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Abstract

Black-box adversarial attack has aroused much research
attention for its difficulty on nearly no available information
of the attacked model and the additional constraint on the
query budget. A common way to improve attack efficiency is
to transfer the gradient information of a white-box substitute
model trained on an extra dataset. In this paper, we deal
with a more practical setting where a pre-trained white-box
model with network parameters is provided without extra
training data. To solve the model mismatch problem between
the white-box and black-box models, we propose a novel
algorithm EigenBA by systematically integrating gradient-
based white-box method and zeroth-order optimization in
black-box methods. We theoretically show the optimal di-
rections of perturbations for each step are closely related
to the right singular vectors of the Jacobian matrix of the
pretrained white-box model. Extensive experiments on Ima-
geNet, CIFAR-10 and WebVision show that EigenBA can
consistently and significantly outperform state-of-the-art
baselines in terms of success rate and attack efficiency.

1. Introduction
Despite the fast development of deep learning, its se-

curity problem has aroused much attention. It has been
demonstrated that a deep learning model can be successfully
attacked at a small query cost without knowing the specific
implementation of the model. Such techniques are called
black-box attack [6, 11, 19], which is intensively studied in
recent years with the aim of promoting the development of
machine learning towards robustness.

In previous studies, there are two kinds of settings related
to black-box attack. One is pure black-box attack, where
nothing is available but the input and output of the black-box
model. A common technique used in this setting is the zeroth-
order optimization [11], where the gradient information is
estimated by sampling different directions of perturbation
and aggregating the relative changes of a certain loss function
related to the output. The other setting is transfer-based

attack [10], where a substitute white-box model is trained on
an extra training dataset, and the gradient information of the
white-box model is exploited to help improve the efficiency
of attacking the black-box model. Usually, by leveraging
extra information, transfer-based attack is more efficient
and effective than pure black-box attack. But completely
re-training a complex model is time-consuming and even
infeasible if sufficient training data is unavailable.

In this paper, we aim for a new setting of transfer-based at-
tack. Considering the easy availability of pre-trained models,
we assume a pre-trained white-box model (i.e. its network
structure and parameters) is given, but there is no additional
training dataset available. In other words, the pre-trained
model cannot be modified or fine-tuned before being used
for black-box attack. Then in this setting, the critical chal-
lenge that we need to tackle is the model mismatch between
the pre-trained white-box model and the black-box model,
which is presented in two cases. One is that the conditional
probability of P (y|x) for two models is different. This will
lead to disagreement on gradient direction of the two models.
The other, a even more challenging case, is that the category
label set is different in white-box and black-box models. In
literature, the first case is partially tackled by [2,7,25]. How-
ever, they ask the label set of the two models to be the same
and utilize the information of the output class probability
given by the pre-trained model when attacking. This limits
the practical use, as in real applications, cases of totally same
label set for two models are rare and even in more extreme
scenarios the pre-trained model is trained in an unsupervised
manner [8], where no label information is available from the
pre-trained model.

To solve this model mismatch problem in broader scenar-
ios, we combine the ideas of white-box attack and black-box
attack and utilize the representation layer of the pre-trained
model. We regard the mapping function from the intermedi-
ate representation of the white-box model to the output of the
black-box model as a black-box function, and exploit com-
mon practices of black-box attack on this black-box function.
Meanwhile, the mapping from the original input to the in-
termediate representation layer is a part of the pre-trained
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model, which could be processed as in a white-box setting.
It is noteworthy that the rationality of the idea depends on
the generalization ability of the intermediate representation
layer in the pre-trained white-box model. This can be un-
derpinned by the findings in previous works that the lower
layers of deep neural networks, i.e. the representation learn-
ing layers, are transferrable across different datasets or data
distributions [26].

More specifically, we propose a novel Eigen Black-box
Attack (EigenBA) method by systematically integrating the
gradient-based white-box method and zeroth order optimiza-
tion in black-box methods. We theoretically prove that the
most efficient attack is to conduct singular value decompo-
sition to the Jacobian matrix of the intermediate represen-
tation layer to the original inputs in the white-box model,
and perturb the input sample with the right singular vectors
corresponding to the k largest singular values iteratively.

We conduct extensive experiments to evaluate the effec-
tiveness of EigenBA in multiple settings. The results demon-
strate that EigenBA can consistently and significantly out-
perform state-of-the-art baselines in terms of success rate
and attack efficiency. Also, the ablation studies show that
EigenBA’s advantage can be exerted as long as the represen-
tation layer of the white-box model has moderate generaliza-
tion ability, implying its wide applicability in practice.

2. Related Works
White-Box Attack White-box attack requires knowing
all the information of the attacked model. As the earliest
research field among adversarial attacks, there has been a
vast literature on the white-box attack, and we will only cover
methods with first-order gradient attack in this part, which
is closely related to our topic. The adversarial examples
are first proposed by [23]. They found that adding some
specific small perturbations to the original samples may lead
to classification errors of the neural network and [4] further
explains this phenomenon as the linear behavior in high-
dimensional space of neural networks. Later on, several
algorithms are proposed to find adversarial examples with a
high success rate and efficiency. Classical first-order attack
algorithms include FGSM [4], JSMA [21], C&W attacks [1],
PGD [16]. The common principle for these methods is to
iteratively utilize the first-order gradient information of a
particular loss function with respect to the input of the neural
networks. Specifically, the direction of the perturbation for
each iteration is determined by a certain transformation of
the gradient.

Black-Box Attack Black-box attack deals with the case
when the attacked model is unknown, and the only way to
obtain the information of the black-box model is to itera-
tively query the output of the model with an input. Hence,
the efficiency evaluation of the black-box model includes

three aspects: success rate, query numbers and the l2 or l∞
norm of the perturbation to original sample. Black-box at-
tack could be divided to two categories: black-box attacks
with gradient estimation and black-box attacks with sub-
stitute networks [19]. The former uses a technique called
zeroth-order optimization. Typical work includes NES [11],
Bandits-TD [12], LF-BA [5], SimBA [6]. The idea of these
papers is to estimate gradient with sampling. More recently,
some works view the problem as black-box optimization
and propose several algorithms to find the optimal pertur-
bation, for example, [19] uses a submodular optimization
method, [22] uses a bayesian optimization method and [18]
uses an evolutional algorithm. The latter utilizes a white-
box substitute networks to help attack the black models.
The substitute network either could be trained on additional
samples or from a pre-trained model, the former includes
Substitute Training [20], AutoZOOM [24], TREMBA [10],
NAttack [15], and the latter includes P-RGF [2], Subspace
Attack [7], TIMI [3] and LeBA [25]. The efficiency of these
transfer-based methods is largely depended on the quality
of the substitute networks. If the model mismatch is severe
between two networks, the transfer-based method may un-
derperform the methods with gradient estimation. Our work
follows the latter setting, but with broader application scenar-
ios, we could even deal with cases when only representation
layer information is available from the white-box pre-trained
model.

3. Models

3.1. Problem Formulation

Assume we have an input sample x ∈ Rn and a black
model F : Rn → [0, 1]cb , classifies cb classes with output
probability pF (y|x) with unknown parameters. The general
goal for black-box attack is to find a small perturbation δ
such that the prediction argmaxF (x+ δ) ̸= ytrue, where
ytrue is the true label of corresponding x. A common prac-
tice for score-based black-box attack is to iteratively query
the output probability vector given an input adding an evolu-
tional perturbation. Three indicators are used to reflect the
efficiency of the attack algorithm: the average query num-
ber for attacking one sample, the success rate and average
l2-norm or l∞-norm of the perturbation (i.e. ||δ||2 or ||δ||∞).

We propose a novel setting of transfer-based black-box
attack. We further assume there is a white-box model
G(x) = g ◦ h(x), where h : Rn → Rm maps the orig-
inal input to a low-dimensional representation space, and
g : Rm → [0, 1]cw maps the representation space to output
classification probabilities, cw is the number of classes with
respect to G. The original classes for classifier F and G
may or may not be the same. The parameters of g and h
are known, but are not permitted to be further tuned by addi-
tional training samples. Our goal is to utilize G to enhance
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the efficiency of attacking the black-model F given an input
x. i.e. to decrease the query number for black-box model
under the same level of perturbation norm.

3.2. The EigenBA Algorithm

3.2.1 General Framework

One of the main challenges is that the white-box pre-trained
model G may show model mismatch to the actual attacked
model F . Even with the same output classes, the probability
pG(y|x) may be different from pF (y|x). Hence, directly
attacking pG(y|x) based on white-box methods may not
work well on F , not to mention a different output classes
case. However, benefited from the generalization ability
of deep neural networks, if the classification tasks of the
two models are related, the representation layer of G has a
certain predictive power to the output classes of F . Formally,
following notations G = g ◦ h in Section 3.1, the black-box
model F could be approximated as g̃ ◦ h, where h is the
encoder of the white-box model G, and g̃ : Rm → [0, 1]cb

is a new mapping function from the representation space of
G to the output of the attacked model F . As there exists an
optimal g̃ but we do not know its realization, the function g̃
could be seen as a new black-box target. For convenience
of expression, we keep F = g̃ ◦ h as a hypothesis in the
following analysis.

Hence, the black-box attack could be reformulated as:

min
δ

pF (y|x+ δ) ⇒ min
δ

pg̃◦h(y|x+ δ) s.t. ||δ||2 ≤ ρ

(1)

Here in this paper, we only consider the l2-attack. Using a
gradient-descent method to iteratively find an optimal per-
turbation is given by xt+1 = xt − ϵ · ∇x[F (x; θ)y]. As
∇x[F (x; θ)y] is unknown in black-box model, we need to
estimate it by sampling some perturbations and aggregat-
ing the relative change of the output. Noticing that the
query number is also important in black-box attack, we
measure the attack efficiency as the number of samples
used under the same dp/||δ||2 for each iteration, where
dp = |pF (y|x+ δ)− pF (y|x)|.

Specifically, define z = h(x), the gradient could be de-
composed as:

∇x[F (x; θ)y] = Jh(x)
T∇z[g̃(z; θ̃)y] (2)

where Jh(x) is the m × n Jacobian matrix ∂(z1,z2,··· ,zm)
∂(x1,x2,··· ,xn)

with respect to h, and the subscript y represents the y-th
component of the output of g̃. As h is a white-box function,
we could obtain the exact value of Jh(x). In contrast, g̃
is a black-box function, we need to estimate the gradient
∇z[g̃(z; θ̃)]y by sampling. As the equation below holds

given by the definition of directional derivatives:

∇z[g̃(z; θ̃)y] =

m∑
i=1

(
∂g̃(z; θ̃)y

∂l⃗i

∣∣∣∣∣
z

· l⃗i

)
,

l⃗1, l⃗2, · · · , l⃗m are orthogonal.

(3)

To completely recover the gradient of g̃, we could iteratively
set the direction of the perturbations of z to any group of or-
thogonal basis l⃗1, l⃗2, · · · , l⃗m, which totally uses m samples
for each iteration. However, there is an optimal group of
basis with respect to the black-box attack efficiency, which
will be introduce in next section.

3.2.2 Globally Optimal Perturbation Basis for Trans-
ferred Black-box Attack

In this section we will introduce our EigenBA algorithm
to maximize the attack efficiency. The core problem is to
maximize change of the output probability dp under the same
perturbation norm ||δ||2 and decrease the query numbers per
iteration.

We first consider finding the orthogonal basis on the repre-
sentation space by greedily exploring directions of perturba-
tion on the original input space to maximize relative change
of representation. Specifically, considering the first-order
approximation of the change in representation space given
by:

l⃗i = Jh(x)δi (4)

where δi is the perturbation on original input space resulting
the change of the representation space to be l⃗i, the optimal
perturbation could be seen as solving the following iterative
problem:

(P1) max
δ1

||Jδ1||2 s.t. ||δ1||2 ≤ ϵ

(P2) max
δi

||Jδi||2 s.t. ||δi||2 ≤ ϵ,

δTj J
TJδi = 0 for all j < i, i > 1

(5)

where Jh(x) is simplified as J . We iteratively solve
δ1, δ2, · · · , δm of problem given by 5. In this way, the first
constraint assures that the relative l2-norm change from the
original space to the representation space, i.e. ||l⃗i||2/||δi||2
reaches a maximum and the second constraint assures the
changes on the representation space are orthogonal.

Theorem 1 The optimal solutions for problem given by (P1)
and (P2) are that δ1, δ2, · · · , δm are just the eigenvectors
corresponding to the top-m eigenvalues of JTJ .

The proof is shown in Appendix 1.1. Hence, if we itera-
tively sample the perturbation to δ1, δ2, · · · , δm in order, the
one-step actual perturbation ∇x[F (x; θ)y] could be approxi-
mated by Equation 2 and Equation 3.
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As the tail part of the eigenvalues may be small, i.e. the
norm of perturbation for representation space may not be sen-
sitive to the perturbation on the original input space with the
corresponding eigenvector direction. To decrease the query
number without sacrificing much attack efficiency, we only
keep the top-K perturbations for exploration, δ1, δ2, · · · , δK .
The eigenvectors of JTJ could be fast calculated by pro-
cessing a truncated singular value decomposition (SVD) to
Jacobian matrix J , only keeping top K components.

From the discussion above, we demonstrate that the group
of basis we found maximizes the change on representation
space under the same perturbation norm of input. Next, we
generalize our conclusion to the change on output space.
The following theorem guarantees that by greedily exploring
the optimal perturbations given by (P1) and (P2), the attack
efficiency defined in Section 3.1 will be globally optimal
for any composition of K orthogonal perturbation vectors
on representation space, which forms the foundation of our
EigenBA algorithm. The proof is shown in Appendix 1.2.

Theorem 2 (Property of Eigen Perturbations) Assume there
is no prior information about the gradient of g̃ (the direction
of the actual gradient is uniformly distributed on the surface
of an m-dimensional ball with unit radius). Given a query
budget K for each iteration, the perturbations l⃗1, l⃗2, · · · , l⃗K
on representation space and the corresponding perturba-
tions δ1, δ2, · · · , δK on input space solved by Problem (P1)
and (P2) is most efficient among any choice of exploring K
orthogonal perturbation vectors on the representation space.
Specifically, the final one-step gradient for ∇z[g̃(z; θ̃)y] is
estimated by:

∇z[g̃(z; θ̃)y] ≃
K∑
i=1

(
∂g̃(z; θ̃)y

∂l⃗i

∣∣∣∣∣
z

· l⃗i

)

and the expected change of the output probability dpF (y|x)
reaches the largest with the same l2-norm of perturbation
on input space for all cases.

3.2.3 Further Improvements on Query Numbers

Another important improvement is inspired by SimBA [6]
(See Algorithm 2 in Appendix 5). Instead of estimating
the gradient by exploring a series of directional derivatives
before processing one-step gradient descent, SimBA itera-
tively updates the perturbation by picking random orthogo-
nal directions and either adding or subtracting to the current
perturbation, depending on which operation could decrease
the output probability. The main difference is that, SimBA
pursues fewer queries by using a relatively fuzzy gradient
estimation. SimBA does not concern about the absolute
value of the directional derivatives, but only positive or nega-
tive. In such a way, the perturbations of the orthogonal basis

Algorithm 1 The EigenBA Algorithm for untargeted attack
Input: Target black-box model F , the substitute model
G = g ◦ h, the input x and its label y, stepsize α, number of
singular values K.
Output: Perturbation on the input δ.

1: Let δ = 0, p = pF (y1, y2, · · · , ycb |x), succ = 0.
2: while succ = 0 do
3: Calculate Jacobian matrix w.r.t. h: J = Jh(x+ δ).
4: Process truncated-SVD as trunc-svd(J ,K) =

U,Σ, V T .
5: Normalize each column of V : qi = normalize(V [:, i]).

6: for i = 1 · · ·K do
7: pneg = pF (y1, · · · , ycb |clip(x + δ − α · qi))

//clip(·) for validity of the input.
8: if pneg,y < py then
9: δ = clip(x+ δ − α · qi)− x

10: p = pneg

//negative direction decreases the probability.
11: else
12: ppos = pF (y1, · · · , ycb |clip(x+ δ + α · qi))
13: if ppos,y < py then
14: δ = clip(x+ δ + α · qi)− x
15: p = ppos

//positive direction decreases the probability.
16: end if
17: end if
18: if py ̸= maxy′py′ then
19: succ = 1

break;
20: end if
21: end for
22: end while
23: Return δ

used to explore the real gradient could also contribute to the
decrease of the output probability. Inspired by SimBA, we
substitute their randomly picked basis or DCT basis to our
orthogonal basis δ1, δ2, · · · , δK given by solving Problem
5. The whole process for our EigenBA algorithm is shown
in Algorithm 1. Considering time efficiency, for each loop,
we calculate SVD once with respect to the initial state of
input of this loop and process K steps directional deriva-
tives exploration with the corresponding K eigenvectors as
perturbations. The idea of SimBA significantly reduces the
number of queries, as shown in [6].

Moreover, for complexity analysis of our EigenBA algo-
rithm and some tricks to decrease the time complexity, we
refer the readers to Appendix 2.
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4. Experiments

4.1. Setup

In practical scenarios of the transfer-based black-box at-
tack, there are two main sources of model mismatches: the
attacked model is different from the pre-trained model in the
model architecture, or the output classes (or both). Hence,
we will evaluate our EigenBA algorithm from two aspects in
the experiment part.

For the first group of experiments, we use a ResNet-
18 [9] trained on ImageNet as the fixed white-box pre-trained
model, and the attacked model is a ResNet-50 or Inception-
v3 trained on the same training dataset of ImageNet. The
attacked images are randomly sampled from the ImageNet
validation set that are initially classified correctly to avoid
artificial inflation of the success rate. For all baselines, we
use the same group of attacked images. For the second group
of experiments we show two different cases. A rather simple
case is to use a ResNet-18 trained on CIFAR-100 [13] as
white-box model, and the attacked model is a ResNet-18
trained on CIFAR-10 [13]. The more complex one is to
use a ResNet-18 trained on ImageNet to attack a ResNet-50
trained on WebVision2.0 [14]. WebVision2.0 contains 16
million training images from 5,000 different visual concepts.
Among them 1,000 concepts are overlapped with ImageNet,
but the images are selected from a different source from
ImageNet, and the other 4,000 concepts are newly added. To
show difference on output classes, we randomly pick a sub-
set containing 1,000 classes from the non-overlapped 4,000
classes for simplicity. The attacked model is limited on clas-
sifying the picked 1,000 classes. The reason we choose to
attack model trained on WebVision dataset is that the cate-
gories of the two datasets are sufficiently different to show
the superiority of our algorithm and the attacked model is
more like a real scene model. Similarly, the attacked images
are also randomly sampled from the correctedly classified im-
ages from the validation set of CIFAR-10 or WebVision2.0.
We summarize the settings of all experiments in Table 1. The
top two settings and the bottom two settings illustrate the two
types of model mismatch described above separately, with a
more detailed description of the differences on models.

We also process the untargeted attack case and the tar-
geted attack case in some settings, same as the previous
literature of black-box attack. The main difference is that
the targeted attack requires the model misclassifies the ad-
versarial sample to the assigned class, while the untargeted
attack just makes the model misclassified. Compared with
untargeted attack, the goal for targeted attack is to increase
pF (c|x) instead of decreasing pF (y|x), where c is the as-
signed class. Hence, we only need to make a small change
to Algorithm 1 by substituting pF (y|x) by −pF (c|x).

For all experiments, we limit the attack algorithm to
10,000 queries for ImageNet, 2,000 for CIFAR-10 and 5,000

for WebVision. Exceeding the query limit is considered
as an unsuccessful attack. There are 1,000 images to be
attacked for each setting. We evaluate our algorithm and
all baselines from 4 indicators: The average query number
for success samples only, the average query number for all
attacked images, the success rate and the average l2-norm of
the perturbation for success samples.

We compare EigenBA to several baselines. Despite our
l2 attack setting, we also test some state-of-the-art base-
lines for l∞ attack, as the l2 norm ||δ||2 is bounded by√

dim(δ) · ||δ||∞ and algorithms for l∞ attack could also be
adapted to l2 attack. Baseline algorithms could be divided
into two branches. One of the branches is the common black-
box attack with no additional information, we compare sev-
eral state-of-the-art algorithms including SimBA [6], SimBA-
DCT [6] and Parsimonious Black-box Attack (ParsiBA) [19].
The main concern to be explained by comparing with these
methods is to show exploring the representation space pro-
vided by a pre-trained model with a slight distribution shift
is more efficient than the primitive input space or low-level
image space (e.g. DCT space). The other branch is some
extensible first-order white-box attack methods that could
be adapted to this setting. We design two baselines: Trans-
FGSM and Trans-FGM. The two baselines are based on the
Fast Gradient Sign Method and the Fast Gradient Method [4].
While conducting them, we use the same pre-trained white-
box model as our algorithm. The two baselines iteratively
run SimBA algorithm by randomly selecting from the Carte-
sian basis on the representation space. And the updating rule
for the perturbation on input space is given by:

Trans-FGSM: δt+1 = δt ± α · sign(∇xh(xt; ei))

Trans-FGM: δt+1 = δt ± α · ∇xh(xt; ei)

||∇xh(xt; ei)||2
where ei is the selected ith basis and ∇xJh(xt; ei) is the
gradient of the ith output representation value zi with respect
to the input xt. By comparing these two methods, we will
show afterward that exploring the eigenvector orthogonal
subspace on representation space is more efficient than other
subspace, which is consistent with Theorem 2. It is note-
worthy that ParsiBA and Trans-FGSM are originally for l∞
attack. More details of the experimental setting is shown in
Appendix 2.3.

Moreover, it is noteworthy that P-RGF [2], Subspace
Attack [7] and LeBA [25] could also deal with the first
setting, i.e. the change of the model architecture. However,
they utilize more information from the output classification
probability of the pre-trained model than ours, leading to
more efficient attack but narrower usage scenarios. Their
methods could not deal with pre-trained models without
classification layer (e.g. training in an unsupervised manner)
or different label set between pre-trained model and attacked
model (i.e. the second setting in our experiment). Hence
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Table 1. Summary of our experiments: the differences of the pre-trained model and the black-box model on 4 aspects. The check mark
indicates the two models are different on the corresponding aspect. Content in brackets shows the training dataset of the model.

Pre-trained Model Attacked Black-box Model Model Variant Model Type Training Data Labels

ResNet-18 (ImageNet) ResNet-50 (ImageNet) ✓
ResNet-18 (ImageNet) Inception-v3 (ImageNet) ✓ ✓

ResNet-18 (CIFAR-100) ResNet-18 (CIFAR-10) ✓ ✓
ResNet-18 (ImageNet) ResNet-50 (WebVision) ✓ ✓ ✓

Table 2. Results for untargeted and targeted attack on attacking ResNet-50 (trained on ImageNet). Max queries = 10000

Method Transfer

Untargeted Targeted
Avg.

queries
(success)

Avg.
queries

(all)

Success
Rate Avg. l2

Avg.
queries

(success)

Avg.
queries

(all)

Success
Rate Avg. l2

SimBA No 1322 1417 0.989 3.989 5762 6719 0.774 8.424
SimBA-DCT No 804 933 0.986 3.096 4387 5437 0.813 6.612

ParsiBA No 997 1312 0.965 3.957 5075 6878 0.634 8.422
Trans-FGSM Yes 510 614 0.989 4.634 3573 4807 0.808 9.484
Trans-FGM Yes 675 843 0.982 3.650 3562 5867 0.642 8.200

EigenBA (Ours) Yes 383 518 0.986 3.622 2730 4140 0.806 7.926

in this paper, we only adopt the baselines with the same
applicability as our method for fair comparison.

4.2. Results on Change of Architectures

In this section we show the main results of attacking
ImageNet in Table 2 and Table 3, i.e. the top two settings
shown in Table 1. We adjust the hyper-parameter stepsize
α for our method and all baselines to make sure the average
l2-norm of perturbation is close and compare average queries
and success rate for easier comparison.

Table 2 shows the results of untargeted attack and tar-
geted attack under the pre-trained model ResNet-18 and
the attacked model ResNet-50. Comparing our EigenBA
to those algorithms without transferred pre-trained model,
our method uses at most 56% query numbers for untargeted
attack and about 76% for targeted attack and reaches a com-
parable success rate, which demonstrates that utilizing the
representation space of a smaller model could attack more
efficiently than the original pixel space or manually designed
low-level DCT space. Moreover, some state-of-the-art meth-
ods, e.g. SimBA-DCT, take advantage of the general proper-
ties of images and could not be generalized to other fields.
In contrast, our method is applicable to any black-box attack
scenario with a pre-trained model.

Comparing EigenBA to Trans-FGM, which is more suit-
able for l2-attack than Trans-FGSM, our method use about
61% query numbers for untargeted attack and 71% for tar-
geted attack. The results demonstrate that exploring the
eigenvector subspace generated by solving problem given

Table 3. Results for untargeted attack on attacking Inception-v3
(trained on Imagenet). Max queries = 10000

Methods
Avg.

queries
(success)

Avg.
queries

(all)

Success
Rate Avg. l2

SimBA 2541 3533 0.867 5.906
SimBA-DCT 1625 2169 0.935 4.245

ParsiBA 1710 2829 0.865 6.916
Trans-FGSM 967 1482 0.943 5.571
Trans-FGM 955 1733 0.914 4.759

EigenBA (Ours) 968 1356 0.957 4.629

by 5 on the representation space is more efficient than the
subspace generated by randomly chosen orthogonal basis,
which is consistent to our theoretic reflection in Section 3.
It is noteworthy that Trans-FGM performs similar or even
worse to SimBA-DCT, which shows transfer-based method
is not necessarily better than pure black-box attack methods,
depending on whether the representation space provided by
the transferred model is strong enough and the efficiency of
the algorithm itself.

Figure 1 further shows the change of success rate with
the change of query number limit for EigenBA, SimBA-
DCT and Trans-FGM. We can conclude the distribution of
the query number for 1000 attacked images for each attack
method. Our EigenBA algorithm performs especially better
when the limit of query number is relatively small, which
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Figure 1. The change of success rate with fixed query limit on attacking ResNet-50 (trained on ImageNet).

will significantly reduce the query cost.
Table 3 shows the result of untargeted attack under the pre-

trained model ResNet-18 and the attacked model Inception-
v3. Our EigenBA algorithm still performs the best among
all baselines, with the smallest average query number for
all attacked images, highest success rate and nearly smallest
perturbation, which shows that even the pre-trained model
is totally different from the attacked model, our EigenBA
algorithm still works well.

4.3. Results on Change of Output Classes

A more difficult setting is that the training dataset and
the output classes of the attacked model are totally differ-
ent from the pre-trained model, referring to the bottom two
settings in Table 1. However, similar to the experiments on
ImageNet, our EigenBA method still performs the best of
all on attacking CIFAR-10, with a pretrained model trained
on CIFAR-100, as shown in Table 4, and attacking WebVi-
sion with a pretrained model on ImageNet shown in Table 6.
For attacking CIFAR-10, compared with SimBA-DCT, our
algorithm uses 23% and 29% query numbers on untargeted
attack and targeted attack while reaching a higher success
rate. Compared with Trans-FGM, the proportion is 73%
and 58%. Moreover, on the more difficult setting of WebVi-
sion dataset, even the training dataset, output classes and the
model architecture are all changed, our EigenBA algorithm
still saves about 19% query numbers compared with SimBA-
DCT, while reaching a higher success rate. In contrastive,
the other two transferred algorithms perform worse than
pure black-box attack. It further shows that our algorithm
can more effectively use the information of the pre-trained
model. In conclusion, even the classes of the transferred
model are different from the attacked model, depending on
the strong generalization ability of neural network, the repre-
sentation space of the transferred network can still improve

the efficiency of black-box attack.
It is also noteworthy that the performance of our EigenBA

algorithm highly depends on the generalization ability of the
pre-trained model to the categories related to the attacked
model, which is largely attributed to the similarity of the two
training datasets for the pre-trained model and the attacked
model. As CIFAR-100 and CIFAR-10 have a closer relation-
ship than ImageNet and WebVision, our algorithm performs
much better on attacking CIFAR-10. In next section, we will
show more experimental evidences for the relationship be-
tween generalization ability and the efficiency of the attack.

4.4. Ablation Study: How the generalization ability
affects the efficiency of attack?

From the results of Section 4.2 and 4.3, one interesting
problem is how strong the generalization ability of the pre-
trained white-box model can help improve the efficiency of
black-box attack. In this section, we conduct an ablation
study on this problem. In this experiment, we set the pre-
trained model and the attacked model to be the same ResNet-
18 trained on CIFAR-10, but randomly setting a certain
proportion of parameters to be zero for the pre-trained model.
If the reserve rate of parameters is 1.0, the pre-trained model
will be totally the same with the attacked model, and with
the decrease of the reserve rate, the generalization ability
of the pre-trained model will become weaker. Setting a
random part of parameters to zero could also be seen as
a change to the structure of the pre-trained network. We
test the attack efficiency of EigenBA under different reserve
rate ratios and compare the result with the pure black-box
method SimBA-DCT in Table 5. We also report the pre-
trained model accuracy in different settings by fixing network
parameters below the final representation layer and only re-
training the top classifier with the training dataset of CIFAR-
10, which reflects the generalization ability of the pre-trained
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Table 4. Results for untargeted and targeted attack on attacking ResNet-18 (trained on CIFAR-10). Max queries = 2000

Methods Transfer

Untargeted Targeted
Avg.

queries
(success)

Avg.
queries

(all)

Success
Rate Avg. l2

Avg.
queries

(success)

Avg.
queries

(all)

Success
Rate Avg. l2

SimBA No 460 467 0.995 0.574 817 883 0.944 0.782
SimBA-DCT No 426 436 0.994 0.573 772 830 0.953 0.777
Trans-FGSM Yes 111 115 0.998 0.638 305 310 0.997 0.918
Trans-FGM Yes 129 135 0.997 0.524 369 419 0.969 0.747

EigenBA (Ours) Yes 95 99 0.998 0.472 241 244 0.998 0.692

Table 5. Set a certain proportion of the parameters of the pre-trained model in EigenBA to zero, for attack on CIFAR-10.

Methods Parameters
Reserved Rate

Avg. queries
(all) Success Rate Avg. l2

Pre-trained Model
Accuracy

EigenBA

1.0 88 1.000 0.453 89.19%
0.9 85 1.000 0.446 86.17%
0.8 130 0.997 0.459 77.78%
0.7 195 0.999 0.560 69.36%
0.6 382 0.991 0.760 35.36%
0.5 700 0.921 0.951 27.57%

SimBA-DCT - 440 0.998 0.575 -

Table 6. Results for untargeted attack on attacking ResNet-50
(trained on WebVision). Max queries = 5000

Methods
Avg.

queries
(success)

Avg.
queries

(all)

Success
Rate Avg. l2

SimBA 1429 1672 0.932 4.306
SimBA-DCT 891 1068 0.957 4.354
Trans-FGSM 973 1713 0.816 5.125
Trans-FGM 853 1375 0.874 4.402

EigenBA (Ours) 679 861 0.958 4.406

model.
The results show that when the reserve rate is larger than

0.7, the pre-trained model is helpful to the efficiency of the
black-box attack (both query number and average l2 are
lower.). And when the reserve rate is smaller than 0.5, the
model will degrade the attack efficiency. The breakeven
point may appear around 0.6. It shows that even the pre-
trained model cannot achieve the classification accuracy of
the attacked model, it can still improve the efficiency of the
black-box attack, e.g. in this experiment, a pre-trained model
with reserve rate of 0.7 just reaches 69.36% of classification
on CIFAR-10, roughly equivalent to a shallow convolutional
network [17], which is largely below the attacked model with
89.19%. Hence, as the representation layer of the modern

neural networks generally has a strong transferability [26],
our EigenBA algorithm has strong applicability in practice.

5. Conclusions
In this paper, we dealt with a novel setting for transfer-

based black-box attack. Attackers may take advantage of a
fixed white-box pre-trained model without additional train-
ing data, to improve the efficiency of the black-box attack.
To solve this problem, we proposed EigenBA, which itera-
tively adds or subtracts perturbation to the input sample such
that the expected change on the representation space of the
transferred model to be the direction of right singular vectors
corresponding to the first K singular values of the Jacobian
matrix of the pre-trained model. Our experiments showed
that EigenBA is more query efficient in both untargeted and
targeted attack compared with state-of-the-art transfer-based
and gradient estimation-based attack methods.We believe
that the applicability in the real world of our algorithm will
promote more research on robust deep learning and the gen-
eralization ability between deep learning models.
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