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Abstract

Scene flow is a powerful tool for capturing the motion

field of 3D point clouds. However, it is difficult to directly

apply flow-based models to dynamic point cloud classifi-

cation since the unstructured points make it hard or even

impossible to efficiently and effectively trace point-wise

correspondences. To capture 3D motions without explic-

itly tracking correspondences, we propose a kinematics-

inspired neural network (Kinet) by generalizing the kine-

matic concept of ST-surfaces to the feature space. By

unrolling the normal solver of ST-surfaces in the fea-

ture space, Kinet implicitly encodes feature-level dynam-

ics and gains advantages from the use of mature back-

bones for static point cloud processing. With only minor

changes in network structures and low computing over-

head, it is painless to jointly train and deploy our frame-

work with a given static model. Experiments on NvGes-

ture, SHREC’17, MSRAction-3D, and NTU-RGBD demon-

strate its efficacy in performance, efficiency in both the num-

ber of parameters and computational complexity, as well

as its versatility to various static backbones. Noticeably,

Kinet achieves the accuracy of 93.27% on MSRAction-3D

with only 3.20M parameters and 10.35G FLOPS. The code

is available at https://github.com/jx-zhong-for-academic-

purpose/Kinet.

1. Introduction

Due to continued miniaturization and mass production,

3D sensors are becoming less esoteric and increasingly

prevalent in geometric perception tasks. These sensors typi-

cally represent scene geometry through a point cloud, which

is an unordered and irregular data structure consisting of

distinct spatial 3D coordinates. As a fundamental prob-

lem in point cloud understanding, classification of static

scenes [11, 30, 72] or objects [7, 58, 59] has witnessed rapid

advances over the past few years. Whilst impressive, these

techniques do not directly account for the fact that the real

3D world is also changing, through egocentric and/or al-
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(b) Kinematic two-stream framework guided by feature-level ST-surfaces.

Figure 1. Comparison between the flow-based framework and

ours. With neither explicit point-wise correspondence estimation

nor the stand-alone temporal branch, our framework is lightweight

and efficient.

locentric motion. To better understand our time-varying

world, a handful of recent works [15–17,44,47,48,80] have

been applied to dynamic point cloud classification, a task in

which the model is required to output a video-level category

for a given sequence of 3D point clouds.

As a natural extension of 2D optical flow, 3D scene flow

captures the motion field of point clouds. Based on optical

flow, two-stream networks [6, 19, 68, 76, 89] have already

proven to be successful in image-based video classification.

Hence, it should be a natural choice to classify dynamic

point clouds with the help of scene flow. However, to the

best of our knowledge, scene flow has not been utilized

in point cloud sequences despite the prevalence of mature

scene flow estimators [3, 22, 24, 43, 50, 56, 73, 82].

What then hampers us from applying scene flow to dy-

namic point cloud classification? Although scene flow is

a powerful tool, it is difficult to estimate it efficiently and

effectively from sequential point clouds - the computation

of 3D scene flow inevitability has higher time expenditure,
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larger memory consumption, and lower accuracy than that

of 2D optical flow. These challenges are mainly caused by

the irregular and unordered nature of dynamic point clouds.

This unstructured nature makes it difficult to track the point-

wise correspondences of the moving point sets across differ-

ent frames.

Why not extract dynamic information without explicitly

finding the point-wise correspondences? If this were possi-

ble, researchers could gain advantages from the decoupled

motion representations but not suffer from the painful com-

putational process of scene flow. Similar to the gains seen

in two-stream networks in image-based models, we would

be able to preserve the benefit of mature static solutions in

inference and training, such as well-benchmarked network

architectures, transferable pre-trained weights, and ready-

to-use source code. At the same time, the pain of scene flow

estimation would be significantly relieved, only with minor

network modification and low computational overhead.

For this purpose, we get inspiration from kinematics and

propose a neural network (Kinet) to bypass direct scene

flow estimation by generalizing the kinematic concept of

space-time surfaces [55] (ST-surfaces) from the physical

domain of point clouds to the feature space. In this way,

normal vectors w.r.t. these ST-surfaces (ST-normals) es-

tablish the representation field of dynamic information as

shown in Figure 1b. Thus, motions are implicitly repre-

sented by feature-level ST-surfaces without explicitly com-

puting point-wise correspondences. Inspired by iterative

normal refinement [49], we unroll the solver for ST-normals

and make it jointly trainable alongside the static model in an

end-to-end manner. Inheriting intermediate features from

static network layers, Kinet is lightweight in parameters and

efficient in computational complexity, compared with the

vanilla flow-based framework depicted in Figure 1a which

requires extra scene flow estimation and the independent

temporal branch.

Experiments are conducted on four datasets (NvGes-

ture [52], SHREC’17 [14], MSRAction-3D [40] and NTU-

RGBD [66]) for two tasks (gesture recognition and action

classification) with three typical static backbones (MLP-

based PointNet++ [60], graph-based DGCNN [78] and

convolution-based SpiderCNN [83]). Noticeably, 1) in ges-

ture recognition, our framework outperforms humans for

the first time with the accuracy of 89.1% on NvGesture; 2)

in action classification, it achieves a new record of 93.27%
on 24-frame MSRAction-3D with only 3.20M parameters

and 10.35G FLOPS.

In summary, our main contribution is as follows:

• By introducing Kinet, we decouple temporal infor-

mation from spatial features, thereby easily extending

static backbones to dynamic recognition and entirely

preserving the merits of these mature backbones.

• Without the pain of tracking point-wise correspon-

dences, we encode point cloud dynamics by unrolling

the ST-normal solver in the feature space. This method

is jointly trainable alongside the static model, with mi-

nor structural changes and low computing overhead.

• Extensive experiments on various datasets, tasks, and

static backbones show its efficacy in performance, ef-

ficiency in parameters and computational complexity,

as well as versatility to different static backbones. The

code is available at https://github.com/jx-zhong-for-

academic-purpose/Kinet.

2. Related Work

Deep Learning on Static Point Clouds Recently, deep

learning on 3D point clouds has attracted increased atten-

tion [25], with substantial progress achieved in several fields

including shape classification [7, 41, 51, 58], object detec-

tion [5,38,57,67] and scene segmentation [4,11,28,30,85].

This can be mainly attributed to the availability of various

high-quality datasets [4, 11, 29] and sophisticated neural ar-

chitectures [27, 41, 58, 60]. From the perspective of scene

representations, existing works can be roughly divided into

1) Voxel-based methods [10, 23, 46, 65, 90], 2) Projection-

based methods [8, 69], 3) Point-based methods [31, 41, 58,

60, 78, 83], and 4) Hybrid methods [12, 45, 59]. Based on

the well-developed static classification models, we attempt

to apply them to dynamic point cloud recognition with mi-

nor structural surgery and low computational overhead.

Deep Learning on Dynamic Point Clouds A handful of

recent works have explored dynamic problems on point

clouds, such as recognition [16,17,44,48,80], detection [32,

61, 87], tracking [20, 62], prediction [34, 53, 63, 64, 81] and

scene flow estimation [3, 22, 24, 43, 50, 56, 73, 82]. Exist-

ing works on sequence classification are based on convolu-

tional [44, 44, 47], recurrent [48], self-attentional [16, 80],

or multi-stream neural networks [79]. As a convolutional

framework, MeteorNet [44] modeled point cloud dynamics

via spatio-temporal neighbor aggregations [44]. Likewise,

PSTNet [17] applied point spatio-temporal convolutions to

capture information along the time dimension and the space

domain. Derived from recurrent networks, PointLSTM [48]

updated the hidden states with the combination of past and

current features. Fan et al. [16] and Wei et al. [80] adopted

self-attentional structures along with the popularity of video

transformers [21]. By extracting the offline dynamic voxel,

3DV [79] encoded motions and appearances through multi-

ple streams. Our Kinet shares the same idea of decoupling

spatial and temporal information as 3DV, but the presented

framework requires neither the offline motion extraction nor

the extra stand-alone temporal stream.

Flow-guided Classifiers for Image-based Videos The pre-

sented work obtains inspiration from the similar idea of

encoding optical flow information into deep representa-

tions for image-based video classification [33, 37, 39, 42,
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Figure 4. Kinematic learning unit. As shown in the violet dotted frame of Figure 1b,

a stack of these units comprises the temporal branch of our framework. The alternate

abstracting (red dotted frame) and grouping (green dotted frame) unroll the ST-normal

solver (Figure 3) in the feature space. Only the squares are parametric operations whereas

the rectangles introduce no parameters - kinematic learning just requires a small number

of learnable parameters.

70, 88]. By subtracting feature maps along the tempo-

ral axis, OFF [70], STM [33] and PAN [88] robustly im-

itated optical-flow calculations. Similarly, Piergiovanni &

Ryoo [54] and Fan et al. [18] mimicked TV-L1 optical flow

iterations [71] inside network layers. Heeseung et al. [37]

introduced correlations to continuous feature maps. For

the purpose of acceleration, temporal shift modules [42] or

spatial shift filters [39] were utilized to model multi-frame

interactions. The above methods rely on feature maps re-

taining spatial correspondences of regular pixels in images,

whereas features of irregular point clouds usually cannot

manifest point-wise correspondences across frames. Con-

sequently, all of the aforementioned feature-level operations

(subtraction, shift, correlation, etc.) are ineffective for point

cloud models. To achieve the similar goal of encoding dy-

namics from static features, we propose a distinct approach

from them.

3. Methodology

Denote an input point cloud sequence with T frames as

P = (P1, P2, ..., PT−1, PT ). The tth frame Pt = {p
(t)
i |i =

1, 2, ...,mt − 1,mt} is a set of mt points, in which the po-

sition of the ith point p
(t)
i is specified by its spatial coordi-

nates x
(t)
i = (x

(t)
i , y

(t)
i , z

(t)
i ) ∈ R

3. The goal of dynamic

point cloud classification is to output the sequence-level cat-

egory label y for a particular input P .

3.1. Background: Kinematic ST­Surface

Our method extends the kinematic concept of ST-

surfaces [55] and adopts the solver of iterative normal re-

finement [49] from the 3D physical world to deep represen-

tation learning.

Intuitively, the local ST-surface S
(t)
i ⊂ R

4 centered at

the point p
(t)
i is a surface that fits as many as possible space-

time neighbor points of p
(t)
i . Figure 2 illustrates ST-surface

of 2D dynamic point clouds within 3 frames, which can be

easily generalized to the 3D case and more frames. Accord-

ing to spatial kinematics [55], instantaneous velocity vec-

tors always lie on the ST-surface. Equivalently, for a point

cloud sequence as depicted in Figure 2, Mitra et al. [49]

point out that local scene flow lies on the same ST-surface

due to the vicinal (i.e., local neighbourhood) consistency of

movements. As a result, the ST-normal n
(t)
i is orthogonal

to local scene flow1 and the field of those normals describes

the motions of sequential point clouds.

Mathematically, the space-time neighbors of p
(t)
i are a

point set: N∆t
∆r(p

(t)
i ) = {p

(τ)
j | |t−τ | ≤ ∆t, ||x

(t)
i −x

(τ)
j || ≤

∆r}, hereinafter referred to as N
(t)
i for simplicity. S

(t)
i

is specified by its tangent plane with the surface equation

Ax + b = t, of which the coefficient A ∈ R
1×3 and b sat-

isfy:

Ax
(τ)
j + b = τ, ∀p

(τ)
j ∈ N

(t)
i . (1)

In practice, Equation (1) may be an over-determined lin-

ear system since the local neighbor area may be too large

to reflect the instantaneous velocity. In this case, space-

time neighbors N
(t)
i cannot be completely represented by

1Strictly speaking, the ST-normal n
(t)
i

is orthogonal to the local tangent

plane of scene flow.
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coefficients of the tangent plane and there exists no exact

solution. Therefore, a least-squared approximation is intro-

duced to seek the optimal coefficients A∗ and b∗:

A∗, b∗ = argmin
A,b

∑

p
(τ)
j

∈N
(t)
i

||Ax
(τ)
j + b− τ ||2 . (2)

To alleviate the influence of noisy point clouds, a

commonly-used objective is to obtain the coefficients based

on weighted neighbor points:

A∗, b∗ = argmin
A,b

∑

p
(τ)
j

∈N
(t)
i

w
(τ)
j ||Ax

(τ)
j + b− τ ||2 , (3)

where w
(τ)
j is the point-wise weight of these neighbors. As

a solver of Equation (3), iterative normal refinement [49]

robustly encodes dynamics via the normal field of ST-

surfaces. This was earliest used in Dynamic Geometry Reg-

istration [49], a traditional method to register large-scale

moving and deforming point clouds. As shown in Figure 3,

the basic idea is to alternately re-compute the ST-surface

S
(t)
i and its normal n

(t)
i based on the neighbors’ weights

w
(τ)
j and re-weight the space-time neighbors N

(t)
i based on

the estimated ST-surface S
(t)
i until convergence.

3.2. Kinematic Representation Learning

3.2.1 Framework

The vanilla flow-based framework (Figure 1a) explicitly

extracts scene flow (or dynamic voxels as in the case of

3DV [79]), while Kinet implicitly encodes motions with

feature-level ST-surfaces. As shown in Figure 1b, Kinet

contains three parts: 1) a spatial branch (marked in blue)

identical to common static models, 2) a temporal model

comprised of stacked kinematic learning units (the violet

dotted frame), followed by 3) the final aggregation (marked

in green) of spatial and temporal results.

3.2.2 Kinematic Learning Unit

Typically, a learning unit for point clouds has two crucial

operations, i.e., grouping and abstracting. The former

selects the neighbors around centroids (e.g. ball query in

PointNet++), while the latter encodes the local feature from

these neighbors (e.g. PointNet layers in PointNet++). Fig-

ure 3 demonstrates that iterative normal refinement alter-

nates between two similar operations: neighbor weighting

corresponding to grouping and normal estimation anal-

ogous to abstracting. The original integrative normal re-

finement works in the non-differentiable physical space of

three-dimensional point sets - we unroll its solver in a

fully differentiable fashion and generalize it to the high-

dimensional feature space for joint optimization in neural

networks as depicted in Figure 4.

Assume that we obtain a series of features Fl(P ) =
Fl(P1), Fl(P2), ..., Fl(PT−1), Fl(PT ) from the lth layer

(marked in blue in Figure 4) of a certain static model F .

Based on sequential static features Fl(P ), our learning unit

aims to obtain dynamic representations by fitting feature-

level ST-surfaces.

Abstracting with Normal Estimation (Red Dotted

Frame in Figure 4) To decrease the computational com-

plexity, we first utilize a 1×1 convolution Dl to reduce its

dimension to c, where c is proportional to the dimension

of a static feature. For a given point p
(t)
i , the correspond-

ing c−dimensional feature vector is denoted as f
(t)
i ∈ R

c.

Similar to the physical space, the tangent hyper-plane of

ST-surfaces in the feature space is specified by its surface

equation Af + b = t, where the coefficients A and b satisfy:

Af
(τ)
j + b = τ, ∀p

(τ)
j ∈ N

(t)
i . (4)

Likewise, time-varying changes of those static features lie

on the corresponding ST-(hyper)surface in the representa-

tion space. The vector field of normals w.r.t. such feature-

level ST-surfaces orthogonally describes the dynamic infor-

mation based on static representations.

The equation of ST-surfaces in the 3D physical space is

usually over-determined (|N
(t)
i | > 3), whereas it is not the

case in the c−dimensional feature space (|N
(t)
i | < c). To

ensure exact coefficient solutions in Equation 4, we split the

point-wise feature f
(τ)
j into several d−dimensional groups

f
(τ)
j = (f

(τ)
j,1 , ..., f

(τ)
j,k , ..., f

(τ)
j,c/d) where f

(τ)
j,k ∈ R

d specifies

the kth group. For each group f
(τ)
j,k , the number of neighbors

N
(t)
i is sufficiently large to solve the following weighted

least-squared approximation:

A∗
i,k, b

∗
i,k = argmin

A,b

∑

p
(τ)
j

∈N
(t)
i

w
(τ)
j,k ||Af

(τ)
j,k +b−τ ||2 , (5)

where w
(τ)
j,k is the point-wise weight of each neighbor.

The vanilla iterative normal refinement leverages weighted-

PCA [36] to solve the normals, which is unfriendly to back-

propagation [77]. To this end, we attempt to directly fit this

equation via its closed-form least-squared solution:

[AT∗
i,k , b

∗
i,k] = (F

(t)T
i,k W

(t)
i,kF

(t)
i,k )

−1F
(t)T
i,k W

(t)
i,kτττ

(t)
i,k , (6)

where the weight matrix W
(t)
i,k =

diag(w
(τ)
1,k , ..., w

(τ)

|N
(t)
i

|,k
) ∈ R

|N
(t)
i

|×|N
(t)
i

|, the feature

matrix F
(t)
i,k = [(f1,k, 1), .., (f|N(t)

i
|,k
, 1)] ∈ R

|N
(t)
i

|×(d+1)

and the time vector τττ
(t)
i,k ∈ R

|N
(t)
i

|. The normal vector is as

follows:

n
(t)
i,k =

(AT∗
k ,−1)

||(AT∗
k ,−1)||

, (7)
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where || · || is the ℓ2-norm. The concatenated normals

n
(t)
i = concat(n

(t)
i,1, ..,n

(t)
j, c

d
) are fed into a 1×1 convolu-

tion Cl to obtain the dl−dimensional abstracted dynamic

feature Cl(n
(t)
i ). After the dimension alignment with an-

other 1×1 convolution Rl, the feature is forwarded to the

next layer via a residual connection.

Grouping with Weighted Neighbors (Green Dotted

Frame in Figure 4) For each neighbor p
(τ)
j , we compute

its weight w
(τ)
j,k for better point-wise representations in the

lth layer. Inspired by iterative normal refinement, we feed

the channel-wise fitting deviation (a.k.a. residual) from the

(l − 1)th layer into a 1×1 convolution Hk
l−1 activated by

sigmoid to obtain the neighbor weights within [0, 1]:

w
(t)
j,k = Hk

l−1(dl−1(p
(τ)
j )) , (8)

where dl−1(p
(τ)
j ) is the vector of fitting deviations in the

(l − 1)th layer. In the first layer, w
(t)
j,k is set to 1 for all of

the neighbors.

3.2.3 Aggregation

In the last layer, we leverage the dynamic features to obtain

softmax classification scores of a point cloud sequence.

The spatial and temporal stream is respectively optimized

through a cross-entropy loss in the training stage. During

the testing phase, category predictions from the static model

and the temporal stream are averaged as the final outputs.

Since all the operations of kinematic representation learn-

ing are differentiable, it can be seamlessly plugged into a

wide range of static neural architectures with minor struc-

tural surgery.

4. Experiments

To evaluate the performance of Kinet, we conduct exper-

iments on three datasets (NvGesture [52], SHREC’17 [14],

MSRAction-3D [40] and NTU-RGBD [66]) for gesture

recognition or action classification. The proposed frame-

work is implemented with TensorFlow [1]. All experi-

ments are conducted on the NVIDIA DGX-1 stations with

Tesla V100 GPUs. In most experiments, PointNet++ [60]

is adopted as the static backbone in Kinet. For a fair com-

parison, we follow the identical settings of network layers

to [47]. The other backbones are mainly chosen to evaluate

the versatility. If not specified explicitly, we keep hyper-

parameters of the original backbone (see Appendix for

more details). For training stability, we first train the static

backbone (spatial stream) until convergence and then freeze

its weights to individually optimize the dynamic branch

(temporal stream). Following [17,44,48], classification ac-

curacy is the main evaluation metric and we use default data

splits for fair comparisons.

4.1. NvGesture: Hyper­settings & Ablations

NvGesture consists of 1532 (1050 for training and 482

for testing) videos composed of 25 classes. Following [48],

we uniformly sample 32 frames from a video and generate

512 points for each frame. To provide intuition behind the

operation of our framework, we first investigate the impact

of various network settings and components before we turn

to further studies.

Influence of Hyper-settings We explore the effectiveness

of crucial hyper-parameters with the 10-fold validation pro-

tocol [47]. To exclude the interference of the static branch,

we calculate the accuracy only using the classification re-

sults of the dynamic stream without ensembles. Box-

whisker plots are utilized to analyze the performance and

the stability of hyper-settings as shown in Figure 5.

Feature dimensions c controls the output size of convo-

lution Dl to reduce computational overheads, as depicted in

Figure 4, which is proportional to the dimension of static

features. We vary the ratio from 12.5% to 100% to find a

value that makes the representations as compact as possible

but informative enough. As shown in Figure 5a, 50% is ade-

quate to encode the dynamic information from a static layer.

In comparison with the standalone flow-based branch, this

saves at least half of the network parameters.

Group size d controls the dimensions in each group. Ide-

ally, d is expected to be sufficiently large to describe mo-

tions. However, excessively large matrices cause ineffi-

ciency in the ST-normal solvers. By changing d from 2 to

32, we empirically find that d = 4 properly balances the ac-

curacy and computational overheads as shown in Figure 5b.

Temporal radius ∆t controls the receptive field of our

dynamic branch along the temporal axis. It should be suf-

ficiently small to retain details but large enough to model

long-term interactions. It is observed that multi-frame in-

formation (∆t ≤ 1) indeed improves the performance over

a single frame (∆t = 0). In the searching range of [0, 5],
the best temporal radius ∆t is 1 as depicted in Figure 5c.

Spatial radius ∆r controls the receptive field in the spa-

tial dimension. Similar to ∆t, ∆r should have a moderate

optimum. From the comparison of ∆r ∈ [0.125, 2.0] in

Figure 5d, ∆r = 0.5 consistently has decent performance.

In the remaining experiments, we set the ratio of feature

reduction as 50%, group-wise dimensions d = 4, temporal

radius ∆t = 1, and spatial radius ∆r = 0.5, respectively.

Ablation Studies We conduct ablation studies on different

components on the test set of NvGesture.

Is it beneficial to pretrain on static datasets? For two-

stream models of image-based videos, it is well-known

that pretraining on images significantly improves the per-
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Figure 5. Box-whisker plots of temporal-stream performance on validation set of NvGesture under different hyper-settings. The x-axis is

the value of hyper-parameters, while y-axis is the validation accuracy (%).

Settings Spatial (Static) Temporal (Dynamic) Accuracy

No. Pretrain Pretrain ST-normal Weighted (%)

i. ✗ – – – 82.6

ii. ✓ – – – 84.5

iii. – ✗ ✓ ✓ 80.9

iv. – ✓ ✓ ✓ 82.4

v. ✓ ✓ ✗ ✗ 85.3

vi. ✓ ✓ ✓ ✗ 87.9

vii. ✓ ✓ ✓ ✓ 89.1

Table 1. Ablation studies on NvGesture. ✓/✗ means that the oper-

ation is applied/not applied to the framework, while – means that

the predictions of the corresponding spatial/temporal stream are

excluded from the evaluation. The results of the upper/lower part

is obtained from a single stream/two streams, respectively.

formance on videos [6, 68]. However, this fact has not

been verified for point cloud sequences. By pretraining the

static PointNet++ on ModelNet40 [7], we analyze the in-

dividual performance change for each branch. Table 1 i.

& ii. demonstrate that the performance of spatial stream

on multi-frame predictions increases by 1.9% (from 82.6%
to 84.5%), while the temporal branch using the pretrained

static features also boosts the accuracy by 1.5% as shown in

Table 1 iii. & iv.. Obviously, both the static branch and the

dynamic stream benefit from pretraining. Based on the pre-

trained backbone, the fusion of two-stream results achieves

the accuracy of 89.1% since the two branches are comple-

mentary to each other.

Is it useful to abstract with normal estimation? To evalu-

ate the efficacy of our abstracting operation, we remove the

process of normal calculation in Figure 4. Instead, the re-

duced feature is directly fed into the convolution Cl and ag-

gregated with max pooling. In this manner, all the trainable

convolutions are unchanged but the accuracy significantly

drops from 89.1% to 85.3% as shown in Table 1 v. & vii..

By comparing ii. with v. in Table 1, we find that purely in-

troducing additional convolution parameters over the static

backbone contributes only 0.8% to the performance gain.

Evidently, normal estimation is a vital component in the ab-

stracting operation.

Is it helpful to group with weighted neighbors? By re-

placing all the learnable weights of neighbor points with

the fixed value of 1.0, we train the model to analyze the

effect of weighted grouping. Table 1 vi. shows that the

performance decreases to 87.9%, which means the group-

ing operation with weighted neighbors is capable of further

improving the performance of our feature abstraction.

Methods Modalities Accuracy (%)

R3DCNN [52] Infrared Image 63.5

R3DCNN [52] Optical Flow 77.8

R3DCNN [52] Depth Map 80.3

PreRNN [86] Depth Map 84.4

MTUT [2] Depth Map 84.9

R3DCNN [52] RGB Frame 74.1

PreRNN [86] RGB Frame 76.5

MTUT [2] RGB Frame 81.3

PointNet++ [60] Point Cloud 63.9

FlickerNet [47] Point Cloud 86.3

PointLSTM-base [48] Point Cloud 85.9

PointLSTM-early [48] Point Cloud 87.9

PointLSTM-PSS [48] Point Cloud 87.3

PointLSTM-middle [48] Point Cloud 86.9

PointLSTM-late [48] Point Cloud 87.5

Human [52] RGB Frame 88.4

Kinet Point Cloud 89.1

Table 2. Quantatitve results achieved on NvGesture.

Comparisons NvGesture is a multi-modality dataset and

allows us to compare our method to state-of-the-art tech-

niques under the standard data split [52]. As shown in Ta-

ble 2, our approach with an accuracy of 89.1% not only

outperforms all of the existing point cloud methods, but also

achieves higher performance than those models using other

modalities. It is worth mentioning that Kinet is even supe-

rior to the human recognition on RGB videos (88.4%) for

the first time.

4.2. SHREC’17: Robustness to Noisy Backgrounds

SHREC’17 is comprised of 2800 videos in 28 classes for

gesture recognition, of which 70% (2960 videos) are train-

ing data and the other 30% (840 videos) are the test set. It

has two types of supervisory signals, i.e., video-level clas-

sification labels and bounding boxes (BBox) of hand skele-

tons. Unlike most of the prior works only focusing on the

background-free cases, we adopt two input settings to ver-

ify whether Kinet can capture useful movements and ignore

meaningless ones: 1) w/ BBox (Figure 6a) - used by a ma-

8515



(a) Depth, w/ BBox (b) Spatial, w/ BBox (c) Temporal, w/ BBox

90.4

93.1

95.2

85

87

89

91

93

95

97

A
cc

u
ra

cy
 (

%
)

Spatial Temporal Two-stream

(d) Performance, w/ BBox

(e) Depth, w/o BBox (f) Spatial, w/o BBox (g) Temporal, w/o BBox

86.5

92.6
94.1

85

87

89

91

93

95

97

A
cc

u
ra

cy
 (

%
)

Spatial Temporal Two-stream

(h) Performance, w/o BBox

Figure 6. Raw depth inputs, PACs and stream-wise accuracy on SHREC’17. In PACs, the points in red have the highest activation values,

while the blue ones are the lowest activating points. Best viewed in Adobe Reader where (a)-(c) & (e)-(g) should play as videos.

jority of existing methods for high accuracy, based on the

area inside the bounding boxes of hand skeletons without

background interference; 2) w/o BBox (Figure 6e) - raw

videos with noisy backgrounds (the performer’s body).

Qualitative Analysis on Robustness We visualize the

learned point activation clouds (PACs) [17, 47] in Figure 6.

With bounding boxes removing noisy backgrounds, the two

streams work complementary - the static branch (Figure 6b)

highlights the main parts (the palms) of spatial appearances,

whereas the temporal representations (Figure 6c) capture

key motions, such as the movement of fingers and wrists.

In the case with redundant backgrounds (without bounding

boxes), the static stream (Figure 6f) excessively focuses on

the large yet useless background portions (the performer’s

body), while the temporal stream (Figure 6g) captures the

moving parts (arms and fingers). Inevitably, the temporal

stream also highlights several redundant points of the per-

former’s shaking head by mistake.

Quantitative Analysis on Robustness From Figure 6d &

6h, it is observed that the dynamic branch shows strong ro-

bustness to motion-irrelevant backgrounds, where the accu-

racy slightly drops from 93.1% to 92.6%, compared with

that of the spatial stream which plunges by nearly 4%.

Comparison As shown in Table 3, we compare the perfor-

mance of Kinet to existing models. With the same bound-

ing box supervision signal, our two-stream PointNet++ out-

performs others with the accuracy of 95.2%. Noticeably,

even for the highly challenging inputs without bounding

boxes, our framework boosts the accuracy of static Point-

Net++ from only 86.5% to 94.1%, which is comparable to

state-of-the-art models with bounding boxes.

4.3. MSRAction­3D: Different Tasks & Backbones

MSRAction-3D has 567 videos of 20 action categories.

Following Fan et al. [16], we adopt the standard data split-

Methods Modalities BBox Accuracy (%)

Key frames [14] Depth Map ✗ 71.9

SoCJ+HoHD+HoWR [13] Skeleton ✓ 81.9

Res-TCN [26] Skeleton ✓ 87.3

STA-Res-TCN [26] Skeleton ✓ 90.7

ST-GCN [84] Skeleton ✓ 87.7

DG-STA [9] Skeleton ✓ 90.7

PointLSTM-base [48] Point Cloud ✓ 87.6

PointLSTM-early [48] Point Cloud ✓ 93.5

PointLSTM-PSS [48] Point Cloud ✓ 93.1

PointLSTM-middle [48] Point Cloud ✓ 94.7

PointLSTM-late [48] Point Cloud ✓ 93.5

Kinet Point Cloud ✓ 95.2

Kinet Point Cloud ✗ 94.1

Table 3. Quantitative results achieved on SHREC’17.

ting protocol [44, 75] and report the average accuracy over

10 runs.

Versatility across Static Backbones Under the taxon-

omy defined in [25], three types of backbones dom-

inate the classification models of static point clouds:

MLP-based, convolution-based, and graph-based methods.

In this paper, we choose one typical static architecture

for each paradigm respectively, i.e., MLP-based Point-

Net++ [60], convolution-based SpiderCNN [83] and graph-

based DGCNN [78] in order to demonstrate the ease of ex-

tending these to dynamic point cloud tasks. By grouping a

video into 16-frame clips as the input unit, we run 3 sets of

experiments for each static model: 1) Directly feed videos

into the static model; 2) Fuse the static spatial model and the

temporal streams; 3) Ensemble classification scores from

two static models, one is trained on the raw point clouds,

while the other flow-based model is trained on scene flow

estimated by Justgo [50], a self-supervised scene flow esti-

mation tool. Apart from classification performance, we also

take memory consumption and computational complexity

into consideration. They are measured with the accuracy,
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Methods Modalities # of Frames Accuracy (%)

Vieira et al. [74] Depth Map 20 78.20

Kläser et al. [35] Depth Map 18 81.43

Actionlet [75] GroundTruth Skeleton Full 88.21

PointNet++ [60] Point Cloud 1 61.61

MeteorNet [44] Point Cloud 4 / 8 / 12 / 16 / 24 78.11 / 81.14 / 86.53 / 88.21 / 88.50

P4Transformer [16] Point Cloud 4 / 8 / 12 / 16 / 24 80.13 / 83.17 / 87.54 / 89.56 / 90.94

PSTNet [17] Point Cloud 4 / 8 / 12 / 16 / 24 81.14 / 83.50 / 87.88 / 89.90 / 91.20

Kinet Point Cloud 4 / 8 / 12 / 16 / 24 79.80 / 83.84 / 88.53 / 91.92 / 93.27

Table 4. Quantitative results achieved on MSRAction-3D.
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Figure 7. Comparison of FLOPS, parameter number, and ac-

curacy on 16-frame MSRAction-3D. Quantitative details can be

found in Appendix.

the number of parameters, and floating-point operations per

second (FLOPS), respectively.

As illustrated in Figure 7, the extra input modality of

estimated scene flow in setting 3) (+Scene Flow ●) con-

siderably improves the accuracy of the three static models

(●) to a level comparable to the state-of-the-art. However,

the scene flow estimator and another flow-based classifier

almost triple the number of parameters. Even worse, the es-

timation of scene flow introduces more than 150G FLOPS

of extra calculations since the point-wise dense predictions

are required between every two consecutive frames. For

setting 2) (+Ours ●), it is observed that our kinematic rep-

resentations consistently increase the accuracy of the static

predictions by 5.99%∼9.04% relative gains. By utilizing

the kinematic representations, the FLOPS only increases

to 5.83G∼15.29G, and the number of parameters increases

by 0.59M∼1.08M. These computing overheads are neg-

ligible and make the fused model extremely lightweight.

Compared with state-of-the-art dynamic networks (●), they

achieve comparable or superior performance with fewer

model parameters and lower computational complexity. In-

triguingly, Kinet has higher performance gains in higher-

performance static models, possibly indicating its limitation

- the informativeness of kinematic representations is con-

strained by the static features. A poor static backbone would

benefit from the proposed approach, but it cannot improve

the underlying static representation.

Comparison We compare the PointNet++-based Kinet with

existing classification models on dynamic point clouds. Fol-

lowing prior research [16, 17, 44], we set the length as

{4, 8, 12, 16, 24} frames (2048 points/frame) and report the

mean accuracy of 10 runs. As shown in Table 4, our frame-

work shows the superiority in long videos (length≥ 8) and

achieves the 24-frame accuracy of 93.27%, exceeding oth-

ers by a large margin.

4.4. NTU­RGBD: Effectiveness on Large­scale Data

After we add the author list and the acknowledgement

section to our camera-ready version, this part has to be

moved to Appendix because of limited space. Please see

Appendix for more details.

5. Conclusion

In this paper, we propose Kinet to bridge the gap be-

tween static point cloud models and dynamic sequences. By

extending kinematic ST-surfaces to the high-dimensional

feature space and unrolling the ST-normal solver differen-

tiably, the presented framework gains advantages from ma-

ture static models. Without the pain of modeling point-wise

correspondences, it can be seamlessly integrated into arbi-

trary static point cloud learning backbones, with only mi-

nor structural surgery and low computing overhead. Exper-

iments on four datasets, two tasks, and three static networks

demonstrate the efficacy of our framework in dynamic clas-

sification, the efficiency in parameters and FLOPS, and the

versatility to various static backbones. An obvious limi-

tation is that Kinet is constrained by the performance of

the static model - a poor static baseline will not be recti-

fied by adding our dynamic extension. Therefore, we will

explore a method to self-improve static representations in

future works.
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