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Abstract

A model that can authentically restore a low-quality face
image to a high-quality one can benefit many applications.
While existing approaches for face restoration make sig-
nificant progress in generating high-quality faces, they of-
ten fail to preserve facial features that compromise the au-
thenticity of reconstructed faces. Because the human vi-
sual system is very sensitive to faces, even minor changes
may significantly degrade the perceptual quality. In this
work, we argue that the problems of existing models can
be traced down to the two sub-tasks of the face restoration
problem, i.e. face generation and face reconstruction, and
the fragile balance between them. Based on the observa-
tion, we propose a new face restoration model that improves
both generation and reconstruction. Besides the model
improvement, we also introduce a new evaluation metric
for measuring models’ ability to preserve the identity in
the restored faces. Extensive experiments demonstrate that
our model achieves state-of-the-art performance on multi-
ple face restoration benchmarks, and the proposed metric
has a higher correlation with user preference. The user
study shows that our model produces higher quality faces
while better preserving the identity 86.4% of the time com-
pared with state-of-the-art methods.

1. Introduction

Face images play a critical role in our daily life and are
at the very center of success for many applications such as
portrait taking, face identification, etc. While these applica-
tions usually rely on having decent quality faces as inputs,
low-quality face images are inevitable in the real world due
to various reasons, e.g. low image resolution, motion blur,
defocus blur, sensor noises, encoding artifacts, etc. There-
fore, a method that can faithfully restore a degraded face
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into a high-fidelity one regardless of the type of degrada-
tion is highly desired.

Much progress has been made in face restoration in
the past few years, thanks to the rapid development of
deep generative adversarial networks (GANs) [8]. Exist-
ing works treat face restoration as a conditional image gen-
eration problem, and they learn a U-Net model that pre-
dicts a high-quality face image given a low-qualiy one as
input [3, 20, 21, 23, 35, 36, 40]. Despite being able to gen-
erate realistic faces, they still suffer from unique challenges
introduced by face restoration. Specifically, they often fail
to preserve delicate facial features in the input but instead
hallucinate a high-quality face that does not resemble the
original subject. The model may change the subject’s eye
color, skin texture, shape of face components, etc, as shown
in Figure 1. While these changes may be negligible in pixel
space and are irrelevant to the realisticness, they are es-
sential for authenticity and can significantly impact down-
stream applications. For example, they may break a face
identification system because the biometric characteristics
deviate from the original subject, and they may degrade the
perceptual quality of a photo because the subject looks like
a different person.

We argue that the above issues are caused by the fragile
balance between face generation and face reconstruction.
As we will show later, the face restoration problem can be
interpreted as a combination of two sub-tasks, i.e. gener-
ation and reconstruction, where face generation aims to
learn the distribution of high quality faces and face recon-
struction aims to capture the face characteristic (e.g. shape
and texture) from an image regardless of its quality [5, 36].
A model that overemphasizes generation and fails in recon-
struction may hallucinate a face that does not belong to the
subject. In contrast, a model that fails in generation leads
to unsatisfactory restoration quality. Therefore, a success-
ful face restoration model has to address the two sub-tasks
simultaneously, which remains to be realized.

Based on the observation, we propose a new model that
aims to improve both generation and reconstruction. To
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Figure 1. Problems of state-of-the-art face restoration models. GPEN [40] and GFPGAN [36] are biased toward face generation and may
alter facial details (e.g. eye color) that are highly correlated with the identity. DFDNet [20] is biased toward reconstruction and does not
remove all degradations. Our approach achieves the best balance and restore a high quality face while preserving the identity.

improve face generation, we inject an adaptive conditional
noise to the model, motivated by the great success of recent
image generation models. The noises empower the restora-
tion model with stochastic property and allow the model to
capture the non-deterministic nature of the face restoration
problem. To improve face reconstruction, we enhance the
latent features in the skip connections by 1) quantizing the
features using a codebook learned from high-quality images
and 2) introducing a global feature fusion module for an
adaptive combination of the features from the decoder and
the skip connections. These improvements are based on the
observations that the features extracted by the encoder may
harm the reconstruction performance, especially when the
input quality is poor. Finally, we explore the model archi-
tecture, particularly the number of skip connections, to op-
timize the balance between generation and reconstruction.

Like the models, the evaluation metrics for face restora-
tion also suffer from overemphasizing either the genera-
tion or the reconstruction aspect of the problem. Exist-
ing works borrow either metrics designed for image gen-
eration, e.g. Fréchet inception distance (FID) [12], or met-
rics developed for image reconstruction, e.g. Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),
or Learned Perceptual Image Patch Similarity (LPIPS) [44].
They focus on the perceptual quality or the pixel similarity
between the output and the target respectively, and neither
of them was able to capture subtle changes in facial fea-
tures. To this end, we propose a new metric that measures
both image quality and content preservation, where content
preservation is defined by the ability to preserve the iden-
tity. Experiment results demonstrate that the proposed met-
ric better correlates with the perceptual quality of human
raters in the face restoration problem.

The main contributions of this paper are as follows. First,
we show that issues of existing face restoration models may
be traced down to the two sub-tasks of the problem, i.e. face
generation and face reconstruction. Second, we propose a

new face restoration model by improving the model design
for both sub-tasks. Finally, we introduce a new evaluation
metric for face restoration that measures both the percep-
tual quality and identity preservation. Empirical results on
two benchmarks, blind face restoration (BFR) and super-
resolution (SR), show that proposed model consistently out-
performs state-of-the-art methods, and the proposed metric
better correlates with the perceptual quality of human raters.
In addition, user study shows that our model is preferred by
human raters 86.4% of the time compared with state-of-the-
art face restoration models.

2. Related work

Face restoration Face image restoration has attracted
considerable attention from various aspects, e.g., face super
resolution [11, 22, 23, 37, 39], blind face restoration [20, 21,
36, 40], deblurring [18, 32, 41], denoising [10, 43], inpaint-
ing [38, 42, 47], etc. Human perceptions are more sensitive
to facial images than other image domains and thus demand
more concrete and meticulous control. In terms of mod-
eling strategy, all recent notable works on high-resolution
(e.g., 512 × 512) resort to maximum likelihood estimation
to reconstruct realistic face characteristics and adversarial
learning to generate a high-fidelity image distribution.

State-of-the-art BFR models exploit off-the-shelf gener-
ative networks like StyleGAN [16] to improve the restora-
tion performance [9, 23, 29, 36, 40]. Based on the assump-
tion that the prior generative network can produce arbitrary
high-fidelity faces, they focus on mapping the degraded
faces into the appropriate latent features for the genera-
tor. Although they show promising performance in terms of
image generation metrics, subjective evaluation shows that
the models are dominated by the prior generative networks
even after finetuning, leading to unfaithful restoration such
as color shift or excessive hallucination. In other words,
they bias toward face generation and downplay face recon-
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Figure 2. The proposed model with one skip connection. (1-NN: 1-nearest neighbor search. Modulation: feature modulation as in
StyleGAN2 [16]. LGF: linear gated feature fusion.)

struction. In contrast, our approach reaches a good balance
between content preservation and high-fidelity faces gener-
ation, which leads to a better subjective quality. Further-
more, our model can be trained from scratch and does not
require a carefully optimized GAN model.
Evaluation metric Existing works for face restoration
adopt PSNR, SSIM, and LPIPS [44] to measure the recon-
struction performance for every example. To evaluate the
distance between the restored face distribution and the real
face distribution, we often adopt FID, Inception score [30]
and Kernel Inception Distance [2]. However, they may
cause inconsistent judgment from one to another. A well-
known example is that blurring images can improve PSNR
and SSIM [44] but degrade other metrics. FID is affected
mainly by the number of evaluation samples and may also
bring unfair comparisons without prior knowledge of the
evaluation system [25]. LPIPS appears to suggest a bet-
ter agreement with humans, but it fails to capture concrete
face identities. We propose a robust metric to simultane-
ously measure overall samples’ realism and individual iden-
tity preservation to address these discrepancies.

3. Approach
In this section, we introduce the proposed approach for

improving face restoration. We begin by formulating the
face restoration problem and describing how to break it
down into the combination of face generation and face re-
construction. We next introduce how to improve the recon-
struction and generation sub-tasks respectively. Finally, we
describe the training process.
Problem interpretation We can interpret the face restora-
tion problem as a combination of the face generation and
face reconstruction sub-task from the objective and model
perspective.

Let X denote the degraded low-quality image domain,
Y indicate the high-quality image domain, and PY imply
the distribution of high-quality images. Assume that there
exists a one-to-many degradation function Deg: Y → X ,
the goal of face restoration is to learn an inverse functionG:
X → Y that satisfies

min
G
D(PG(X)||PY ) + Ey∼Y Ex∼Deg(y)κ(G(x), y), (1)

where D is a distribution distance and κ(·) is a pair-wise
distance between two images.

From the objective perspective, the first term is the objec-
tive for image generation that encourages the restored im-
ages to look realistic and be indistinguishable from authen-
tic high-quality images. While the second term is the ob-
jective for image reconstruction, which resembles the high-
quality image from which the input image is degraded and
preserves facial features.

From the model perspective, the decoder in G can be
considered an image generation model that aims to gener-
ate realistic images from latent features. In contrast, the en-
coder aims to project images to appropriate latent features
for reconstruction, similar to the StyleGAN encoder [29].
Unlike StyleGAN encoder, however, the encoder in the face
restoration model has to be robust to the degradation in the
input image in order to restore images with arbitrary qual-
ity. A common practice is to implement G using a U-Net
architecture as illustrated in Figure 2 and realize the first
and second half of Eq. 1 using an adversarial loss and re-
construction losses respectively.

Based on this interpretation, we next describe how to im-
prove the generation and reconstruction sub-tasks to achieve
better face restoration.

3.1. Improving Reconstruction

The face reconstruction sub-task requires fine-grained
control on face details in the generated image based on the
input image to achieve authentic face restoration. This is
achieved by conditioning the generation model using the
latent features extracted by the encoder. More specifically,
the skip connections in the U-Net architecture pass low to
high-level information to the decoder for an authentic re-
construction of the input face.

Although the U-Net architecture is widely adopted in
prior works, our empirical results suggest that it may be
sub-optimal for face restoration, particularly for inputs with
severe degradation. The encoder could not extract useful
features from low-quality images, and the low-quality fea-
tures hindered the restoration performance. To address this
issue, we propose the following improvements for the U-
Net architecture.
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Figure 3. Qualitative comparison by varying the number of skip connections. We count from the layer with feature resolution 8 × 8, i.e.,
there exist possible skip connections at resolution nodes {2n+2 × 2n+2}6n=1 when we set the maximum input resolution at 512× 512.

3.1.1 Feature quantization

To help the model generalize to severely degraded images,
we propose to enhance the features extracted by the en-
coder. In particular, we adopt the feature quantization ap-
proach that has attracted much attention in representation
learning and generative model recently [6, 24, 27, 28, 46]
for feature enhancement. The idea is that, given a code-
book C={ck}Kk=1, ck∈Rd of high quality features, we can
enhance a corrupted feature pij∈Rd by quantizing pij to a
code word ck in the codebook C. In other words, we replace
a feature extracted by the encoder that may be corrupted
with a feature in the codebook such that the resulting quan-
tized feature always consists of high-quality features.

We incorporate feature quantization into our model as
follows. Given a learned codebook C and a feature map
p∈RH×W×d extracted by the encoder, we replace the fea-
ture at each spatial location pij using its closest entry in
C:

pqij = argck min ||pij − ck||2, (2)

and the original feature map p is replaced by the quantized
feature map pq in the following operations. See Figure 2.

We learn one codebook for each skip connection feature
map. During training, we optimize the following loss to
encourage the model to utilize quantized features:

LVQ = ||p− sg(pq)||22, (3)

where sg(·) is a stop-gradient operator. Instead of learning
the codebook end-to-end using gradient descent, we use ex-
ponential moving average (EMA) [24, 28] over the features
extracted from ground truth high-quality images to learn the
codebooks. More specifically, we extract features from the
ground truth high-quality images using the encoder in each
iteration. We then assign each feature vector to the clos-
est code word in the current codebook before updating the
code words using the average feature. The codebooks are
initialized with a normal distribution.

3.1.2 Linear gated feature fusion

Another way to address the problem of uninformative fea-
tures from the encoder is to fuse only suitable features in
the skip connections into the feature maps of the decoder.
However, exiting works use addition, concatenation [40], or
spatial feature transform [20, 36] to combine the features,
and none of them are aware of whether the fused features
are suitable for restoration or not. To address this issue, we
propose a linear gated feature fusion (LGF) module which
integrates information from both encoder and decoder to fil-
ter uninformative features. It integrates global information
from both features and also filters the feature combination
with a confidence score.

Let p,q∈RH×W×C represent the features from the cor-
responding encoder and decoder block respectively. The
LGF module computes:

Global score: o = DownSampler(p+ q) ·W (4)
Gated score: s = UpSampler(Sigmoid(o))

Fused feature: q∗ = s ∗ (p+ q) + (1− s) ∗ q

where r is the window size for downsample and upsam-
ple and W ∈ R

HW
r2
×HW

r2 is a linear projection matrix per-
formed on spatial dimension. The LGF module uses global
information to estimate the per-location weight for the fused
feature p + q. It then combines the fused feature and de-
coder features using the predicted weight. The model can
therefore learn to disregard unsuitable features from the en-
coder. Empirically, we set r = 2log2H−5 when H > 25,
otherwise r = 1.

3.1.3 Balancing generation and reconstruction

Ideally, a face restoration model should emphasize face gen-
eration than reconstruction when there exists severe degra-
dation in the input image and vice versa because a severely
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degraded face may not contain sufficient details for recon-
struction. Given that a successful face restoration model
should handle various types and strengths degradations, it
is important to strike a balance between the two sub-tasks.
However, our empirical analysis shows that the skip connec-
tions in the U-Net architecture impose a strong condition on
the generation model and may bias the model toward recon-
struction. The more skip connections we add, starting from
higher to lower layers, the stronger reconstruction the model
performs. See Figure 3.

Previous works [20,36,40] choose to apply skip connec-
tions in all layers. In contrast, we propose to re-balance the
generation and reconstruction sub-task to improve the over-
all restoration performance. This is achieved by reducing
the number of skip connections, particularly skip connec-
tions in the lower layers, because low-level skip connec-
tions tend to impose stronger conditions on the generation
model and weaken its generalization ability. Furthermore,
low-level features tend to be less informative in low-quality
inputs, given that the degradation may corrupt the infor-
mation. Empirical results show that this strategy helps to
improve face restoration performance. Please refer to the
experiments and Appendix for more information.

3.2. Improving Generation

Besides authentic reconstruction, a successful face
restoration model also needs to generate realistic high-
quality faces. As mentioned before, this is usually achieved
through the face generation sub-task encouraged by the ad-
versarial loss. However, empirical results show that prior
works that do not utilize a pre-trained generator often pro-
duce lower quality faces, e.g. DFDNet in Figure 1. In other
word, the end-to-end learned generators do not perform
as well as off-the-shelf generative networks. To generate
crispy and clear faces, we next introduce how to improve
the generation sub-task in face restoration.

We hypothesize that the problem of prior works is that
they try to learn a deterministic face restoration model G.
In contrast, off-the-shelf generative networks are trained
non-deterministically by taking random noises as the model
inputs. Based on the hypothesis, we propose to learn a
stochastic face restoration model by introducing a noise
term ε,

x̂ = G(x, ε), ε ∼ N (0, 1), (5)

motivated by state-of-the-art GAN models [16].
The stochastic model is beneficial from various aspects.

It helps to capture the non-deterministic nature of the face
restoration problem, where multiple high-quality images
may exist that can degrade to the same low-quality face. A
deterministic model is unable to capture the desired inverse
degradation function. It also helps to better explore the la-
tent feature space for the generation model during training.
While a common practice is to sample the degradation func-
tion to generate random inputs x∼Deg(y) during training,

we can observe that the input x and the target output y are
usually fairly similar, e.g. Figure 1 and Figure 3. As a re-
sult, the variations in the latent features may be limited dur-
ing training, and the generator may not generalize well. By
injecting the noises into the latent feature space, the gener-
ator may be able to handle more complex cases similar to
recent facial prior-based techniques [36, 40].

In practice, we implement the stochastic face restoration
model as follows. Let Enc(x) ∈ RH′×W ′×C denote the
final feature map extracted by the encoder. We compute the
conditional random noises εc by applying a linear soft gate
on ε:

εc = Sigmoid(z) ∗ ε, (6)

where z = AttentionPool(Enc(x)) ∈ RC and ∗ denotes
element-wise multiplication [26]. We then feed the noise
signals εc to the decoder, where we implement the decoder
based on StyleGAN2 architecture. More specifically, we
apply a style-block to both the skip-connection features and
decoder features before fusing them using LGF described
in Sec. 3.1.2, and we feed εc to the two blocks by mapping
it to the style vector in StyleGAN2. Please see the appendix
for implementation details. Compared with unconditional
random noises, εc encapsulates the latent representation z
of the input and thus imposes more content-aware control.

3.3. Learning Objective
This section describes the objective function for training.

We instantiate the face restoration problem, i.e. Eq. 1, using
the following objective function:

L = αLADV + LREC + LVQ. (7)

The first two terms are the adversarial generation loss and
reconstruction losses and correspond to the two terms in
Eq. 1. The last term is the feature quantization loss de-
scribed in Section 3.1.1. α is a hyper-parameter that bal-
ances generation and reconstruction. See appendix for ab-
lation study on the impact of α.

In practice, we implement LADV using non-saturating
loss [8] and optimize the model by alternating between op-
timizing the discriminator D by minimizing

−Ey∼Y log [D(Aug(y))]− Ex∼X log [1−D(Aug(G(x))]

and optimizing the generator G by minimizing

− Ex∼X log [D(Aug(G(x))] ,

where Aug(·) is the differentiable data augmentation [45]
including random color transform and translation. The re-
construction loss is implemented by

LREC = L1 + Lpercep, (8)

where L1 is the L1-loss between the target and restored im-
age and Lprecep is the perceptual loss based on a pre-trained
VGG-19 network [33] following existing works in image
generation [7, 13, 20, 36]. See Appendix for details.
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Figure 4. Illustration of iPrecision. (a) Precision measures the
portion (overlapped area) of restored images (blue region) that fall
into real images (red region). (b) For each restored image, we
determine whether it falls into real image manifold by calculating
its vectorized feature distance to every real image. (c)-(e) show the
decision of one restored image e. We consider four neighbors of
each real image and identities satisfy Ie = Ie′1 , Ie 6= Ie′2 .. (c) e is
the nearest neighbor of e′1 and both have the same ID. (d) show e is
not inside the k-nearest neighborhood. (e) e and e′2 have different
IDs though e is the nearest one. Among (c)-(e), only (c) counts as
a correct match with iPred = 1.

4. Identity Preservation Metric

This section introduces a new evaluation metric that is
designed specifically for the face restoration problem. As
mentioned previously, prior works in face restoration usu-
ally adopt metrics that are intended for general image recon-
struction or generation. While these metrics can measure
the generic quality of the reconstructed image, they were
unable to capture subtle changes on faces that are minor in
pixel space but are perceptually significant. In particular,
they often fail to measure whether the restored faces pre-
serve the identity-related details.

To address these issues, we propose a metric that simul-
taneously measures image quality and facial details preser-
vation. The new metric is based on the improved preci-
sion and recall metric for the generative model introduced
in [19], where precision measures whether the distribution
of generated images falls into the distribution of real im-
ages and recall measures the opposite. Therefore, a high
precision indicates high generated image quality, given that
realistic images refer to high-quality images Y in the face
restoration problem. We extend the metric to consider fa-
cial details preservation, which is measured by the ability
to preserve the identity information. In other words, instead
of considering whether the restored face falls into the dis-
tribution of all high-quality faces, we consider whether it
falls into the distribution of the high-quality faces of the
same subject. As a result, a high precision implies that the
generated faces are high quality and preserve the subject’s
identity.

More specifically, the evaluation metric is defined as fol-
lows. Given a pre-trained feature extractor, e.g. Inception
V3 [34] or FaceNet [31], we calculate two sets of image
features {Eg,Er} that corresponds to the generated and real
faces respectively. Let Ẽg=Er and Ẽr=Eg . For each fea-

Input Output GT

PSNR=22.8
SSIM=0.52
iPred =1

PSNR=27.5
SSIM=0.76
iPred =0

Figure 5. Qualitative examples that illustrate the advantage of
the proposed metric. (Top) PSNR=22.8, iPred=1. (Bottom)
PSNR=27.5, iPred=0. The top row shows that iPred focuses on
the face region and is less sensitive to the artifacts in the back
ground. In contrast, PSNR or SSIM place globally equal weight at
each pixel. The second row shows that iPred is more sensitive to
the artifacts near face components, i.e. the right eye.

ture e ∈ E, we define a binary function

iPred(e, Ẽ)=


1(Ie = Ie′), ∃ e′ ∈ Ẽ

s.t. κ(e, e′) ≤ κ(e′,NNk(e′, Ẽ))

0, otherwise

where Ie, Ie′ are the identity label of e and e′ respectively,
NNk(e′,E) is the kth nearest neighbor of e′ in E, and κ(·)
is the Euclidean distance. The binary function indicates
whether e falls into the distribution of {e′} ⊆ Ẽ, where
e and e′ belongs to the same identity and the distribution of
{e′} ⊆ Ẽ is represented using the hyperspheres around e′.
See Figure 4 for illustration. Given iPred(·), we can define

iPrecision(Er,Eg) =
1

|Eg|
∑
eg∈Eg

iPred(eg,Er) (9)

iRecall(Er,Eg) =
1

|Er|
∑
er∈Er

iPred(er,Eg) (10)

Please refer to the appendix for the pseudo-code. As men-
tioned before, iPrecision is a good indicator for measuring
a face restoration model’s actual capability of producing
high-fidelity and faithful restorations. This is verified by
our user study, which shows that iPrecision better correlates
with human evaluations results than standard metrics such
as PSNR and LPIPS. Also, see Figure 5 for qualitative ex-
amples that illustrate the advantage of the proposed metric.

5. Experiments
We evaluate the performance of the proposed model on

standard benchmarks for face restoration. The goal is to ver-
ify that 1) the proposed method improves face restoration
performance, and 2) the proposed evaluation metric better
captures the perceptual image quality in face restoration.
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Models
BFR SR

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
×8 ×16 ×8 ×16 ×8 ×16

DeblurGANv2 [18] 25.91 0.695 0.400 52.69 - - - - - -
PSFRGAN [4] 24.71 0.656 0.434 47.59 - - - - - -
HiFaceGAN [39] 24.92 0.620 0.477 66.09 26.36 24.66 0.211 0.266 29.95 36.26
DFDNet [20] 23.68 0.662 0.434 59.08 25.37 23.11 0.212 0.266 29.97 35.46
mGANprior [9] 24.30 0.676 0.458 82.27 21.44 21.29 0.521 0.518 104.20 100.84
PULSE [23] - - - - 24.32 22.54 0.421 0.425 65.89 65.33
pSp [29] - - - - 18.99 18.73 0.415 0.424 40.97 43.37
GFPGAN [36] 25.08 0.678 0.365 42.62 23.80 19.67 0.293 0.382 36.67 63.24
GFPGAN* [36] 24.19 0.681 0.296 38.15 24.12 21.77 0.298 0.342 34.22 37.61
GPEN [40] 23.91 0.686 0.331 25.87 24.97 23.27 0.322 0.361 30.49 31.37

Ours 28.01 0.747 0.224 18.87 26.58 24.17 0.205 0.260 18.27 22.94

Table 1. Quantitative comparison on blind face restoration (BFR) and super-resolution (SR). GFPGAN* denotes the model without
colorization. (‘-’ indicates the number of not available.)
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Figure 6. Identity-preservation metrics. The color indicates the model, and the marker indicates the task. Best viewed in color.

Training datasets We train our model on the FFHQ
dataset [15] and the training split of the CelebA-HQ
dataset [14], which consists of 70k and 27k images re-
spectively. All images are resized to 512×512 with Pil-
low.Image.LANCZOS. Following the standard practice in
face restoration [20,21,36,40], we synthesize degraded low-
quality faces x from real high-quality faces y using the fol-
lowing degradation model:

x = [(y ⊗ kσ)↓r + nδ]JPEGq
, (11)

i.e. the high-quality image y is first convolved with a Gaus-
sian blur kernel kσ with kernel size σ and downsampled by
a factor r. An additive white Gaussian noise nδ with stan-
dard deviation δ is then added before applying JPEG com-
pression with quality factor q to obtain the final low-quality
image x. The restoration model is trained with image pairs
(x, y) following Eq. 7. Please refer to the appendix for im-
plementation details.

The degradation model simulates real world low-quality
images caused by defocus, long-distance sensing, noises,
compression, and their combinations [21]. While other
types of degradation are possible, we adopt the same degra-
dation model used in prior works [20,36,40] for a fair com-
parison. Similarly, we randomly sample σ, r, δ and q from
[0.2, 10], [1, 8], [0, 15] and [60, 100] for the degradation
function following GFPGAN [36].
Evaluation metrics We compare our model and the base-
lines on all 3k images in the test split of CelebA-HQ using
two tasks, i.e. Blind Face Restoration (BFR) and Super-
Resolution (SR). For BFR, we synthesize low-quality im-

ages using the same degradation model as the training data.
For SR, we create two sets of low-quality images with reso-
lution 64× 64 and 32× 32 respectively for×8 and×16 SR
tasks. We evaluate the performance using 1) standard objec-
tive metrics including PSNR, SSIM, LPIPS and FID, 2) the
proposed iPrecision and iRecall metrics, and 3) subjective
evaluation through user study.

5.1. Objective Evaluation

We first evaluate the model performance using standard
objective metrics. Table 1 summarizes the results. Our
model consistently outperforms all the baselines with a
large margin on both BFR and SR. The results verify that
our model exceeds state-of-the-art face restoration models
in terms of both the restored image quality and the recon-
struction accuracy. The best performing baselines are those
that exploit pre-trained StyleGAN generator, i.e. GFPGAN
and GPEN. The result shows that a robust image generation
model helps to improve the overall restoration performance.
Nevertheless, our model outperforms GFPGAN and GPEN
while using fewer parameters (50M parameters versus 70M
parameters in GPEN and 80M parameters in GFPGAN),
which indicates the importance of balancing the generation
and reconstruction sub-tasks.

Next, we compare the performance using the proposed
identity preservation metrics with FaceNet feature extractor.
We focus on comparing with GFPGAN, GPEN, and DFD-
Net because 1) they achieve the best overall performance
among all baselines, and 2) they share the same degradation
model with ours during training. The results are in Fig-
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Input DFDNet GPEN GFPGAN* Ours GT

Figure 7. Qualitative comparison. (Top) BFR. Note the eyelash and skin tone difference. (Bottom) ×16 : 322 → 5122 SR. Note the
expression and wrinkle differences.

Methods PSNR↑ LPIPS↓ iPrecision↑ Preference (%)↑
Bicubic 26.62 0.361 0.482 0.8
GFPGAN 24.12 0.298 0.687 5.4
GPEN 24.97 0.322 0.732 7.4
Ours 26.58 0.205 0.980 86.4

Table 2. Metric comparison on ×8 SR.

ure 6. Again, our model consistently outperforms the base-
lines, which shows that our model generates higher quality
faces and better preserves the identity-related details in the
restored faces. See appendix for results on SR.

Note that the proposed metric has a meta-parameter k,
which determines the size of the target distribution. Fig-
ure 6(a) shows that, while both the precision and recall im-
prove as k increases, the relative performance of different
models remains stable. Therefore, a single k should be
sufficient for evaluation, and we set k=4 in the follow-
ing experiments. Figure 6(b) compares the results of the
original precision-recall metrics and the proposed identity-
preserving metrics. The results show that the identity infor-
mation increases the dynamic range of the metrics, which
helps to discriminate the performance of different models.

5.2. Subjective Evaluation

We also compare different face restoration models with
subjective evaluation. We conducted a user study over 100
randomly selected samples. For each sample, we present
the restoration results of four different methods and the in-
put and target images as references to raters. We then ask
the rater which image has the best perceptual quality while
preserving the facial details in the target image. Five raters
annotate each sample, and we measure the percentage of ex-
amples where the raters prefer the result of a model. Please
refer to the appendix for details.

The user study results on SR are in Table 2. The sub-
jective evaluation again verifies the superior performance
of our model. Interestingly, the advantage of our model is
much more significant in the subjective evaluation than in
objective metrics. This shows that minor changes in the

Fusion types PSNR↑ SSIM↑ LPIPS↓ FID↓
Baseline 26.85 0.710 0.251 20.02
+ LGF 27.13 0.729 0.243 19.55
+ Quantization 27.35 0.737 0.238 19.77
+ Noise 27.40 0.738 0.225 19.12

Table 3. Ablation results.

pixel space may significantly impact the perceptual quality
in face restoration, and standard metrics like PSNR cannot
capture user preference very well. The results also show
that the proposed iPrecision metric better correlates with
raters’ opinion, which justifies the proposed metric’s ben-
efit. See appendix for results on BFR.

Figure 7 presents the qualitative examples of different
models. The results show that our method can achieve the
best perceptual quality and faithfully restore most source
details. See appendix for more qualitative results and diffi-
cult restoration results.

5.3. Ablation Study
We conduct ablation studies to understand how each

model component affects the performance. For fast valida-
tion, we apply 1/2 size of a previously used model. The re-
sults are in Table 3, were each of the proposed improvement
boost the overall performance. See appendix for details and
more ablation results

6. Conclusion
This work revisits the face restoration problem. We show

that the face restoration problem can be decomposed into
two sub-tasks, i.e. face generation and face reconstruction,
and that the issues of existing models stem from the fail-
ures in the two sub-tasks. To address the practical problems,
we introduce a new model by improving the model design
for better generation and reconstruction. We further pro-
pose a new objective metric that simultaneously assesses a
model’s generation and reconstruction performance. Future
work will explore personalized face restoration by exploit-
ing additional references or text guidance.
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[2] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018. 3

[3] Adrian Bulat and Georgios Tzimiropoulos. Super-fan: In-
tegrated facial landmark localization and super-resolution of
real-world low resolution faces in arbitrary poses with gans.
In CVPR, 2018. 1

[4] Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin,
Lei Zhang, and Kwan-Yee K Wong. Progressive semantic-
aware style transformation for blind face restoration. In
CVPR, 2021. 7

[5] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In CVPR, 2020. 1

[6] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 4

[7] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016. 5

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1, 5

[9] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing
using multi-code gan prior. In CVPR, 2020. 2, 7

[10] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei
Zhang. Toward convolutional blind denoising of real pho-
tographs. In CVPR, 2019. 2

[11] Tiantong Guo, Hojjat Seyed Mousavi, Tiep Huu Vu, and
Vishal Monga. Deep wavelet prediction for image super-
resolution. In CVPR Workshops, 2017. 2

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 2

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 5

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 7

[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 7, 11

[16] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 2, 3, 5

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 11

[18] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang
Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)
faster and better. In ICCV, 2019. 2, 7

[19] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. In NeurIPS, 2019. 6

[20] Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui
Lin, Wangmeng Zuo, and Lei Zhang. Blind face restora-
tion via deep multi-scale component dictionaries. In ECCV,
2020. 1, 2, 4, 5, 7, 17

[21] Xiaoming Li, Ming Liu, Yuting Ye, Wangmeng Zuo, Liang
Lin, and Ruigang Yang. Learning warped guidance for blind
face restoration. In ECCV, 2018. 1, 2, 7

[22] Cheng Ma, Zhenyu Jiang, Yongming Rao, Jiwen Lu, and Jie
Zhou. Deep face super-resolution with iterative collabora-
tion between attentive recovery and landmark estimation. In
CVPR, 2020. 2

[23] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi,
and Cynthia Rudin. Pulse: Self-supervised photo upsam-
pling via latent space exploration of generative models. In
CVPR, 2020. 1, 2, 7

[24] Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In NeurIPS, 2017. 4

[25] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy
resizing libraries and surprising subtleties in fid calculation.
arXiv preprint arXiv:2104.11222, 2021. 3

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021. 5

[27] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021. 4

[28] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vq-vae-2. In NeurIPS,
2019. 4

[29] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In CVPR, 2021. 2, 3, 7

[30] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29:2234–2242, 2016. 3

[31] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, 2015. 6

7660



[32] Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-
Hsuan Yang. Deep semantic face deblurring. In CVPR, 2018.
2

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[34] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 6

[35] Xiaoguang Tu, Jian Zhao, Qiankun Liu, Wenjie Ai, Guodong
Guo, Zhifeng Li, Wei Liu, and Jiashi Feng. Joint face image
restoration and frontalization for recognition. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2021.
1

[36] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. To-
wards real-world blind face restoration with generative facial
prior. In CVPR, 2021. 1, 2, 4, 5, 7

[37] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
ECCV Workshops, 2018. 2

[38] Zongze Wu, Yotam Nitzan, Eli Shechtman, and Dani
Lischinski. Stylealign: Analysis and applications of aligned
stylegan models. arXiv preprint arXiv:2110.11323, 2021. 2

[39] Lingbo Yang, Shanshe Wang, Siwei Ma, Wen Gao, Chang
Liu, Pan Wang, and Peiran Ren. Hifacegan: Face renovation
via collaborative suppression and replenishment. In ACM
Multimedia, 2020. 2, 7

[40] Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan
prior embedded network for blind face restoration in the
wild. In CVPR, 2021. 1, 2, 4, 5, 7

[41] Rajeev Yasarla, Federico Perazzi, and Vishal M Patel. De-
blurring face images using uncertainty guided multi-stream
semantic networks. IEEE Transactions on Image Processing,
29:6251–6263, 2020. 2

[42] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with contex-
tual attention. In CVPR, 2018. 2

[43] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward
a fast and flexible solution for cnn-based image denoising.
IEEE Transactions on Image Processing, 27(9):4608–4622,
2018. 2

[44] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 2, 3

[45] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. In NeurIPS, 2020. 5

[46] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and
Changyou Chen. Feature quantization improves gan train-
ing. In ICML, 2020. 4

[47] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic
image completion. In CVPR, 2019. 2

7661


