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Abstract

3D single object tracking (3D SOT) in LiDAR point
clouds plays a crucial role in autonomous driving. Cur-
rent approaches all follow the Siamese paradigm based
on appearance matching. However, LiDAR point clouds
are usually textureless and incomplete, which hinders ef-
fective appearance matching. Besides, previous meth-
ods greatly overlook the critical motion clues among tar-
gets. In this work, beyond 3D Siamese tracking, we in-
troduce a motion-centric paradigm to handle 3D SOT
from a new perspective. Following this paradigm, we pro-
pose a matching-free two-stage tracker M2-Track. At the
1st-stage, M2-Track localizes the target within successive
frames via motion transformation. Then it refines the tar-
get box through motion-assisted shape completion at the
2nd-stage. Extensive experiments confirm that M2-Track
significantly outperforms previous state-of-the-arts on three
large-scale datasets while running at 57FPS (∼ 8%, ∼
17% and ∼ 22% precision gains on KITTI, NuScenes, and
Waymo Open Dataset respectively). Further analysis veri-
fies each component’s effectiveness and shows the motion-
centric paradigm’s promising potential when combined
with appearance matching. Code will be made available
at https://github.com/Ghostish/Open3DSOT.

1. Introduction

Single Object Tracking (SOT) is a basic computer vi-
sion problem with various applications, such as autonomous
driving [22, 38, 39] and surveillance system [32]. Its goal is
to keep track of a specific target across a video sequence,
given only its initial state (appearance and location).

Existing LiDAR-based SOT methods [8,10,23,26,43,44]
all follow the Siamese paradigm, which has been widely
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Figure 1. Top. Previous Siamese approaches obtain a canoni-
cal target template using the previous target box and search for
the target in the current frame according to the matching similar-
ity, which is sensitive to distractors. Bottom. Our motion-centric
paradigm learns the relative target motion from two consecutive
frames and then robustly localizes the target in the current frame
via motion transformation.

adopted in 2D SOT since it strikes a balance between per-
formance and speed. During the tracking, a Siamese model
searches for the target in the candidate region with an ap-
pearance matching technique, which relies on the features
of the target template and the search area extracted by a
shared backbone (see Fig.1(a)).

Though the appearance matching for 3D SOT shows
satisfactory results on KITTI dataset [9], we observe that
KITTI has the following proprieties: i) the target’s motion
between two consecutive frames is minor, which ensures no
drastic appearance change; ii) there are few/no distractors in
the surrounding of the target. However, the above character-
istics do not hold in natural scenes. Due to self-occlusion,
significant appearance changes may occur in consecutive
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LiDAR views when objects move fast, or the hardware only
supports a low frame sampling rate. Besides, the negative
samples grow significantly in dense traffic scenes. In these
scenarios, it is not easy to locate a target based on its ap-
pearance alone (even for human beings).

Is the appearance matching the only solution for LiDAR
SOT? Actually, Motion Matters. Since the task deals with
a dynamic scene across a video sequence, the target’s move-
ments among successive frames are critical for effective
tracking. Knowing this, researchers have proposed various
2D Trackers to temporally aggregate information from pre-
vious frames [2, 34]. However, the motion information is
rarely explicitly modeled since it is hard to be estimated un-
der the perspective distortion. Fortunately, 3D scenes keep
intact information about the object motion, which can be
easily inferred from the relationships among annotated 3D
bounding boxes (BBoxes)1. Although 3D motion matters
for tracking, previous approaches have greatly overlooked
it. Due to the Siamese paradigm, previous methods have to
transform the target template (initialized by the object point
cloud in the first target 3D BBox and updated with the last
prediction) from the world coordinate system to its own ob-
ject coordinate system. This transformation ensures that the
shared backbone extracts a canonical target feature, but it
adversely breaks the motion connection between consecu-
tive frames.

Based on the above observations, we propose to tackle
3D SOT from a different perspective instead of sticking to
the Siamese paradigm. For the first time, we introduce a
new motion-centric paradigm that localizes the target in
sequential frames without appearance matching by explic-
itly modeling the target motion between successive frames
(Fig. 1(b)). Following this paradigm, we design a novel
two-stage tracker M2-Track (Fig. 2). During the track-
ing, the 1st-stage aims at generating the target BBox by
predicting the inter-frame relative target motion. Utilizing
all the information from the 1st-stage, the 2nd-stage refines
the BBox using a denser target point cloud, which is aggre-
gated from two partial target views using their relative mo-
tion. We evaluate our model on KITTI [9], NuScenes [3]
and Waymo Open Dataset (WOD) [29], where NuScenes
and WOD cover a wide variety of real-world environments
and are challenging for their dense traffics. The experiment
results demonstrate that our model outperforms the exist-
ing methods by a large margin while running faster than the
previous top-performer [44]. Besides, the performance gap
becomes even more significant when more distractors exist
in the scenes. Furthermore, we demonstrate that our method
can directly benefit from appearance matching when inte-
grated with existing methods.

In summary, our main contributions are as follows: 1) A

1This is greatly held for rigid objects (e.g., cars), and it is approximately
true for non-rigid objects (e.g., pedestrian).

novel motion-centric paradigm for real-time LiDAR SOT,
which is free of appearance matching. 2) A specific second-
stage pipeline named M2-Track that leverages the motion-
modeling and motion-assisted shape completion. 3) State-
of-the-art online tracking performance with significant im-
provement on three widely adopted datasets (i.e., KITTI,
NuScenes and Waymo Open Dataset).

2. Related Work
Single Object Tracking. A majority of approaches are
built for camera systems and take 2D RGB images as in-
put [1, 14, 15, 34, 37, 45]. Although achieving promising
results, they face great challenges when dealing with low
light conditions or textureless objects. In contrast, LiDARs
are insensitive to texture and robust to light variations, mak-
ing them a suitable complement to cameras. This inspires
a new trend of SOT approaches [8, 10, 23, 26, 43, 44] which
operate on 3D LiDAR point clouds. These 3D methods all
inherit the Siamese paradigm based on appearance match-
ing. As a pioneer, [10] uses the Kalman filter to heuris-
tically sample a bunch of target proposals, which are then
compared with the target template based on their feature
similarities. The proposal which has the highest similarity
with the target template is selected as the tracking result.
Since heuristic sampling is time-consuming and inhibits
end-to-end training, [23, 43] propose to use a Region Pro-
posal Network (RPN) to generate high-quality target pro-
posals efficiently. Unlike [43] which uses an off-the-shelf
2D RPN operating on bird’s eye view (BEV), [23] adapts
SiamRPN [15] to 3D point clouds by integrating a point-
wise correlation operator with a point-based RPN [19]. The
promising improvement brought by [23] inspires a series of
follow-up works [8, 13, 26, 44]. They focus on either im-
proving the point-wise correlation operator [44] by feature
enhancement, or refining the point-based RPN [8, 13, 26]
with more sophisticated structures.
The appearance matching achieves excellent success in 2D
SOT because images provide rich texture, which helps the
model distinguish the target from its surrounding. How-
ever, LiDAR point clouds only contain geometric appear-
ances that lack texture information. Besides, objects in
LiDAR sweeps are usually sparse and incomplete. These
bring considerable ambiguities which hinder effective ap-
pearance matching. Unlike existing 3D approaches, our
work no more uses any appearance matching. Instead, we
examine a new motion-centric paradigm and show its great
potential for 3D SOT.
3D Multi-object Tracking / Detection. In parallel with
3D SOT, 3D multi-object tracking (MOT) focuses on track-
ing multiple objects simultaneously. Unlike SOT where
the user can specify a target of interest, MOT relies on
an independent detector [19, 27, 40] to extract potential tar-
gets, which obstructs its application for unfamiliar objects
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Figure 2. The overall architecture of M2-Track. Given two consecutive point clouds and the possible target BBox at the previous frame,
M2-Track first segments the target points from their surroundings via joint spatial-temporal learning. At the 1st stage, the model takes
in the target points and obtains a coarse BBox at the current frame via motion prediction and transformation. The coarse BBox is further
refined at the 2nd stage using motion-assisted shape completion. A detailed illustration with data flows is presented in the supplementary.

(categories unknown by the detector). Current 3D MOT
methods predominantly follow the “tracking-by-detection”
paradigm, which first detects objects at each frame and then
heuristically associates detected BBoxes based on objects’
motion or appearance [4, 16, 35, 42]. Recently, [17] pro-
poses to jointly perform detection and tracking by combin-
ing object detection and motion association into a unified
pipeline. Our motion-centric tracker draws inspiration from
the motion-based association in MOT. But unlike MOT,
which applies motion estimation on detection results, our
approach does not depend on any detector and can leverage
the motion prediction to refine the target BBox further.
Spatial-temporal Learning on Point Clouds. Our method
utilizes spatial-temporal learning to infer relative motion
from multiple frames. Inspired by recent advances in nat-
ural language processing [5, 30, 33], there emerges meth-
ods that adapt LSTM [12], GRU [41], or Transformer [7] to
model point cloud videos. However, their heavy structures
make them impractical to be integrated with other down-
stream tasks, especially for real-time applications. Another
trend forms a spatial-temporal (ST) point cloud by merging
multiple point clouds with a temporal channel added to each
point [11, 22, 24]. Treating the temporal channel as an ad-
ditional feature (like RGB or reflectance), one can process
such an ST point cloud using any 3D backbones [20, 21]
without structural modifications. We adopt this strategy to
process successive frames for simplicity and efficiency.

3. Methodology

3.1. Problem Statement

Given the initial state of a target, our goal is to local-
ize the target in each frame of an input sequence of a dy-
namic 3D scene. The frame at timestamp t is a LiDAR point
clouds Pt ∈ RNt×3 with Nt points and 3 channels, where

the point channels encode the xyz global coordinate. The
initial state of the target is given as its 3D BBox at the first
frame P1. A 3D BBox Bt ∈ R7 is parameterized by its cen-
ter (xyz coordinate), orientation (heading angle θ around
the up-axis), and size (width, length, and height). For the
tracking task, we further assume that the size of a target re-
mains unchanged across frames even for non-rigid objects
(for a non-rigid object, its BBox size is defined by its max-
imum extent in the scene). For each frame Pt, the tracker
outputs the amodal 3D BBox of the target with access to
only history frames {Pi}ti=1.

3.2. Motion-centric Paradigm

Given an input LiDAR sequence and the 3D BBox of
the target in the first frame, the motion-centric tracker aims
to localize the target frame by frame using explicit motion
modeling. At timestamp t (t > 1), the target BBox Bt−1

at frame t − 1 is known (either given as the initial state or
predicted by the tracker). Having two consecutive frames
Pt and Pt−1 as well as the target BBox Bt−1 in Pt−1, the
tracker predicts the relative target motion (RTM) between
the successive two frames. We only consider 4DOF in-
stead of 6DOF RTM since the targets are always aligned
with the ground plane (no roll and pitch). Specifically, a
4DOF RTM Mt−1,t ∈ R4 is defined between two target
BBoxes in frame t and t − 1, and contains the translation
offset (∆x,∆y,∆z) and the yaw offset ∆θ. We can formu-
late this process as a function F :

F : RNt×C × RNt−1×C × R7 7→ R4,

F(Pt,Pt−1,Bt−1) 7→ (∆x,∆y,∆z,∆θ);
(1)

Having the predicted RTM Mt−1,t, one can easily obtain
the target BBox in Pt using rigid body transformation:

Bt = Transform(Bt−1,Mt−1,t). (2)
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Figure 3. Stage I. Taking in the segmented target points P̃t−1,t

and the target BBox Bt−1 at the previous frame, the model out-
puts a relative target motion state (including an RTM Mt−1,t and
2D binary motion state logits), a refined target BBox B̃t−1 at the
previous frame, and a coarse target BBox Bt at the current frame.

3.3. M2-Track: Motion-Centric Tracking Pipeline

Following the motion-centric paradigm, we design a
two-stage motion-centric tracking pipeline M2-Track (il-
lustrated in Fig.2). M2-Track first coarsely localizes the
target through target segmentation and motion transforma-
tion at the 1st stage, and then refines the BBox at the 2nd

stage using motion-assisted shape completion. More details
of each module are given as follows.
Target segmentation with spatial-temporal learning
To learn the relative target motion, we first need to seg-
ment the target points from their surrounding. Taking as
inputs two consecutive frames Pt and Pt−1 together with
the target BBox Bt−1, we do this by exploiting the spatial-
temporal relation between the two frames (illustrated in
the first part of Fig.2). Similar to [18, 24], we construct
a spatial-temporal point cloud Pt−1,t ∈ R(Nt−1+Nt)×4 =

{pi = (xi, yi, zi, ti)}Nt−1+Nt

i=1 from Pt−1 and Pt by adding
a temporal channel to each point and then merging them to-
gether. Since there are multiple objects in a scene, we have
to specify the target of interest according to Bt−1. To this
end, we create a prior-targetness map St−1,t ∈ RNt−1+Nt

to indicate target location in Pt−1,t, where si ∈ St−1,t is
defined as:

si =

 0 if pi is in Pt−1 and pi is not in Bt−1

1 if pi is in Pt−1 and pi is in Bt−1

0.5 if pi is in Pt

(3)

Intuitively, one can regard si as the prior-confidence of pi
being a target point. For a point in Pt−1, we set its confi-
dence according to its location with respect to Bt−1. Since
the target state in Pt is unknown, we set a median score 0.5
for each point in Pt. Note that St−1,t is not 100% correct
for points in Pt−1 since Bt−1 could be the previous out-
put by the tracker. After that, we form a 5D point cloud by
concatenating Pt−1,t and St−1,t along the channel axis, and
use a PointNet [20] segmentation network to obtain the tar-
get mask, which is finally used to extract a spatial-temporal
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Figure 4. Stage II. Taking the segmented target points P̃t−1,t and
the coarse target BBox Bt as inputs, the model regresses a refined
target BBox B̃t on a denser point cloud, which is merged from two
partial target point clouds according to their relative motion state.

target point cloud P̃t−1,t ∈ R(Mt−1+Mt)×4, where Mt−1

and Mt are the numbers of target points in frame (t−1) and
t respectively.
Stage I: Motion-Centric BBox prediction
As shown in Fig. 3, we encode the spatial-temporal target
point clouds P̃t−1,t into an embedding using another Point-
Net encoder. A multi-layer perceptron (MLP) is applied on
top of the embedding to obtain the motion state of the target,
which includes a 4D RTM Mt−1,t and 2D binary classifica-
tion logits indicating whether the target is dynamic. To re-
duce accumulation errors while performing frame-by-frame
tracking, we generate a refined previous target BBox B̃t−1

by predicting its RTM with respect to Bt−1 through another
MLP (More details are presented in the supplementary). Fi-
nally, we can get the current target BBox Bt by applying
Eqn. 2 on Mt−1,t and B̃t−1 if the target is classified as dy-
namic. Otherwise, we simply set Bt as B̃t−1.
Stage II: BBox refinement with shape completion
Inspired by two-stage detection networks [27, 28], we im-
prove the quality of the 1st-stage BBox Bt by addition-
ally regressing a relative offset, which can be regarded as
an RTM between Bt and the refined BBox B̃t. Unlike de-
tection networks, we refine the BBox via a novel motion-
assisted shape completion strategy. Due to self-occlusion
and sensor movements, LiDAR point clouds suffer from
great incompleteness, which hinders precise BBox regres-
sion. To mitigate this, we form a denser target point cloud
by using the predicted motion state to aggregate the tar-
gets from two successive frames. According to the tem-
poral channel, two target point clouds P̃t−1 ∈ RMt−1×3

and P̃t ∈ RMt×3 from different timestamps are extracted
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from P̃t−1,t. Based on the motion state, we transform P̃t−1

to the current timestamp using Mt−1,t if the target is dy-
namic. The transformed point cloud (identical as P̃t−1 if
the target is static) is merged with P̃t to form a denser point
cloud P̂t ∈ R(Mt−1+Mt)×3. Similar to [22, 27], we trans-
form P̂t from the world coordinate system to the canonical
coordinate system defined by Bt. We apply a PointNet on
the canonical P̂t to regress another RTM with respect to Bt.
Finally, the refined target BBox B̃t is obtained by applying
Eqn. 2 on the regressed RTM and Bt.

3.4. Box-aware Feature Enhancement

As shown in [44], LiDAR SOT directly benefits from the
part-aware and size-aware information, which can be de-
picted by point-to-box relation. To achieve better target seg-
mentation, we construct a distance map Ct−1 ∈ RNt−1×9 by
computing the pairwise Euclidean distance between Pt−1

and 9 key points of Bt−1 (eight corners and one center ar-
ranged in a predefined order with respect to the canonical
box coordinate system). After that, we extend Ct−1 to size
(Nt−1+Nt)×9 with zero-padding (for points in Pt) and ad-
ditionally concatenate it with Pt−1,t and St−1,t. The overall
box-aware features are then sent to the PointNet segmenta-
tion network to obtain better target segmentation.

3.5. Implementation Details

Loss Functions. The loss function contains classifica-
tion losses and regression losses, which is defined as L =
λ1Lcls target + λ2Lcls motion + λ3(Lreg motion +Lreg refine prev +
Lreg 1st + Lreg 2nd). Lcls target and Lcls motion are standard
cross-entropy losses for target segmentation and motion
state classification at the 1st-stage (Points are considered as
the target if they are inside the target BBoxes; A target is re-
garded as dynamic if its center moves more than 0.15 meter
between two frames). All regression losses are defined as
the Huber loss [25] between the predicted and ground-truth
RTMs (inferred from ground-truth target BBoxes), where
Lreg motion is for the RTM between targets in the two frames;
Lreg refine prev is for the RTM between the predicted and the
ground-truth BBoxes at timestamp (t− 1); Lreg 1st / Lreg 2nd
is for the RTM between the 1st / 2nd-stage and ground-truth
BBoxes. We empirically set λ1 = λ2 = 0.1 and λ3 = 1.
Input & Motion Augmentation. Since SOT only takes
care of one target in a scene, we only need to consider a
subregion where the target may appear. For two consecu-
tive frames at (t − 1) and t timestamp, we choose the sub-
region by enlarging the target BBox at (t − 1) timestamp
by 2 meters. We then sample 1024 points from the subre-
gion respectively at (t − 1) and t timestamp to form Pt−1

and Pt. To simulate testing errors during the training, we
feed the model a perturbed BBox by adding a slight random
shift to the ground-truth target BBox at (t − 1) timestamp.
To encourage the model to learn various motions during the

Table 1. Comparison among our M2-Track and the state-of-the-
art methods on the KITTI datasets. Mean shows the average result
weighed by frame numbers. Bold and underline denote the best
performance and the second-best performance, respectively. Im-
provements over previous state-of-the-arts are shown in Italic.

Category Car Pedestrian Van Cyclist Mean
Frame Number 6424 6088 1248 308 14068

Su
cc

es
s

SC3D [10] 41.3 18.2 40.4 41.5 31.2
SC3D-RPN [43] 36.3 17.9 - 43.2 -

P2B [23] 56.2 28.7 40.8 32.1 42.4
3DSiamRPN [8] 58.2 35.2 45.6 36.1 46.6

LTTR [6] 65.0 33.2 35.8 66.2 48.7
PTT [26] 67.8 44.9 43.6 37.2 55.1
V2B [13] 70.5 48.3 50.1 40.8 58.4
BAT [44] 65.4 45.7 52.4 33.7 55.0

M2-Track (Ours) 65.5 61.5 53.8 73.2 62.9
Improvement ↓5.0 ↑13.2 ↑1.4 ↑7.0 ↑4.5

Pr
ec

is
io

n

SC3D [10] 57.9 37.8 47.0 70.4 48.5
SC3D-RPN [43] 51.0 47.8 - 81.2 -

P2B [23] 72.8 49.6 48.4 44.7 60.0
3DSiamRPN [8] 76.2 56.2 52.8 49.0 64.9

LTTR [6] 77.1 56.8 45.6 89.9 65.8
PTT [26] 81.8 72.0 52.5 47.3 74.2
V2B [13] 81.3 73.5 58.0 49.7 75.2
BAT [44] 78.9 74.5 67.0 45.4 75.2

M2-Track (Ours) 80.8 88.2 70.7 93.5 83.4
Improvement ↓ 1.0 ↑13.7 ↑3.7 ↑3.6 ↑8.2

training, we randomly flip both targets’ points and BBoxes
in their horizontal axes and rotate them around their up-axes
by Uniform[−10◦,10◦]. We also randomly translate the tar-
gets by offsets drawn from Uniform [-0.3, 0.3] meter.

4. Experiments
4.1. Experiment Setups

Datasets. We extensively evaluate our approach on three
large-scale datasets: KITTI [9], NuScenes [3] and Waymo
Open Dataset (WOD) [29]. We follow [10] to adapt these
datasets for 3D SOT by extracting the tracklets of anno-
tated tracked instances from each of the scenes. KITTI
contains 21 training sequences and 29 test sequences. We
follow previous works [10, 23, 44] to split the training set
into train/val/test splits due to the inaccessibility of the
test labels. NuScenes contains 1000 scenes, which are di-
vided into 700/150/150 scenes for train/val/test. Officially,
the train set is further evenly split into “train track” and
“train detect” to remedy overfitting. Following [44], we
train our model with “train track” split and test it on the
val set. WOD includes 1150 scenes with 798 for training,
202 for validation, and 150 for testing. We do training and
testing respectively on the training and validation set. Note
that NuScenes and WOD are much more challenging than
KITTI due to larger data volumes and complexities. The
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Table 2. Comparison of M2-Track against state-of-the-arts on the NuScenes and Waymo Open Dataset.

Dataset NuScenes Waymo Open Dataset
Category Car Pedestrian Truck Trailer Bus Mean Vehicle Pedestrian Mean

Frame Number 64,159 33,227 13,587 3,352 2,953 117,278 1,057,651 510,533 1,568,184

Su
cc

es
s

SC3D [10] 22.31 11.29 30.67 35.28 29.35 20.70 - - -
P2B [23] 38.81 28.39 42.95 48.96 32.95 36.48 28.32 15.60 24.18
BAT [44] 40.73 28.83 45.34 52.59 35.44 38.10 35.62 22.05 31.20

M2-Track (Ours) 55.85 32.10 57.36 57.61 51.39 49.23 43.62 42.10 43.13
Improvement ↑15.12 ↑3.27 ↑12.02 ↑5.02 ↑15.95 ↑11.14 ↑8.00 ↑20.05 ↑11.92

Pr
ec

is
io

n SC3D [10] 21.93 12.65 27.73 28.12 24.08 20.20 - - -
P2B [23] 43.18 52.24 41.59 40.05 27.41 45.08 35.41 29.56 33.51
BAT [44] 43.29 53.32 42.58 44.89 28.01 45.71 44.15 36.79 41.75

M2-Track (Ours) 65.09 60.92 59.54 58.26 51.44 62.73 61.64 67.31 63.48
Improvement ↑21.80 ↑7.60 ↑16.96 ↑13.37 ↑23.43 ↑17.02 ↑17.49 ↑30.52 ↑21.73

Pe
de
st
ria
n

Ground Truth BAT Ours

C
yc
lis
t

C
ar

Figure 5. Visualization results. Top: Distractor case in KITTI. Middle: Large motion case in KITTI. Bottom: Case in NuScenes.

LiDAR sequences are sampled at 10Hz for both KITTI and
WOD. Though NuScenes samples at 20Hz, it only provides
the annotations at 2Hz. Since only annotated keyframes
are considered, such a lower frequency for keyframes in-
troduces additional difficulties for NuScenes. Evaluation
Metrics. We evaluate the models using the One Pass Eval-
uation (OPE) [36]. It defines overlap as the Intersection
Over Union (IOU) between the predicted and ground-truth
BBox, and defines error as the distance between two BBox
centers. We report the Success and Precision of each model
in the following experiments. Success is the Area Under the

Curve (AUC) with the overlap threshold varying from 0 to
1. Precision is the AUC with the error threshold from 0 to
2 meters.

4.2. Comparison with State-of-the-arts

Results on KITTI. We compare M2-Track with seven top-
performance approaches [6, 8, 10, 13, 23, 26, 43, 44], which
have published results on KITTI. As shown in Tab. 1,
our method benefits both rigid and non-rigid object track-
ing, outperforming current approaches under all categories
except Car, where PTT [26] and V2B [13] surpass us
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Table 3. Influence of Motion Augmentation. “aug” stands for mo-
tion augmentation.

Method Success Precision

BAT [44] w/o aug 65.37 78.88
BAT [44] w/ aug 63.59 ↓ 1.78 76.99 ↓ 1.89

P2B [23] w/o aug 56.20 72.80
P2B [23] w/ aug 55.21 ↓ 0.99 71.51 ↓ 1.29

M2-Track w/o aug 65.29 77.12
M2-Track w/ aug 65.49 ↑ 0.20 80.81 ↑ 3.69

by minor margins. The lack of car distractors in the
scenes makes our improvement over previous appearance-
matching-based methods minor for cars. But our im-
provement for pedestrians is significant (13.2%/13.7% in
terms of success/precision) because pedestrian distractors
are widespread in the scenes (see the supplementary for
more details about distractors). Besides, methods using
point-based RPN [8, 23, 26, 44] all perform badly on cy-
clists, which are relative small in size but usually move fast
across time. The second row in Fig. 5 shows the case in
which a cyclist moves rapidly across frames. Our method
perfectly keeps track of the target while BAT almost fails.
To handle such fast-moving objects, [6, 43] leverage BEV-
based RPN to generate high-recall proposals from a larger
search region. In contrast, we handle this simply by motion
modeling without sophisticated architectures.
Results on NuScenes & WOD. We select three representa-
tive open-source works: SC3D [10], P2B [23] and BAT [44]
as our competitors on NuScenes and WOD. The results
on NuScenes except for the Pedestrian class are provided
by [44]. We use the published codes of the competitors to
obtain other results absent in [44]. SC3D [10] is omitted
for WOD comparison due to its costly training time. As
shown in Tab. 2, M2-Track exceeds all the competitors un-
der all categories, mostly by a large margin. On such two
challenging datasets with pervasive distractors and drastic
appearance changes, the performance gap between previ-
ous approaches and M2-Track becomes even larger (e.g.,
more than 30% precision gain on Waymo Pedestrian). Note
that for large objects (i.e., Truck, Trailer, and Bus), even if
the predicted centers are far from the target (reflected from
lower precision), the output BBoxes of the previous model
may still overlap with the ground truth (results in higher
success). In contrast, the motion modeling helps to improve
not only the success but also the precision by a large margin
(e.g., +23.43% gain on Bus) for large objects. Visualization
results are provided in Fig. 5 and the supplementary.

4.3. Analysis Experiments

In this section, we extensively analyze M2-Track with a
series of experiments. Firstly, we compare the behaviors of

Table 4. Integration with Appearance Matching.

Method Success Precision

PTT [26] 67.80 81.80
V2B [13] 70.50 81.30

M2-Track 65.49 80.81
M2-Track + BAT [44] 69.22 ↑ 3.73 81.09 ↑ 0.28
M2-Track + P2B [23] 70.21 ↑ 4.72 81.80 ↑ 0.99
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Figure 6. Robustness analysis with variant numbers of distractors.

M2-Track and previous appearance-matching-based meth-
ods in different setups. Afterward, we equip M2-Track with
the previous appearance matching approaches to show its
potential. Finally, we study the effectiveness of each com-
ponent in M2-Track. All the experiments are conducted on
the Car category of KITTI unless otherwise stated.
Robustness to Distractors. Though achieving promising
improvement on NuScenes and WOD, M2-Track brings lit-
tle improvement on the Car of KITTI. To explain this, we
look at the scenes of three datasets and find that the sur-
roundings of most cars in KITTI are free of distractors,
which are pervasive in NuScenes and WOD (see the supple-
mentary). Although appearance-matching-based methods
are sensitive to distractors, they provide more precise re-
sults than our motion-based approach in distractor-free sce-
narios. But as the number of distractors increases, these
methods suffer from noticeable performance degradation
due to ambiguities from the distractors. To verify this hy-
pothesis, we randomly add K car instances to each scene of
KITTI, and then re-train and evaluate different models using
this synthesis dataset. As shown in Fig. 6, M2-Track con-
sistently outperforms the other two matching-based meth-
ods in scenes with more distractors, and the performance
gap grows as K increases. Thanks to the box-awareness,
BAT [44] can aid such ambiguities to some extent. But our
performance is more stable than BAT’s when more distrac-
tors are added. Besides, the first row in Fig. 5 shows that,
when the number of points decreases due to occlusion, BAT
is misled by a distractor and then tracks off course, while
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Table 5. Results of M2-Track when different modules are ablated. The last row denotes the full model. Bold denotes the largest change.

Box Aware
Enhancement

Prev Box
Refinement

Motion
Classification Stage-II

Kitti NuScenes

Success Precision Success Precision

✓ ✓ ✓ 62.00 ↓ 3.49 76.15 ↓ 4.66 53.68 ↓ 2.17 62.47 ↓ 2.62
✓ ✓ ✓ 64.23 ↓ 1.26 78.12 ↓ 2.69 54.70 ↓ 1.15 61.94 ↓ 3.15
✓ ✓ ✓ 65.74 ↑ 0.25 80.29 ↓ 0.52 54.88 ↓ 0.97 64.40 ↓ 0.69
✓ ✓ ✓ 61.29 ↓ 4.20 77.31 ↓ 3.50 54.66 ↓ 1.99 64.15 ↓ 0.94
✓ ✓ ✓ ✓ 65.49 80.81 55.85 65.09

M2-Track keeps holding tight to the ground truth. All these
observations demonstrate the robustness of our approach.
Influence of Motion Augmentation. We improve the per-
formance of M2-Track using the motion augmentation in
training, which is not adopted in previous approaches. For
a fair comparison, we re-train BAT [44] and P2B [23] using
the same configurations in their open-source projects except
additionally adding motion augmentation. Tab. 3 shows that
motion augmentation instead has an adverse effect on both
BAT and P2B. Our model benefits from motion augmenta-
tion since it explicitly models target motion and is robust to
distractors. In contrast, motion augmentation may move a
target closer to its potential distractors and thus harm those
appearance-matching-based approaches.
Combine with Appearance Matching. Although our
motion-centric model outperforms previous methods from
various aspects, appearance-matching-based approaches
still show their advantage when dealing with distractor-
free scenarios. To combine the advantages of both motion-
based and matching-based methods, we apply BAT/P2B as
a “re-tracker” to fine-tune the results of M2-Track. Specif-
ically, we directly utilize BAT/P2B to search for the tar-
get in a small neighborhood of the M2-Track’s output.
Tab. 4 confirms that M2-Track can further benefit from
appearance matching, even under this naive combination.
On KITTI Car, both combined models outperform the top-
ranking PTT [26] by noticeable margins. We believe that
one can further boost 3D SOT by combining motion-based
and matching-based paradigms with a more delicate design.
Ablations. In Tab. 5, we conduct an exhaustive ablation
study on both KITTI and NuScenes to understand the com-
ponents of M2-Track. Specifically, we respectively ab-
late the box-aware feature enhancement, previous BBox re-
finement, binary motion classification and 2nd stage from
M2-Track. In general, the effectiveness of the components
varies across the datasets, but removing any one of them
causes performance degradation. The only exception is the
binary motion classification used in the 1st stage, which
causes a slight drop on KITTI in terms of success. We sup-
pose this is due to the lack of static objects for KITTI’s cars,
which results in a biased classifier. Besides, Tab. 5 shows
that M2-Track keeps performing competitively even with
module ablated, especially on NuScenes. This reflects that

the main improvement of M2-Track is from the motion-
centric paradigm instead of the specific pipeline design.

4.4. Running Overheads

M2-Track achieves exciting performance with just a
simple PointNet [20]. Compared with other hierarchical
backbones (e.g., [21]) used in previous works, PointNet
saves more computational overheads since it does not per-
form any sampling or grouping operations, which are not
only time-consuming but also memory-intensive. There-
fore, M2-Track runs 1.67× faster as the previous top-
performer BAT [44] (only consider model forwarding time)
but saves 31.1% memory footprint. Using a more advanced
backbone (e.g., [21,31]) may further boost the performance
but inevitably slows down the running speed. Since we fo-
cus on online tracking, we prefer a simpler backbone to bal-
ance performance and efficiency.

5. Conclusions
In this work, we revisit 3D SOT in LiDAR point

clouds and propose to handle it with a new motion-centric
paradigm, which is proven to be an excellent complement
to the matching-based Siamese paradigm. In addition to the
new paradigm, we propose a specific motion-centric track-
ing pipeline M2-Track, which significantly outperforms the
state-of-the-arts from various aspects. Extensive analysis
confirms that the motion-centric model is robust to dis-
tractors and appearance changes and can directly benefit
from previous matching-based trackers. We believe that the
motion-centric paradigm can serve as a primary principle to
guide future architecture designs.
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