There-
fore, to model the geometric deformation of the moving
person and handle non-rigid deformations, we propose a
dynamic surface network to predict dynamic offsets on the
template of SMPL [27] to expand the representation capac-
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Figure 3. Left: We design a dynamic surface network which can capture pose-dependent geometric deformations. Right: We design a
reference-based neural rendering network and exploit a sharpening-guided texture map generation strategy to generate seamless and sharp
texture maps.

ity of SMPL:

M(β, θi,Di) = W (T (β, θi,Di), J(β), θi,W),

T (β, θi,Di) = T+Bs(β) +Bp(θi) +Di,

Di = fw(θi),

(1)

where β is the shape parameter, and θi, Di are the pose pa-
rameter and the offset vector of the i-th frame, respectively.
W is a linear blend skinning function with blend weights W
which is applied to the morphed shape T (β, θi,Di) based
on the skeleton joints J(β). The morphed shape is obtained
by applying pose-dependent deformations Bs(β), shape-
dependent deformations Bp(θi) and dynamic offsets Di to
the template T. fw(·) is our dynamic surface network with
weights w.

The details of dynamic surface network are illustrated
in Fig. 3 (left). The geometric feature zi is conditioned on
the pose feature ui before being the input of the shape de-
coder, similar to [29]. The shape decoder is represented by
8-layer multilayer perception (MLP) with 256 feature chan-
nels. The pose feature is encoded by a U-net [37] whose
input is the UV positional map of the posed body. To make
full use of the only video input, we propose to optimize
both the geometry and the texture by a silhouette matching
term and a photometric tracking term. Based on a differ-
ential renderer [36], the silhouette matching term penalizes
the difference between the rendered silhouette using the pre-
dicted geometry and the silhouette extracted from the orig-
inal image. The photometric tracking term encourages the
rendered images obtained using the predicted geometry and
the predicted texture to be similar to the input images. The
gradients of the photometric term can be back-propagated
to the vertices and guide the vertices to be close to the right
positions, which further relieves the misalignment of geom-
etry. After training the dynamic surface network, we can
get an initial texture map which is used to train the neural
rendering network. Given a target pose, the model outputs
the 3D dynamic bodies by predicting dynamic offset fields
based on the pose feature and the learned geometric feature
in UV-space.

3.2. Detailed Texture Generation
Previous work [3, 4] generated a texture map by taking

the median or selecting one out of K frames, leading to
blurriness and discontinuity. In particular, an effective so-
lution needs to coherently aggregate appearance informa-
tion from monocular observations across time as the body
undergoes a 3D motion. However, the texture map genera-
tion method of Sec. 3.1 still cannot avoid the averaging phe-
nomenon of textures. Therefore, based on the texture map
generated in Sec. 3.1, we propose a novel texture map gen-
eration method with reference-based neural rendering and
design a coarse-to-fine strategy to generate a detailed tex-
ture map, as shown in Fig. 3 (right). We fuse all the ob-
servations into a joint representation through the neural tex-
ture and the neural rendering framework. First, we learn a
reference-based neural rendering network based on the in-
put image and the reconstructed geometry to produce photo-
realistic images. Then, the results of neural rendering are
used as supervision to optimize the coarse texture map to
have more details. Besides, to improve the sharpness and fi-
delity of texture maps, we propose to map supervision from
the low-frequency domain to the high-frequency domain by
a sharpening kernel function.

3.2.1 Reference-based Neural Rendering
We obtain a relatively shape-accurate mesh by establishing
an instance-specific dynamic surface function in Sec. 3.1,
which disentangles the shape and texture, and makes the
neural rendering network focus on texture information. Be-
sides, we get a UV-map by adopting barycentric interpola-
tion on the reconstructed geometry. However, only decou-
pling the shape and the texture is insufficient, and it is still
non-trivial for the neural network to learn complex textures
and patterns.

Reference-based image processing has succeeded in im-
age super-resolution [47]. We propose a reference-based
neural rendering network which transfers high-resolution
textures from a given reference image, to produce photo-
realistic results. We obtain an incomplete but sharp image
from the input video by warping the reference image from
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the current pose to that aligned with our input image using
an image warping method [25]. For the sake of simplic-
ity, we use front and back images of the person to be re-
constructed for warping. With the warped image, we can
transfer the texture information to the generated feature by
concatenating them directly. Specifically, given a 3D ge-
ometry and a valid UV-map, we carry out bilinear sampling
on neural texture and translate high-dimensional neural tex-
tures into RGB images similar to [45] using a neural net-
work which is formulated as:

I = R(T , Iuv, Iref ), (2)

where Iuv is the UV-map whose pixels store the correspond-
ing positions in the UV space, Iref is the warped refer-
ence image from the input images, and the neural rendering
model is defined with neural texture T and neural render-
ing network R. The number of feature channels of neural
texture is 16.

3.2.2 Texture Refinement
To generate a detailed texture map, we propose to use neural
rendering results to optimize the coarse texture map through
back-propagation. Compared with taking the input images
as supervision on the texture map, the images generated
by the neural rendering network are more aligned with the
reconstructed geometry. In order to generate a sharp and
seamless texture map, we propose to map the supervision
from the low-frequency domain to the high-frequency do-
main through a sharpening kernel function. A sparse gradi-
ent map was proposed to guide structure-preserving image
super-resolution [28]. However, most areas of the gradient
map are close to zero, which cannot improve the clarity of
the image. Therefore, we use an unsharp masking (USM)
method [11] to calculate the kernel by subtracting Gaussian
filter kernel from the identity kernel.

First, we map the neural rendering results to a new do-
main and enhance its high-frequency information by the
sharpening kernel. Then, the coarse texture map is super-
vised by the mapped neural rendering results. We carry
out bilinear interpolation on the texture map again using the
UV-map where each pixel stores the corresponding position
of the texture map, compute the L1 distance between the
output image and the pseudo ground truth, and update the
value of coarse texture map through back-propagation. Af-
ter optimization, we can get a seamless and sharp texture
map with an image resolution of 512× 512.

3.3. Training Details
We first train the dynamic surface network and then train

the reference-based neural rendering network. The losses
are given in the supplementary document.

3.3.1 Dynamic Surface Network
To stabilize the optimization process of the model, the dy-
namic surface network is optimized in two stages. First,

Dataset VideoAvatar
[4]

Octopus
[2] Ours

People-
Snapshot [4] 39.5940 27.7767 26.4135

SelfieVideo 23.7101 16.3087 15.1284

Table 1. Quantitative comparison (FID ↓) on two datasets.

VideoAvatar [4] Octopus [2] Ours

MVE (cm) 5.8183 4.5244 4.4547

Table 2. Quantitative comparison of geometry reconstruction.

we initialize with the solution of SMPLify [7] and optimize
the pose, translation and shape parameters of SMPL with
the supervision of detected 2D joints and silhouettes. Based
on the initial parameters, we then optimize the offset and
the texture jointly using ADAM [18]. Note that the pose-
encoder is not shared across subjects, because this increases
training complexity with limited improvement. After opti-
mization, we get a dynamic geometry and a coarse texture
map.

3.3.2 Reference-based Neural Rendering Network
Directly training the whole network will cause unstable and
blurry results. Therefore, we use the generated coarse tex-
ture map as the initial value for the first three layers of neu-
ral texture and freeze it. Then, the neural texture and the
neural renderer are trained end-to-end on the whole dataset.
Each person has a unique neural texture, and the parameters
of the neural renderer are shared. Note that, for a new per-
son, the neural rendering network with pre-trained weights
only needs to be fine-tuned with several epochs.

4. Experimental Results
4.1. Dataset

We evaluate the performance of the proposed method
on People-Snapshot dataset [4] and our collected dataset
named SelfieVideo. People-Snapshot [4] consists of 24
videos of 11 subjects, while our dataset consists of 80
videos of 80 diverse clothed persons, captured with a HD-
camera with image resolution of 2160×1216. The subjects
were collected from the talent market and each subject signs
a license agreement. We proportionally resize the frames to
1024 × 1024 resolution due to memory requirement in our
experiments. Each video contains about 300 frames, and all
the subjects are required to rotate with A-pose in front of
the camera. Please note that, although the dataset is cap-
tured with a green screen, our method is also applicable to
videos with ordinary backgrounds.

4.2. Comparison
We compare our method on the public dataset People-

Snapshot [4] and our dataset SelfieVideo with two state-
of-the-art video-based avatar generation methods, VideoA-
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Figure 4. Reconstructed textured-avatars by VideoAvatar [4], Octopus [2] and ours on People-Snapshot [4] (left) and SelfieVideo (right).

Input Image VideoAvatar Octopus Ours

Figure 5. Reconstructed 3D geometry by VideoAvatar [4], Octo-
pus [2] and our method.

vatar [4] and Octopus [2]. The results of the two methods
are generated using the official implementations. Quanti-
tative results on the two datasets are given in Tab. 1. Due
to lack of ground truths, the existing pixel-aligned metrics,
e.g., PSNR, LPIPS, are not suitable. Therefore, we use FID
(Fréchet Inception Distance), a metric to measure the dis-
tance between the distributions of the real images and the
generated images, for our evaluation. We calculate FID be-
tween the rendered images using the generated texture map
and the originally captured images. Our method achieves
the best performance on both datasets, which indicates that
our method generates more realistic results.

Some visual results are shown in Fig. 4. Compared with
VideoAvatar [4], our method can generate sharper texture

I-noS N-noS N-USMInput Image

Figure 6. Qualitative results of ablation study on different super-
vision and sharpening schemes.

maps and clear patterns. Compared with Octopus [2], our
method generates seamless texture maps, and there are no
texture mistakes or lost patterns in our generated texture
maps. In a word, our method can generate seamless and
sharp texture map compared with the state-of-the-art meth-
ods, which benefits from our coarse-to-fine framework and
sharpening-guided fine-tuning strategy. Besides, we pro-
vide qualitative comparison on the reconstructed geometry
in Fig. 5. Our method can reconstruct more accurate and
detailed geometry, benefiting from the design of dynamic
surface network. Due to lack of ground truths, we quanti-
tatively evaluate our method on 18 scanned human models.
We adopt the same data generation protocol as [2] to regis-
ter SMPL+D to each scan, and render the video by chang-
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Method I-noS N-noS N-USM

FID ↓ 33.2064 23.4513 15.1284

Table 3. Quantitative results of ablation study on different super-
vision and sharpening schemes.

w/o TS

w/o REF

Full

Figure 7. Qualitative results of ablation study on reference branch
and training scheme.

ing the pose parameters of the SMPL. The mean vertex er-
ror over the whole video across the test subjects compared
with VideoAvatar [4] and Octopus [2] is given in Tab. 2.
Our method achieves better results than the state-of-the-art
methods [2, 4].

4.3. Ablation Study
Different Supervision and Sharpening Schemes. We
study the effect of different supervision and sharpening
schemes on texture map generation. Fig. 6 shows qualita-
tive comparison of using different supervision and sharpen-
ing schemes. We compare three variants: supervised by in-
put images without sharpening (I-noS), supervised by neu-
ral rendering results without sharpening (N-noS), and su-
pervised by neural rendering results with unsharp masking
(N-USM). From the comparison of I-noS and N-noS, we
can see that the generated texture map supervised by the
neural rendering results has more accurate texture details.
In the last two columns, the generated texture with unsharp
masking is clearer and more detailed. Quantitative results
on 80 subjects in terms of FID are shown in Tab. 3. The
model supervised by neural rendering results with unsharp
masking also achieves the best score, which demonstrates
the effectiveness of our proposed method.
Reference Branch and Training Scheme. Fig. 7 shows the
effect of the reference branch and our training scheme for
neural rendering network (Sec. 3.3.2). We compare three
variants where the models are trained end-to-end without
our training scheme but with the reference branch (w/o TS),
trained with our training scheme but without the reference

Dynamic OffsetStatic Offset Dynamic OffsetStatic Offset

Figure 8. Comparison results of using static offset and dynamic
offset. With the dynamic surface network, the geometric details
can be better reconstructed compared with static offset.

Method [33] [15] [12] Ours

FID ↓ 81.8043 45.1285 63.8366 28.1964

Table 4. Quantitative comparison for novel view synthesis.

branch (w/o REF), and trained with our training scheme and
the reference branch (Full). From the comparison of the last
two rows of Fig. 7, the reference branch recovers more tex-
ture details and patterns. From the first row and the last
row, we can see that our model can generate more reason-
able and photo-realistic results with the proposed training
scheme. We also design a user study for better evaluation in
supplementary material.
Static Offset vs. Dynamic Offset. To capture the pose-
dependent deformation of the person from only RGB input,
we design a dynamic surface network. Fig. 8 shows the
comparison results of reconstructed geometries using static
offset and dynamic offset. It can be seen that our dynamic
surface network can recover more geometric details com-
pared with using static offset.

4.4. Applications
Novel View Synthesis. Given a target view, we can gen-
erate a view-conditioned UV-map with rasterization using
z-buffer. With the corresponding UV-map, the geometry is
rasterized using a neural texture by bilinear sampling and
then is translated to an RGB image using a neural network.
We compare our method with three state-of-the-art methods
Neural Body [33], HF-NHMT [15] and StylePeople [12].
The trained models of [33] and [15] are generated by the
official implementations, and the trained models of [12] on
20 videos of SelfieVideo are provided by the authors. As il-
lustrated in Fig. 9, our method achieves the most reasonable
and photo-realistic results. Tab. 4 gives the quantitative re-
sults on the 20 videos. Due to lack of ground truths, FID
is calculated by computing the distance between distribu-
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Figure 9. Novel view synthesis results of NeuralBody [33] (top
row), HF-NHMT [15] (second row), StylePeople [12] (third row),
and our method (bottom row).

Figure 10. Novel pose synthesis results of three persons using the
poses of the first row.

tions of the generated images and the captured images. Our
method outperforms the other methods.
Novel Pose Synthesis. Given a target pose, we can also
generate a pose-conditioned UV-map with rasterization us-
ing z-buffer. The learned person can be retargeted to the
poses from the pre-captured motion sequences. Fig. 10
shows the generated results of different persons with the
same poses.
Shape Editing. Benefiting from our design of the dynamic
surface network which disentangles the shape and texture of
the person, our method can achieve shape editing by chang-
ing the parameters of the SMPL model. Fig. 11 shows some
neural rendering results of one person with the upper-bodies

Figure 11. The results of shape editing. From left to right, we
show the results of person changing from thin to fat.

changing from thin to fat. It can be seen that the texture is
not distorted as the shape changes, which proves that our
method can disentangle the shape and texture of the person.
5. Conclusion and Discussion
Conclusion. In this paper, we propose a novel framework
to generate a fully-textured avatar and demonstrate high-
fidelity rendering for novel view/pose synthesis. We in-
troduce the dynamic surface network to capture the pose-
dependent deformations of the person and the reference-
based neural rendering network to generate high-fidelity
images for view/pose synthesis, and we exploit a novel
sharpening-guided strategy to generate seamless and sharp
texture maps. We study the effect of our proposed module
in ablation study, and our method is a step forward in avatar
generation and neural rendering.
Limitations. Although we have achieved high-fidelity
avatar generation from a single RGB camera, there are still
some cases that we cannot solve well: very loose clothes,
e.g., dresses, wrong pose estimation caused by depth am-
biguity, dynamic appearance effects, e.g., pose-dependent
wrinkles, and extremely complex textures. In further work,
we will combine efficient implicit representations, e.g., im-
plicit surfaces and NeRFs, to break through the limitation
of the fixed topology, improve the representation capacity
of the framework and generate more high-fidelity avatars.
Broader Impact. Similar to DeepFake (FaceSwap), our
method can make anyone have the possibility to participate
in avatar generation and AI development, which may cause
private and ethical problems. Therefore, we propose that the
reconstructed avatar should be encrypted into a special for-
mat and it can only be decoded by the specific software, and
the people who use the technology must sign an agreement
and promise not to harm the privacy of the public. Besides,
we suggest policymakers to establish an efficient regulatory
system to avoid the disclosure of personal information. We
believe that the development of the technology will promote
the improvement of related policies.
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