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Abstract

Existing studies for gait recognition are dominated by
2D representations like the silhouette or skeleton of the
human body in constrained scenes. However, humans live
and walk in the unconstrained 3D space, so projecting
the 3D human body onto the 2D plane will discard a
lot of crucial information like the viewpoint, shape, and
dynamics for gait recognition. Therefore, this paper aims
to explore dense 3D representations for gait recognition
in the wild, which is a practical yet neglected problem.
In particular, we propose a novel framework to explore
the 3D Skinned Multi-Person Linear (SMPL) model of the
human body for gait recognition, named SMPLGait. Our
framework has two elaborately-designed branches of which
one extracts appearance features from silhouettes, the other
learns knowledge of 3D viewpoints and shapes from the
3D SMPL model. In addition, due to the lack of suitable
datasets, we build the first large-scale 3D representation-
based gait recognition dataset, named Gait3D. It contains
4,000 subjects and over 25,000 sequences extracted from
39 cameras in an unconstrained indoor scene. More
importantly, it provides 3D SMPL models recovered from
video frames which can provide dense 3D information of
body shape, viewpoint, and dynamics. Based on Gait3D,
we comprehensively compare our method with existing
gait recognition approaches, which reflects the superior
performance of our framework and the potential of 3D
representations for gait recognition in the wild. The code
and dataset are available at: https://gait3d.github.io.

1. Introduction
Visual gait recognition, which aims to identify a target

person using her/his walking pattern in a video, has been
studied for over two decades [29, 41]. Existing approaches
and datasets are dominated by 2D gait representations
such as silhouette sequences [54], Gait Energy Images

*This work was done when Jinkai Zheng was an intern at Explore
Academy of JD.com.

†Corresponding author.

(a) Silhouettes

(b) Skeletons

(c) 3D Meshes

Figure 1. Different gait representations of the same person from
two viewpoints. Compared with silhouettes and skeletons, 3D
meshes retain the shapes and viewpoints of the human body in
the 3D space. (Best viewed in color.)

(GEIs) [10], 2D skeletons [61], as shown in Figure 1. How-
ever, the human body is a 3D non-rigid object, so the 3D-to-
2D projection discards a lot of useful information of shapes,
viewpoints, and dynamics while presenting ambiguity for
gait recognition. Therefore, this paper is focused on 3D gait
recognition that is valuable yet neglected by the community.

Recently, deep learning-based methods have dominated
the state-of-the-art performance on the widely adopted
2D gait recognition benchmarks like CASIA-B [36] and
OU-MVLP [35] by directly learning discriminative fea-
tures from silhouette sequences [5, 8, 55] or GEIs [44].
Despite the excellent results on the in-the-lab datasets,
these methods cannot work well in the wild scenarios
which have more diverse 3D viewpoints of cameras and
more complex environmental interference factors like oc-
clusions [61]. Although several works exploit 3D cylin-
ders [3] or 3D skeletons [40], these sparse 3D models also
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lose helpful information of human bodies like viewpoints
and shapes. Fortunately, the development of parameter-
ized human body models like the Skinned Multi-Person
Linear (SMPL) model [27] and 3D human mesh recovery
approaches [17,19,33] makes it possible to estimate precise
3D meshes and viewpoints of human bodies in video
frames. The advantages of 3D meshes for gait recognition
are two-fold: 1) the 3D mesh can provide not only the
pose but also the shape of the human body in the 3D space,
which is crucial for learning discriminative features of gait,
and 2) the 3D viewpoint can be explored to normalize the
orientations of human bodies during cross-view matching.

To this end, we design a novel 3D SMPL model-based
Gait recognition framework, i.e., SMPLGait, to explore
the 3D gait representations for human identification. Our
SMPLGait framework has two branches based on deep
neural networks. One branch takes the silhouette sequence
of a person as the input to learn appearance features like
clothing, hairstyle, and belongings. However, due to the
extreme viewpoint changes in the wild, the shape of the
human body can be distorted, which makes the appearance
ambiguous, as shown in Figure 1. To overcome this
challenge, we design a 3D Spatial-Transformation Network
(3D-STN) as the other branch to learn 3D knowledge of
viewpoint and shape from the 3D human mesh. The 3D-
STN takes the 3D SMPL model of each frame as the input
to learn a spatial transformation matrix. By applying the
spatial transformation matrix to the appearance features,
these features from different viewpoints are normalized in
the latent space. By this means, the gait sequences of the
same person will be closer in the feature space.

Nevertheless, there is no suitable dataset that provides
3D meshes of human bodies in the wild. Therefore, to
facilitate the research, we build the first large-scale 3D
mesh-based gait recognition dataset, named Gait3D, from
high-resolution videos captured in the wild. Compared
to existing datasets listed in Table 1, the Gait3D dataset
has the following featured properties: 1) Gait3D contains
4,000 subjects with over 25,000 sequences captured by 39
cameras in an unconstrained indoor scene which makes
it scalable for research and applications. 2) It provides
precise 3D human meshes recovered from video frames
which can provide 3D pose and shape of human bodies as
well as accurate viewpoint parameters. 3) It also provides
conventional 2D silhouettes and keypoints which can be
explored for gait recognition with multi-modal data.

In summary, the contributions of this paper are as fol-
lows:

• We make one of the first attempts towards 3D gait
recognition in the real-world scenario, which aims to
explore dense 3D representations of the human body
for gait recognition.

• We propose a novel 3D gait recognition framework
based on the SMPL model, named SMPLGait, to
explore 3D human meshes for gait recognition.

• We build the first large-scale 3D gait recognition
dataset, named Gait3D, which provides the 3D human
meshes of gait collected from unconstrained scenarios.

Through comprehensive experiments, we not only evaluate
existing 2D silhouettes/skeleton-based approaches but also
demonstrate the effectiveness of the proposed SMPLGait
method, which reflects the potential of 3D representations
for gait recognition. Moreover, the combination of 3D and
2D representations further improves the performance which
shows the complementarity of multi-modal representations.

2. Related Work
Gait Recognition. We review the 2D and 3D

representations-based gait recognition methods separately.
2D gait recognition methods can be classified into

model-based and model-free approaches [41]. Early
methods mainly belong to the model-based which
defines a structural human body model. Then, gait
patterns are modeled by parameters like lengths of
limbs, angles of joints, and relative positions of body
parts [3, 46]. The model-free methods mainly adopt the
silhouettes obtained by background subtraction from
video frames [5, 8, 10, 14, 15, 21, 31, 44, 55, 56]. In
particular, Han et al. proposed to aggregate a sequence of
silhouettes into a compact Gait Energy Image (GEI) [10]
which was widely used by following methods [31, 44].
Recently, due to the success of deep learning for computer
vision tasks [23–25, 48–52], deep Convolutional Neural
Networks (CNNs) also dominated the performance of gait
recognition. For example, Shiraga et al. [31] and Wu et
al. [44] proposed to learn effective features from GEIs
by and significantly outperformed previous methods. The
most recent methods started to learn discriminative features
directly from the silhouette sequences using larger CNNs
or multi-scale structures and achieved the state-of-the-art
results [5, 8, 15, 21]. Despite the excellent performance
on in-the-lab datasets, e.g., CASIA-B and OU-LP, these
methods usually fail in the wild as shown in the experiments
on GREW [61] and our Gait3D.

3D representations has also been studied since the
early years of gait recognition. For example, Urtasun
and Fua [40] proposed an approach to gait analysis
that depended on 3D temporal motion models using an
articulated skeleton. Zhao et al. [57] applied a local
optimization algorithm to track 3D motion for gait
recognition. Yamauchi et al. [47] proposed the first method
using 3D pose estimated from RGB frames for walking
human recognition. Ariyanto and Nixon [3] built a 3D
voxel-based dataset using a complex multi-camera system
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Figure 2. The architecture of the SMPLGait framework for 3D gait recognition in the wild.

and proposed a structural model of articulated cylinders
with 3D Degrees of Freedom at each joint to model the
human lower legs. However, these methods either discard
rich 3D information like viewpoints and shapes or are
limited by devices for real-world applications. In summary,
to overcome the problem of 2D methods and explore 3D
representations for gait recognition in the wild, we aim to
explore 3D mesh as a rich representation with the viewpoint
and shape of the human body.

Gait Recognition Datasets. Current publicly available
gait recognition datasets mainly belong to two series, i.e.,
the CASIA series [36, 43, 54] and the OU-ISIR series [1,
13, 16, 28, 38, 39, 45] as listed in Table 1. The CASIA
series were built in the early research of gait recognition,
which facilitated the initial exploration of RGB images and
silhouettes for gait representations [10, 36]. Despite its
smaller number of subjects, the CASIA-B [54] is still the
most widely used dataset for the evaluation of silhouette-
based methods. The OU-ISIR series were first built ten
years ago and developed comprehensive variants such as
walking with different speeds [38], clothing styles [13], and
bags [39], subjects of different ages [45], and annotations of
2D pose [1]. Due to their large population, the OU-LP [16]
and OU-MVLP [35] also became the most popular datasets
for current research. However, the above datasets were
collected in constrained scenes like labs [16, 54] or a small
defined area in a campus [30,43]. Most recently, researchers
started to narrow the gap between in-the-lab research and
real-world application. As a contemporaneous study of our
work, Zhu et al. [61] constructed the GREW dataset from
natural videos collected in an open area. However, there
is no dataset that provides rich 3D representations for gait
recognition in the wild. Therefore, we need to build a
new dataset that is collected from complex scenes and with
dense 3D meshes for gait recognition in the wild.

3D Human Mesh Recovery. 3D representations has
attracted a lot of attention in the computer vision com-
munity [26, 59]. The 3D human body can be represented
by point clouds [22], voxels [40], parameterized blend
shape [2], etc. Among them, the Skinned Multi-Person

Linear (SMPL) model [27] is a skinned vertex-based model
that can accurately represent a wide variety of body shapes
in natural human poses. With the SMPL model, an arbitrary
3D human body can be represented by a linear combination
of a group of shape, pose, scale, and viewpoint parameters.
Based on the SMPL model, a series of 3D human mesh
recovery approaches are developed to estimate accurate
3D shapes, poses, and viewpoints of human bodies from
natural images [17, 19, 33, 34]. These methods provide us
an opportunity to obtain 3D human meshes from in-the-wild
videos for 3D mesh-based gait recognition.

3. The 3D Gait Recognition Method
3.1. Overview

The overall architecture of the proposed 3D SMPL-
based Gait Recognition framework, SMPLGait, is shown
in Figure 2. There are two branches of the framework. For
the first branch, we take the sequence of silhouettes as input
which has a rich knowledge of the appearance and use a
CNN-based model to extract 2D spatial features from each
frame. For the second branch, the SMPLs of the human
body are fed into the 3D-Spatial-Transformation Network
(3D-STN), which aims to learn the latent transformation
matrixes from the 3D viewpoints and shapes. Then the 3D
Spatial Transformation Module aligns the 2D appearance
features in the latent space using the learned transformation
matrixes. Finally, the transformed feature of each frame is
aggregated into a sequence-level feature for sequence-to-
sequence matching in training or inference. Next, we will
introduce the above modules in detail.

3.2. Network Structure

The Silhouette Learning Network (SLN) aims to learn
the appearance knowledge of humans from silhouettes that
contain 2D spatial information like clothing and hairstyle.
The SLN has six convolutional layers which are similar to
the backbone of GaitSet [5]. As is shown in Figure 2, the
sequences of silhouettes are fed into a CNN. We formulate
Xsil = {xi}Li=1 as the input sequence, where xi ∈ RH×W
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Dataset Year Subject # Seq # Cam # Data Type Speed Wild 3D-View

CASIA-A [43] 2003 20 240 3 RGB, Silh. ✗ ✗ ✗

USF HumanID [30] 2005 122 1,870 2 RGB ✗ ✗ ✗

CASIA-B [54] 2006 124 13,640 11 RGB, Silh. ✗ ✗ ✗

CASIA-C [36] 2006 153 1,530 1 Infrared, Silh. ✓ ✗ ✗

OU-ISIR Speed [38] 2010 34 306 1 Silh. ✓ ✗ ✗

OU-ISIR-LP [16] 2012 4007 31,368 2 Silh. ✗ ✗ ✗

OU-LP Bag [39] 2018 62,528 187,584 1 Silh. ✗ ✗ ✗

OU-MVLP [35] 2018 10,307 288,596 14 Silh. ✗ ✗ ✗

OU-MVLP Pose [1] 2020 10,307 288,596 14 2D Pose ✗ ✗ ✗

GREW [61] 2021 26,345 128,671 882 Silh., 2D/3D Pose, Flow ✗ ✓ ✗

Gait3D - 4,000 25,309 39 Silh., 2D/3D Pose, 3D Mesh&SMPL ✓ ✓ ✓

Table 1. Comparison of publicly available datasets for gait recognition. Speed, Wild, and 3D-View indicate whether the dataset contains
inconstant walking speed, is captured in the wild, and has viewpoint variations in the 3D space, respectively.

is the i-th binary frame, L is the length of the sequence, H
and W are the height and width of the silhouette image. For
a frame xi, the process can be formulated as:

Fi = F (xi), (1)

where F (·) is the CNN-based backbone and Fi ∈ Rh×w is
the frame-level feature map for frame xi

1.
The 3D Spatial Transformation Network (3D-STN) is

proposed to solve viewpoint changes in real 3D scenarios.
3D SMPL parameters related to 3D viewpoints, shapes,
and poses are the input of this module. Assuming Ysp =
{yi}Li=1 is the input SMPLs, where yi ∈ RD is the SMPL
vector of i-th frame, D is the dimension of the SMPL
vector which contains 24×3 dimensions of 3D human body
pose, 10 dimensions of 3D body shape, and 3 dimensions
of camera scale and translation parameters. The 3D-STN
consists of three fully connected (FC) layers with neuron
number = 128 ⇒ 256 ⇒ h × w, where h and w are the
height and width of the feature map from the Silhouette
Learning Network. Each FC layer is followed by batch
normalization and the ReLU activation function. We use
dropout for the last two FC layers to eliminate overfitting.
The forward process of 3D-STN can be formulated as:

gi = G(yi), (2)

where G(·) is the 3D-STN and gi is the frame-level trans-
formation vector for frame i.

The 3D Spatial Transformation Module is designed to
align the 2D appearance feature map Fi ∈ Rh×w using the
transformation vector gi in the feature space, as shown in
Figure 2. We first reshape the transformation vector gi to a
matrix Gi ∈ Rw×h. Then, for convenience of computation,
we expand Fi and Gi to square matrixes by zero padding
on the short edge. After that, we apply Gi to Fi by

F̂i = Fi · (I +Gi), (3)

1For convenience of notation, we omit the channel of the feature map.

where I is an identity matrix and · is matrix multiplication.
At last, we adopt Set Pooling (SP) and Horizontal Pyramid
Pooling (HPP) in GaitSet [5] to aggregate F̂i into the final
feature vector for sequence-to-sequence matching. For
more details of the SMPLGait framework, please refer to
the supplementary material.

3.3. Training and Inference

Our two-branch 3D gait recognition framework is trained
in an end-to-end manner. The network of our framework is
optimized by a loss function with two components:

L = αLtri + βLce, (4)

where Ltri is the triplet loss, Lce is the cross entropy loss.
α and β are the weighting parameters.

During inference, we use the sequences of silhouettes
and SMPLs as the inputs of the two branches, respectively.
The cosine similarity is used to measure the similarity
between a query-gallery pair.

4. The Gait3D Benchmark
To facilitate the research of 3D gait recognition, we

present a novel large-scale dataset, named Gait3D, which
has several featured properties compared to existing
datasets in Table 1. First of all, the Gait3D dataset consists
of 4,000 subjects, 25,000+ sequences, and over 3 million
bounding boxes captured by cameras of arbitrary 3D
viewpoints, which makes it more scalable for training deep
CNNs. Moreover, it provides accurate 3D human meshes
estimated from video frames, which contains the poses and
shapes of human bodies as well as viewpoints in the 3D
space. Furthermore, Gait3D also provides 2D silhouettes
and 2D/3D keypoints obtained by the state-of-the-art image
segmentation and pose estimation methods fine-tuned on
our dataset. Therefore, multi-modal data can be explored
for gait recognition. In addition, Gait3D is collected in a
large supermarket in which people usually walk at irregular
speeds and routes, and can be occluded by other people or
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objects. The above properties also make Gait3D a scalable
but challenging dataset for gait recognition which can be
reflected by the evaluation in Section 5.

4.1. Data Collection and Pre-processing

To collect a high-quality in-the-wild dataset for real
applications, we collect the seven-day raw videos from 39
cameras mounted in a large supermarket. The scenes of
the cameras include the entrance, the goods shelf area, the
freezer area, the dining area, the checkout counter, etc. For
the videos each day, we randomly sample two segments
of continuous two-hour videos. At last, we obtain about
1,090 hours videos with 1,920 × 1,080 resolution and 25
FPS. Note that, we are authorized by the management of
the supermarket to access and process the data for research
purposes. In addition, all subjects were noticed that the data
is collected only for research purposes. With the videos, we
use the open-source FFmpeg 2 to decode the raw videos into
frames at 25 FPS to keep the continuity of gait sequences.
To guarantee the high quality of the dataset, the annotation
process is performed by three main steps as follows.

4.2. Dataset Construction

4.2.1 Person detection and tracking from frames

For each frame extracted from the raw videos, we adopt the
CenterNet [60] fine-tuned on our dataset as the person de-
tector since it is an efficient anchor-free object detector 3. To
achieve accurate person tracking in videos, we exploit the
Intersection-over-Union (IoU) and person re-identification
(ReID) features of bounding boxes in two adjacent frames
to measure their similarity. The ReID feature is extracted by
an open-source person ReID framework, FastReID 4 [11]
pretrained on several public person ReID datasets. When
two persons are highly overlapped, the tracking algorithm
can easily misjudge them as one person, i.e., ID switching.
To solve this problem, we employ human annotators to
clean sequences that may contain more than one pedestrian.
By this means, we guarantee that each sequence only
belongs to one person. Then, we discard the sequences
shorter than 25 frames or longer than 500 frames and obtain
about 50,000 sequences in total.

4.2.2 Cross-camera sequence matching

With the above sequences, we should cluster the sequences
of the same person in all cameras. To achieve effective and
efficient cross-camera matching of the same person, we also
utilize the person ReID features obtained by FastReID [11].
For each sequence, we first use a pose estimation model,

2http://ffmpeg.org/ under the GNU LGPL License v2.1.
34,000 person bounding boxes are labeled for fine-tuning the detector.
4https://github.com/JDAI-CV/fast-reid under the

Apache 2.0 license.

(d) Silhouettes

(e) 2D Skeletons

(c) 3D Skeletons

(b) 3D Meshes

(a) RGB Frames

Figure 3. Examples of gait representations in the Gait3D dataset.
The sizes are normalized for visualization. (Best viewed in color.)

i.e., HRNet 5 [42] fine-tuned on our dataset 6, to select
a high-quality frame for cross-camera matching. After
that, we utilize FastReID to extract the features of the
selected frames of all sequences. Through an unsupervised
clustering method, i.e., DBSCAN [7], we roughly obtain
5,336 clusters of sequences. Then, we employ human
annotators to filter out the outlier sequences in each group.
By discarding the groups containing only one sequence,
we finally obtain 4,000 subjects and 25,309 sequences for
generating the gait representations.

4.2.3 Generation of gait representations

With the clean sequences of 4,000 IDs, we generate the 3D
SMPL parameter, 3D mesh, 3D pose, 2D silhouette, and 2D
pose for each frame. For the 3D SMPL, 3D mesh, and 3D
pose, we exploit a state-of-the-art 3D human mesh recovery
method, ROMP 7 [33], since it can efficiently output these
three representations in an end-to-end framework. For the
2D silhouette, we use the semantic segmentation method,
HRNet-segmentation 8 [42], to obtain the silhouette of the
person in each frame. For the 2D pose, we also utilize
the HRNet to estimate the 2D keypoints of the person in
each frame. We keep the original resolution and aspect
ratio of the frame without resizing or normalization. Some
examples of gait representations in our dataset are shown
in Figure 3. It is worth noting that we will only release
the generated gait representations but not release any RGB
frames to protect the privacy of the subjects.

5https://github.com/HRNet/HRNet- Human- Pose-
Estimation under the MIT License.

64,000 images are labeled to fine-tune the pose estimator.
7https://github.com/Arthur151/ROMP under the MIT

License.
8https : / / github . com / HRNet / HRNet - Semantic -

Segmentation under the MIT license.
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Figure 4. Statistics about the Gait3D dataset.

4.3. Dataset Statistics and Evaluation Protocol

The statistics about the sizes of frames, ID numbers over
sequence numbers, and sequence numbers over sequence
lengths are shown in Figure 4. From Figure 4 (a), we can
find that most frames range from 100 ∼ 400 × 200 ∼ 800
which are larger than person bounding boxes of existing
datasets. Figure 4 (b) shows that most IDs have 2 ∼ 25
sequences, which guarantees the high reappearance times
of subjects. Figure 4 (c) reflects that most sequences
are longer than 50 frames (2 seconds) and the longest
sequence has 500 frames, which reflects the complexity of
the gait sequences in the unconstrained scenes. The above
statistics demonstrate that the Gait3D dataset is scalable but
challenging for gait recognition research.

To facilitate the research, we split the 4,000 IDs of the
Gait3D dataset into the train/test subsets with 3,000/1,000
IDs, respectively. For the test set, we further randomly
select one sequence from each ID to build the query set with
1,000 sequences, while the rest of the sequences become the
gallery set with 5,369 sequences. Our evaluation protocol is
based on the open-set instance retrieval setting like existing
gait recognition datasets [16] and the person ReID task [58].
Given a query sequence, we measure its similarity between
all sequences in the gallery set. Then a ranking list of
the gallery set is returned by the descending order of the
similarities. We report the average Rank-1 and Rank-
5 identification rates over all query sequences. We also
adopt the mean Average Precision (mAP) and mean Inverse
Negative Penalty (mINP) [53] which consider the recall of
multiple instances and hard samples.

5. Experiments

In the experiments, we first evaluate several State-Of-
The-Art (SOTA) 2D gait recognition methods and our
SMPLGait on the Gait3D dataset. Then, we analyze the
influence of the frame size, the sequence length, and the
scale of training IDs on the performance of gait recognition.

5.1. Evaluation of Existing Methods

Here, we evaluate eight SOTA 2D gait recognition meth-
ods including six model-free methods and two model-based
methods. We also compare our 3D gait recognition method
(SMPLGait) with these methods.

5.1.1 Model-free Approaches

The details of model-free approaches are as follows:
1) GEINet [31] is one of the first methods that adopts a

four-layer CNN to learn gait features from GEIs using the
cross-entropy loss.

2) GaitSet [5] is the representative method that utilizes a
10-layer CNN to directly learn discriminative gait features
from silhouette sequences. The GaitSet is trained by the
batch all triplet loss [12].

3) GaitPart [8] adopts the idea of multi-scale feature
learning. It horizontally divides a silhouette image into
fixed parts to learn discriminative micro-motion features.

4) GLN [14] is an efficient and effective method to learn
compact features from gait sequences, which achieves the
SOTA performance using only a 256-D feature.

5) GaitGL [21] is also a CNN-based framework to learn
both global and local features from gait sequences.

6) CSTL [15] applies multi-scale learning on the tempo-
ral dimension of the sequence to learn both long-term and
short-term motion for gait recognition.

Implementation Details: During training, we train the
above models except GLN with the same configuration. The
batch size is 32 × 4 × 30, where 32 denotes the number of
IDs, 4 denotes the number of training samples per ID, and
30 is the sequence length. The models are trained for 1,200
epochs with the initial Learning Rate (LR)=1e-3 and the LR
is multiplied by 0.1 at the 200-th and 600-th epochs. The
optimizer is Adam [18] and the weight decay is set to 5e-
4. For GLN, we follow the two-stage training as in [14].
The model trained in the first stage is used as the pre-
trained model of the second stage. Both of the two stages
are trained with the same configuration of other methods.
During testing, we use the cosine similarity to measure the
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Input Size (W×H) 88×128 44×64
Methods Publication R-1 (%) R-5 (%) mAP (%) mINP R-1 (%) R-5 (%) mAP (%) mINP

GEINet [31] ICB 2016 7.00 16.30 6.05 3.77 5.40 14.20 5.06 3.14
GaitSet [5] AAAI 2019 42.60 63.10 33.69 19.69 36.70 58.30 30.01 17.30
GaitPart [8] CVPR 2020 29.90 50.60 23.34 13.15 28.20 47.60 21.58 12.36
GLN [14] ECCV 2020 42.20 64.50 33.14 19.56 31.40 52.90 24.74 13.58
GaitGL [21] ICCV 2021 23.50 38.50 16.40 9.20 29.70 48.50 22.29 13.26
CSTL [15] ICCV 2021 12.20 21.70 6.44 3.28 11.70 19.20 5.59 2.59

PoseGait [20] PR 2020 0.24 1.08 0.47 0.34 - - - -
GaitGraph [37] arXiv 2021 6.25 16.23 5.18 2.42 - - - -

SMPLGait w/o 3D Ours 47.70 67.20 37.62 22.24 42.90 63.90 35.19 20.83
SMPLGait Ours 53.20 71.00 42.43 25.97 46.30 64.50 37.16 22.23

Table 2. Comparison of the state-of-the-art gait recognition methods on Gait3D. As the inputs of the model-based methods, i.e., PoseGait
and GaitGraph, are unrelated to the frame size, we only report one group of results.

similarity between each pair of query and gallery sequences.
For the GaitSet, GaitPart, GLN, and GaitGL models, we
adopt the implementations in the open-source OpenGait
toolbox 9 since they outperform the original codes.

5.1.2 Model-based Approaches
We compare two representative model-based methods
which use 2D or 3D skeletons as the input.

1) PoseGait [20] first exploits OpenPose [4] to extract
the 2D keypoints from RGB frames, then uses the method
in [6] to estimate the 3D keypoints of human bodies.
Based on the 3D skeletons, it defines several parameters
such as joint angle, limb length, and joint motion together
with the pose features as the gait representation. In our
implementation, we train it for 700 epochs with a batch size
of 128. The LR is set to 1e-3. The optimizer is Adam [18]
and weight decay is equal to 5e-4.

2) GaitGraph [37] is a recent model-based gait recog-
nition method. It models the 2D skeleton as a graph
and adopts a Graph Convolution Network, i.e., the Res-
GCN [32], to learn features by the contrastive loss. We train
GaitGraph in two stages. The setting of the first stage is the
same as PoseGait, and the model trained in the first stage
is used as the pre-trained model of the second stage. In the
second stage, we fine-tune it for 250 epochs.

5.1.3 Implementation Details of the SMPLGait
For our SMPLGait, we use the loss in Equ. 4 for training.
In 3D-STN, we set the dropout rate to 0.2 for FC layers.
The hyper-parameters in Equ. 4 are set as α=1.0 and β=0.1.
Other settings are the same as those in Section 5.1.1.

5.1.4 Experimental Results

The results of model-free methods, model-based methods,
and our SMPLGait are listed in Table 2.

For model-free methods, we can first observe that
the overall performance of the SOTA methods is much

9https://github.com/ShiqiYu/OpenGait

worse than their performance on in-the-lab datasets like
the CASIA-B [54] and OU-ISIR series [16, 35]. This
reflects that there is a huge gap between the in-the-lab
research and the in-the-wild application that is much more
challenging. Meanwhile, the performance of the SOTA
model-free methods varies significantly. For example, the
GEI-based method, i.e., GEINet obtains the worst results,
which indicates that the GEIs discard too much useful
information for gait recognition. Moreover, the methods
considering the order of the frames in sequences, i.e.,
GaitPart, GLN, GaitGL, and CSTL, obtain lower accuracy.
It means that the temporal information in the wild scene
is hard to learn, because people may stop then continue
to walk with varying speeds and routes in unconstrained
scenarios. On the contrary, the methods considering frames
as an unordered set, i.e., GaitSet, obtain better results.

For model-based methods, we can find that they are
greatly worse than model-free methods on the Gait3D
dataset. This is because the input of the model-based
methods only has a few sparse human body joints, which
seriously lacks useful gait information, such as body shape,
appearance, and so on. In addition, the walking speed and
route are uncertain in real scenarios, which also greatly
affects the performance of the model-based methods that
aim to model the temporal dynamics of the human body.

Finally, our SMPLGait outperforms other methods by a
large margin, which indicates the potential of 3D represen-
tations for gait recognition in the wild.

5.1.5 Ablation Study of SMPLGait

We also conduct an ablation study on the key components
in SMPLGait by removing the 3D branch (SMPLGait w/o
3D). 10 The results are listed in Table 2. This comparison
shows that the integration of 2D and 3D representations can
better address the challenges of gait recognition in the wild.

10It should be noticed that SMPLGait w/o 3D is equal to OpenGait
Baseline [9]
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Figure 5. The effect of frame numbers in sequences.

5.2. More Analysis on the Gait3D Dataset

We choose two SOTA gait recognition methods, i.e.,
GaitPart and GaitSet, and our SMPLGait (Ours) to analyze
the influence of input size, frame number in sequences, and
training ID number to the accuracy. All the models are
evaluated on the whole Gait3D test set.

Input Size. We explore two input sizes of 88× 128 and
44 × 64 for the compared methods, as shown in Table 2.
From the results, we can observe that the performance
of almost all methods is improved with larger input size.
There is an exception, i.e., GaitGL, which obtain worse
accuracy with larger input size. This may be because that
GaitGL adopts the 3D CNN as the backbone. When using
a larger input size, the 3D CNN learns more misalignment
information about frames in physical space, which makes it
more difficult to be optimized.

Number of Training Frames We randomly sample 10∼
50 frames from original gait sequences during training. The
Rank-1 accuracy is illustrated in Figure 5. The results show
that as the number of frames increases the performance first
increases and then decreases, while the best performance
occurs around 30 frames per sequence. This indicates that
more frames could not bring higher accuracy. The reason
may be that there is a lot of redundant or noisy information
caused by uncertain speeds and routes of persons, which
will bring ambiguous features for gait recognition.

Scale of Training IDs We fix other settings and use 0.5K
∼ 3KIDs with an increment of 0.5K for training. As shown
in Figure 6, the performance of the models grows stably
with more training IDs. These results reflect the scalability
of our Gait3D dataset.

More experiments and exemplar results on Gait3D can
be found in the supplementary material.

6. Discussion
Ethical Issues. There are two main ethical issues of

this paper: 1) privacy, and 2) data bias. For the first issue,
we will try our best to protect the privacy of the subjects
involved in our dataset. Firstly, we will not release any
human cognizable data like original videos, RGB frames,
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Figure 6. The effect of different training ID numbers.

and bounding boxes of persons. Second, the dataset will be
distributed only for research purposes via the case-by-case
application with a strict license. To eliminate data bias, the
genders and ages of subjects are relatively balanced.

Future Work. Despite the proposed baseline method
for 3D gait recognition, there are many potential directions
for this challenging task. For example, one direction is
to study how to design a deep CNN for learning more
discriminative features directly from 3D meshes. The
second direction is how to learn the temporal information
of gait representation, because the walking speed and route
in Gait3D are irregular, it is significantly different from the
datasets built in the lab. Another interesting direction is how
to fuse the multi-modal information like silhouette, 2D/3D
skeleton, and 3D mesh for gait recognition in the wild.

More discussions about the limitations and potential neg-
ative impact can be found in the supplementary material.

7. Conclusion
Gait recognition in the wild faces significant challenges

such as extreme viewpoint changes, occlusions of the hu-
man body, and complex clutter in the environment. Existing
methods using 2D silhouettes or skeletons will fail in
the wild because crucial information like 3D viewpoints
and shapes of human bodies is discarded. Therefore,
this paper proposes a 3D SMPL model-based framework
(SMPLGait) which is the first method to explore dense
3D representations for gait recognition in the wild. To
facilitate the research, we build the first large-scale 3D gait
recognition dataset (Gait3D) from cameras deployed in a
large supermarket. It provides diverse gait representations
including 3D meshes, 3D SMPLs, 3D poses, 2D silhouettes,
and 2D poses for over 25,000 gait sequences of 4,000
subjects. We hope Gait3D can provide researchers with a
new perspective of gait recognition.
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3d gait recognition using multiple cameras. In FGR, pages
529–534, 2006. 2

[58] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang,
Jingdong Wang, and Qi Tian. Scalable person re-
identification: A benchmark. In ICCV, pages 1116–1124,
2015. 6

[59] Xingyi Zhou, Arjun Karpur, Chuang Gan, Linjie Luo, and
Qixing Huang. Unsupervised domain adaptation for 3d
keypoint estimation via view consistency. In ECCV (12),
volume 11216, pages 141–157, 2018. 3

[60] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl.
Objects as points. CoRR, abs/1904.07850, 2019. 5

[61] Zheng Zhu, Xianda Guo, Tian Yang, Junjie Huang, Jiankang
Deng, Guan Huang, Dalong Du, Jiwen Lu, and Jie Zhou.
Gait recognition in the wild: A benchmark. In ICCV, pages
14789–14799, 2021. 1, 2, 3, 4

1020237


	. Introduction
	. Related Work
	. The 3D Gait Recognition Method
	. Overview
	. Network Structure
	. Training and Inference

	. The Gait3D Benchmark
	. Data Collection and Pre-processing
	. Dataset Construction
	Person detection and tracking from frames
	Cross-camera sequence matching
	Generation of gait representations

	. Dataset Statistics and Evaluation Protocol

	. Experiments
	. Evaluation of Existing Methods
	Model-free Approaches
	Model-based Approaches
	Implementation Details of the SMPLGait
	Experimental Results
	Ablation Study of SMPLGait

	. More Analysis on the Gait3D Dataset

	. Discussion
	. Conclusion

