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Abstract

For medical image segmentation, imagine if a model was
only trained using MR images in source domain, how about
its performance to directly segment CT images in target do-
main? This setting, namely generalizable cross-modality
segmentation, owning its clinical potential, is much more
challenging than other related settings, e.g., domain adap-
tation. To achieve this goal, we in this paper propose
a novel dual-normalization model by leveraging the aug-
mented source-similar and source-dissimilar images dur-
ing our generalizable segmentation. To be specific, given
a single source domain, aiming to simulate the possible
appearance change in unseen target domains, we first uti-
lize a nonlinear transformation to augment source-similar
and source-dissimilar images. Then, to sufficiently ex-
ploit these two types of augmentations, our proposed dual-
normalization based model employs a shared backbone yet
independent batch normalization layer for separate nor-
malization. Afterward, we put forward a style-based selec-
tion scheme to automatically choose the appropriate path
in the test stage. Extensive experiments on three publicly
available datasets, i.e., BraTS, Cross-Modality Cardiac,
and Abdominal Multi-Organ datasets, have demonstrated
that our method outperforms other state-of-the-art domain
generalization methods. Code is available at https://
github.com/zzzqzhou/Dual-Normalization.
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Figure 1. (a) Example slices from BraTS dataset; (b) Comparison
of our method with “DeepAll” and “DoFE” methods on the Cross-
center prostate segmentation task and the Cross-modality brain
tumor segmentation task.

1. Introduction

In recent years, profound progress in medical image seg-
mentation has been achieved by deep convolutional neural
networks [22, 30, 35]. Benefiting from these recent efforts,
the accuracy of segmentation on medical images has now
been substantially improved. Despite their success, the dis-
tribution shift between training (or labeled) and test (or un-
labeled) data usually results in a severe performance degen-
eration during the deployment of trained segmentation mod-
els. The reason for distribution shift typically come from
different aspects, e.g., different acquisition parameters, var-
ious imaging methods or diverse modalities.

To fight against domain shift, several practical settings
have been investigated, among which unsupervised domain
adaptation (UDA) based segmentation [6,14,44] is the most
popular one. Specifically, in UDA setting, by assuming
that test or unlabeled data could be observed, the model is
firstly trained on labeled source domain (i.e., training set)
along with unlabeled target domain (i.e., test set), by reduc-
ing their domain gap. Then, the trained model is employed
to segment the images from target domain. Nevertheless,
these UDA based models require that target domain could
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be observed and even allowed to be trained. This prerequi-
site sometimes is difficult or infeasible to satisfy in the real
application. For example, to protect personal privacy infor-
mation, target domain (or test set) in some institutes cannot
be directly accessed.

To alleviate the requirement of target domain in UDA,
we consider a more feasible yet challenging setting, do-
main generalization (DG), to achieve generalizable med-
ical image segmentation against domain shift. We no-
tice that most existing DG models merely perform well
in cross-central setting with small variations between do-
mains, whereas the large domain shift (e.g., cross-modality)
is seldom investigated that could largely deteriorate their
performance [25, 26, 40].

We now illustrate two types of generalizable segmen-
tation scenarios (i.e., cross-center and cross-modality) to
clarify our motivation. Specifically, in Figure 1b, we
show results of our method (denoted as “Ours”), “DeepAll”
baseline and a state-of-the-art cross-center DG method
(“DoFE”) [40] on two different DG tasks. The first task
is the cross-center prostate segmentation task [27]. As il-
lustrated in Figure 1b, all of these methods achieve rela-
tively high Dice scores (> 80%) on this task, and gaps
of different methods are quite small. However, when we
apply these three methods to BraTS dataset [29], a cross-
modality brain tumor segmentation dataset, “DeepAll” and
“DoFE” methods show a drastic degradation on Dice scores
(< 40%), while our method still achieves a competitive
Dice score (> 50%). The reason of this large performance
degradation lies in large domain shift. For example, in Fig-
ure 1a, we illustrate T2- and T1-weighted images in BraTS
dataset [29]. The brain tumors that need to be segmented
are delineated with red curves. It is obvious that T2 and T1
modalities show large distinct appearances. Accordingly,
we notice that cross-modality DG task is more challenging
than cross-center DG task due to the former should tackle
larger domain shift. In this paper, we aim to deal with DG
task with large domain shift (e.g., cross-modality task), and
most previous DG methods are not designed for this.

Our setting owns its clinical meaning. For example,
large distribution shift, caused by some unpredictable fac-
tors (e.g., interference from light source) during imaging,
poses challenge to current generalization methods. Also,
in some cases, data scarcity occurs in target domain makes
UDA becomes hard to realize. In a nut shell, we intend to
develop a robust method for realizing domain distribution
shift insensitive modeling.

Based on above motivations, we propose a generaliz-
able cross-modality medical image segmentation method
trained on a single source domain (e.g., CT) and directly
applied to unseen target domain (e.g., MRI) without any re-
training. We notice that in medical images, modality dis-
crepancy usually manifests in gray-scale distribution dis-

crepancy. Being aware of this fact, we wish to simulate
possible appearance changes in unseen target domains. In
order to tackle this challenging cross-modality DG task, we
introduce a module that can randomly augment source do-
main into different styles. To be specific, we utilize Bézier
Curves [31] as transformation functions to generate two
groups of images: one group of images are similar to source
domain images (i.e., source-similar domain), and another
group of images have a large distribution gap with source
domain images (i.e., source-dissimilar domain). Then, we
introduce a segmentation model with a dual-normalization
module to preserve style information of source-similar do-
main and source-dissimilar domain. Finally, a style-based
path selection module is developed to help target domain
images select the best normalization path to achieve opti-
mal segmentation results. The main contributions of this
paper are summarized as:

• We propose a deep dual-normalization model to tackle
a more challenging DG task, i.e., generalizable cross-
modality segmentation, that could directly segment the
images from unseen target domains without re-training.

• We enhance the diversity of source domain via generat-
ing source-similar and source-dissimilar images based on
Bézier Curves and develop a dual-normalization network
for effective exploitation. Besides, we propose the style-
based path selection scheme in the test stage.

• Extensive experiments demonstrate our effectiveness. On
BraTS dataset, our method achieves the Dice of 54.44%
and 57.98% on T2 and T1CE source domains, respec-
tively, which is quite close to UDA [5] (59.30% on T2
source domain) as our upper bound . On both Cross-
Modality Cardiac and Abdominal Multi-Organ datasets,
our method outperforms the state-of-the-art DG methods.

2. Related Work
Unsupervised Domain Adaptation. The purpose of un-
supervised domain adaptation (UDA) is to learn a model
with labeled source domain and unlabeled target domain
that retains promising performance on target domain [2, 3,
6, 14, 28, 39, 44]. And UDA has attracted considerable at-
tention recently. Some UDA methods utilize distribution
alignment in pixel-level and adopt a generative network
to narrow the domain gap between source and target do-
mains [6, 14, 44]. Chang et al. [3] use an adversarial train-
ing policy to align feature distribution between source and
target domains to maintain semantic feature-level consis-
tency across different domains. Also, Chang et al. [2] sep-
arate batch normalization layers for each domain which al-
lows the model to distinguish domain-specific and domain-
invariant information. However, in some scenarios, e.g., the
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Figure 2. The overall framework of our method. We first employ a style augmentation module to generate source domain into different
styles and split them into source-similar domain (Dss) and source-dissimilar domain (Dds). Then, we train a dual-normalization (DN)
segmentation network on (Dss) and (Dsd). Finally, we test the trained network on target domains by style-based selection module.

data could not be accessed during training due to privacy
protection. Target domains are not available in the training
process, causing UDA methods could not be directly uesd.

Domain Generalization. Unlike UDA, domain general-
ization (DG), by training models purely on source domains,
aims to directly generalize to target domains that could
not be observed during the training process [4, 8, 11, 13,
34, 41, 42]. Recently, a large number of works on DG
tasks have been proposed. Among previous efforts, some
methods are designed to learn domain-invariant representa-
tions by minimizing the domain discrepancy across multi-
ple source domains [10, 12, 15, 21, 23, 32, 42]. Additionally,
some methods use meta-learning, which employs episodic
training policy by splitting source domain into meta-train
and meta-test domains at each training iteration to simu-
late domain shift [1, 7, 19, 20, 26]. Besides, some meth-
ods tackle DG task by modifying normalization layers,
e.g. batch normalization (BN) and instance normalization
(IN) [9, 33, 36, 37]. For example, Pan et al. [33] propose
IBN-Net, which merges IN and BN layers in an unified
framework, where IN could maintain invariant represen-
tation and BN is able to preserve discriminative features
simultaneously. Also, Seo et al. [37] introduce domain
specific optimized normalization (DSON) to learn a joint
embedding space across all source domains by optimizing
domain-specific normalization layers. Segu et al. [36] uti-
lize domain-specific batch normalization layers to collect
distribution statistics to model relations between features
of source and target domains. There also exists some data
augmentation approaches to increase the diversity of source
domains for the sake of improving generalization ability on
unseen target domains [38, 43, 45, 46].

In medical image analysis, several previous works have
studied generalizable medical image segmentation tasks.
For example, Zhang et al. [43] propose a deep-stacked
transformation approach that employs a series of transfor-
mations to simulate domain shift for a specific medical
imaging modality. Wang et al. [40] build a domain knowl-
edge pool to store domain-specific prior knowledge and
then use domain attributes to aggregate features from dif-

ferent domains. Liu et al. [25] further improve the per-
formance of cross-domain medical image segmentation by
combining continuous frequency space interpolation with
episodic training strategy. However, most existing DG
methods for medical image segmentation work under small
domain distribution shift. When large domain shift occurs,
they might suffer performance degradation.

3. Methodology
3.1. Definition and Overview

We denote our single source domain as Ds =
{xs

i , y
s
i }N

s

i=1, where s represents the domain ID, xs
i is the

i-th image in the source domain s, ysi is the segmentation
mask of xs

i , and Ns is the total number of samples. Our
purpose is to train a segmentation model Sθ : x → y on
source domain Ds, where x and y represent the image set
and label set in source domain Ds, Sθ represents the seg-
mentation model and θ is model parameters. We hope the
model Sθ can generalize well to unseen target domain Dt.

Specifically, we first propose a style augmentation mod-
ule with several transformation functions to augment the
source domain Ds into source-similar domain Dss and
source-dissimilar domain Dsd. Then, based on the gener-
ated domain Dss and Dsd, a network equipped with a dual-
normalization (DN) module is introduced in our method.
We train the DN-based model on Dss and Dsd domains. DN
can preserve domain style information after model training.
Finally, according to domain style information in DN and
instance style information of the target domain, we can se-
lect the closest normalization statistics in DN to normalize
features of target domain and get optimal segmentation re-
sults. The diagram of our method is shown in Figure 2. We
now discuss the technical details of our method.

3.2. Style Augmentation Module

For generalizable medical image segmentation task, us-
ing a single source domain to train the model is very tough.
The style bias between different modalities will dramati-
cally degrade the performance. From this perspective, we
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Figure 3. T2 weight augmented MR Brain images and augmented
images.

propose a simple yet effective style augmentation module
to generate different stylized images from source domain.

Popular medical image modalities (e.g., X-ray, CT, and
magnetic resonance images (MRI)) are usually gray-scale
images. As is shown in Figure 1, in T2-weighted MR brain
images, whole tumor regions are much brighter than sur-
roundings. In contrast, in T1-weighted MR brain images,
foregrounds of whole tumors are darker than background
regions. A simple idea to generate different styles is adjust-
ing the gray value distribution of images. Inspired by the
previous work Model Genesis [47], we adopt several mono-
tonic non-linear transformation functions to map pixel val-
ues of original images to new values. Thus, the operation of
changing gray distribution of images can be realized. Simi-
lar to [47], we use smooth and monotonic Bézier Curve [31]
as our transformation function.

S
Bézier Curve can be generated from two end points (P0

and P3) and two control points(P1 and P2). The function is
defined as follows:

B(t) =
n∑

i=0

(
n

i

)
Pi(1− t)n−iti, n = 3, t ∈ [0, 1],

where t is a fractional value along the length of the line.
The domain and range of all Bézier Curves are [−1, 1]. In
Figure 3, we illustrate the original T2-weighted BraTS im-
age and its augmented images. We set P0 = (−1,−1) and
P3 = (1, 1) to get an increasing function and opposite to
get a decreasing function. When P0 = P1 and P2 = P3, the
Bézier Curve is a linear function (shown in Columns 2, 5).
Then, we randomly generate another two pairs of control
points. Specifically, we set P1 = (−v, v) and P2 = (v,−v)
(v ∈ (0, 1)). We randomly generate two different vs for
each image, so we get two increasing curves (shown in
Columns 3 and 4) and two decreasing curves by inversion
(shown in Columns 6, 7). Finally, we get 6 non-linear trans-
formation functions (three increasing and three decreasing)
for augmentation. In our three tasks, we normalize each
sample to [−1, 1]. It should be noted that we only perform
transformation operations on foreground regions.

Obviously, in gray-scale medical images, monotonically

increasing transformation functions have less impact on im-
age style. So we classify these transformed images obtained
by increasing transformation functions as images similar to
the source domain images, which we call source-similar do-
main (Dss). On the contrary, these images generated by de-
creasing transformation functions will be treated as source-
dissimilar domain (Dsd). We assume that those images with
gray distribution close to source domain images can have
good generalization performance on the model trained on
Dss, while other images having large distribution gaps with
source domain could generalize well on models trained on
Dsd. We use both domains to train the DN-based model
introduced in the next section.

3.3. Dual-normalization based Network

It has been proven that batch normalization [16] can
make neural networks easy to capture data bias in their in-
ternal latent space [24]. However, data bias captured by
neural networks with BN depends on domain distribution,
which may degrade generalization ability when tested on
novel domains. For our style-augmented images, simply
adopting BN will make the model lose domain-specific dis-
tribution information of Dss and Dsd. As a result, our
model may not be able to generalize well on target domains.

To capture different domain distribution information in
Dss and Dsd, inspired by previous work [2], we adopt
two different BN layers in a model to normalize activated
features of Dss and Dsd, respectively. We call this Dual-
Normalization (DN). The DN module can be written as

DN(z; d) = γd
z − µd√
σd

2 + ϵ
+ βd, (1)

where z represents activated features of the model from do-
main d, d represents the domain label, γd and βd are affine
parameters of domain d, (µd, σd

2) represent the mean and
variance of the input feature z from domain d and ϵ > 0 is
a small constant value to avoid numerical instability.

During training, BN layers estimate means and variances
of activated features by exponential moving average with
update factor α. For DN, they can be written as

µt+1
d = (1− α)µt

d + αµt
d, (2)

(σt+1
d )2 = (1− α)(σt

d)
2 + α(σt

d)
2, (3)

where t represents current training iteration, µt
d and (σt

d)
2

are the estimated means and variances of domain d at t-th it-
eration. The estimated means and variances of DN for each
domain can be considered as domain distribution informa-
tion. When testing on target domain, these domain distri-
bution information (µd, σd

2) can be used to compare with
distribution information (µt, σt

2) of target domains. So that
the model can select suitable domain distribution statistics
to normalize activated features from target domains.
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3.4. Style-Based Path Selection

The DN module allows the model to learn multiple
source distribution of Dss and Dsd. So that the estimated
statistics in DN can be considered as domain style informa-
tion of Dss and Dsd. Hence, we get a light-weight ensemble
model, where each domain shares same model parameters
except for normalization statistics.

The model with DN module is trained on Dss and Dsd.
After training, DN module will preserve statistics µd and
σ2
d and affine parameters γd and βd of training data from

domain d. Therefore, we will get two series of µd and σd
2,

which can be denoted as

ed = [e1d, e
2
d, ..., e

L
d ] = [(µ1

d, σ
1
d
2
), (µ2

d, σ
2
d
2
), ..., (µL

d , σ
L
d

2
)],

where d represents the domain label of Dss and Dsd, the
superscripts l ∈ {1, 2, ..., L} denote the l-th BN layer in
the model. This can be defined as a batch normalization
embedding [36] for a certain domain d. In our work, we
denote ed as style embedding of domain d.

For a target sample xt, we can capture instance statistics
(µt, σt

2) by forward propagation. The style embedding et
of target domain sample can be described as

et = [e1t , e
2
t , ..., e

L
t ] = [(µ1

t , σ
1
t
2
), (µ2

t , σ
2
t
2
), ..., (µL

t , σ
L
t

2
)].

Each e1t represents instance style statistics of target domain
sample at certain layer l during forward propagation. Once
the instance style embedding of target domain sample is
available, it is possible to measure similarities of a target
domain sample xt to Dss and Dsd by calculating distances
between et and ed.

To measure the distance between style embeddings of
source domain and target domain, we adopt a symmetric
distance function that satisfies the triangle inequality. In our
method, we choose the Euclidean Distance. The distance of
the l-th layer embeddings can be written as

W(elt, e
l
d) = ∥µl

t − µl
d∥22 + ∥σl

t

2 − σl
d

2∥22. (4)

We measure the distance between target sample xt and
source domain d by summing over the distance between the
style embeddings elt and eld of all layers:

Dist(et, ed) =
∑

l∈{1,2,...,L}

W(elt, e
l
d). (5)

Once the distance to each source domain is computed,
we can choose the nearest source domain style embedding
and affine parameters γd and βd to normalize the input fea-
ture zt of target domain:

c = argmin
d

Dist(et, ed). (6)

The normalization on target domain feature zt is written as

Norm(zt; c) = γc
zt − µc√
σc

2 + ϵ
+ βc. (7)

Since our model shares all parameters except batch nor-
malization layers on Dss and Dsd, the model we trained can
predict results on target domains by normalized features in
Equation (7). We denote Sθ(·) as our segmentation model,
where θ represents parameters in the model except for batch
normalization layers. So we can form predicting result on
target domain t as Sθ(z

c
t ), where zct represents normalized

target domain features from Equation (7).

3.5. Training Details

As aforementioned, DN module contains two separate
batch normalization layers in our model—one is for Dss,
and another is for Dsd. At the beginning, we augment
the source domain into Dss and Dsd by style augmenta-
tion module. Then, we feed them in the DN-based model to
get soft predictions. Afterwards, we optimize the model Sθ

by segmentation loss. To overcome the class imbalance is-
sue between relative small-sized foreground and large-sized
background, we employ a sum of soft Dice loss of Dss and
Dsd to train the segmentation network:

Lseg = LDice(Sθ(xss), yss) + LDice(Sθ(xsd), ysd), (8)

where (xss, yss) and (xsd, ysd) represent pairs of image
and related one-hot ground truth from Dss and Dsd, Sθ(·)
yields soft prediction. We show the overall framework of
our method in Figure 2.

4. Experiments
4.1. Experimental Setting

Datasets and Preprocessing. We introduce three
datasets (i.e., BraTS dataset [29], Cross-Modality Cardiac
dataset [48] and Abdominal Multi-Organ datasets [17, 18])
for evaluation. The Cross-Modality Brain Tumor Segmen-
tation Challenge 2018 dataset (BraTS) [29] is composed of
four modalities of MR images, i.e., T2, Flair, T1, and T1CE.

Cross-Modality Cardiac dataset [48] consists of 20 un-
paired MRI and CT volumes from different clinical sites,
which contains four cardiac structures, i.e., left ventricle
myocardium (LVM), left atrium blood cavity (LAB), left
ventricle blood cavity (LVB), and ascending aorta (AA).

The Abdominal Multi-Organ dataset contains two differ-
ent modalities. One is the T2-SPIR MRI training data from
ISBI 2019 CHAOS Challenge [17] with 20 volumes. The
other one is the publicly available CT data from [18] with 30
volumes. This dataset contains four abdominal organs, i.e.,
liver, right kidney (R. Kid), left kidney (L. Kid), and spleen.
We use the manual delineation of these datasets provided by
professional radiologists as ground truth for evaluation.
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Table 1. Comparison of different methods on the BraTS dataset. ↑: the higher the better, ↓: the lower the better.

Source Domain: T2 Source Domain: T1CE

Method Dice (%) ↑ Hausdorff Distance (mm) ↓ Dice (%) ↑ Hausdorff Distance (mm) ↓

Flair T1 T1CE Average Flair T1 T1CE Average Flair T1 T2 Average Flair T1 T2 Average

No Adaptation 70.01 5.58 9.33 28.31 20.52 56.51 50.03 42.35 37.53 59.13 11.13 35.93 26.32 18.97 50.23 31.84

Source-Similar 71.49 5.83 8.87 28.73 20.46 57.01 56.29 44.59 45.58 62.56 18.66 42.27 21.06 19.60 50.21 30.29
Source-Dissimilar 0.48 47.48 36.52 28.16 60.28 22.35 22.84 35.16 15.68 5.54 65.87 29.03 55.69 58.41 17.02 43.71

DeepAll 77.44 13.65 14.42 35.17 13.54 35.06 30.28 26.29 38.48 48.67 19.26 35.47 26.79 19.65 48.21 31.55
IBN-Net [33] 76.56 5.41 6.77 29.58 13.02 55.75 51.28 39.96 50.23 46.66 15.52 37.47 21.56 22.98 50.67 31.74
DSON [37] 75.69 5.75 9.90 30.45 25.23 34.68 35.28 31.73 55.60 59.44 13.40 42.81 30.50 29.91 36.06 32.16
MLDG [19] 71.23 5.47 8.83 28.51 15.64 56.02 51.01 40.89 29.53 51.38 3.56 28.16 32.84 23.06 55.39 37.10
DoFE [40] 74.91 5.72 9.31 29.98 14.18 55.64 50.43 40.08 32.25 56.82 4.12 31.06 31.66 21.08 56.69 36.48

Fed-DG [25] 75.77 5.82 9.51 30.37 14.45 54.03 51.06 39.85 33.03 58.30 4.09 31.72 32.07 22.35 56.08 36.83
Ours 75.87 49.36 38.09 54.44 13.44 20.15 23.56 19.05 47.31 63.64 63.00 57.98 21.03 18.06 17.56 18.88

Table 2. Comparison of different methods on the Cardiac dataset. ↑: the higher the better, ↓: the lower the better.

Cardiac MRI → Cardiac CT Cardiac CT → Cardiac MRI

Method Dice (%) ↑ Hausdorff Distance (mm) ↓ Dice (%) ↑ Hausdorff Distance (mm) ↓

AA LAC LVC MYO Average AA LAC LVC MYO Average AA LAC LVC MYO Average AA LAC LVC MYO Average

No Adaptation 27.10 28.92 2.24 1.88 15.04 87.06 86.09 84.71 84.64 85.62 4.61 3.91 3.94 4.52 4.24 101.08 100.53 100.22 101.30 100.78

DeepAll 39.07 38.65 41.56 41.17 40.11 26.51 30.05 28.41 25.03 27.50 18.12 18.04 19.44 17.71 18.33 108.92 105.05 108.55 111.69 108.55
IBN-Net [33] 28.48 25.28 32.31 28.43 28.63 80.64 82.17 76.38 75.65 78.71 25.79 24.98 24.71 26.10 25.39 61.42 62.12 69.85 79.24 68.16
DSON [37] 43.09 40.24 42.66 42.00 42.00 26.56 28.51 22.73 25.21 25.75 26.13 27.21 24.75 21.52 24.90 78.86 77.20 78.20 89.67 80.98
MLDG [19] 50.34 48.30 46.69 45.49 47.71 17.06 20.64 18.43 17.68 18.45 23.65 28.31 25.62 20.79 24.59 75.64 70.31 69.58 71.46 71.75
DoFE [40] 51.38 48.51 46.47 44.99 47.84 15.20 17.02 16.38 18.22 16.70 25.96 25.87 25.49 22.96 25.07 77.25 68.01 75.41 79.06 74.93

Fed-DG [25] 52.41 49.14 46.77 43.93 48.06 16.83 21.14 19.95 20.36 19.57 25.47 28.08 24.25 22.21 25.00 80.29 82.54 79.68 72.51 78.76
Ours 51.42 50.20 52.86 52.31 51.70 16.14 16.76 15.11 16.20 16.05 33.38 31.65 33.29 30.45 32.19 59.04 69.01 68.24 66.03 65.58

For image preprocessing, we normalize the image to
[-1, 1] in intensity values. For the Abdominal Multi-
Organ dataset, we crop the volume of each case that con-
tains segmentation targets. Following the previous work
in UDA [49], we randomly select 80% of patient data as
training set and 20% as test set, and each slice is resized to
256×256. During training, we perform data augmentations
i.e., random crop, random rotation, random scale, etc.

Implementation Details. We employ U-Net [35] as our
segmentation backbone with replacing all BN layers to our
DN module. We implement our model with the PyTorch
framework on 4 Nvidia RTX 2080Ti GPUs with 11 GB
memory. For all datasets, we train the model for 50 epochs
with a batch size of 64. We choose the Adam optimizer with
an initial learning rate lr0 of 4 × 10−3 as our optimizer to
train the model. Additionally, for stable training, the learn-
ing rate lr is decayed according to the polynomial rule.

Evaluation Metrics. We adopt two popularly used eval-
uation metrics, i.e., Dice coefficient (Dice) and Hausdorff
distance (HD). The Dice coefficient measures the overlap-
ping ratio between prediction and ground truth. The higher
Dice value, the better segmentation performance. Hausdorff
distance is defined between two sets in the metric space.
The lower HD value, the better performance.

4.2. Comparison with State-of-the-art Methods

In Table 1, we report the results of source domain T2
and T1CE in BraTS dataset. “No Adaptation” indicates the
results of target domains by directly applying the model
trained on single source domain. Besides, we report the
results of models trained on Dss and Dsd, which are de-
scribed as “Source-Similar” and “Source-Dissimilar”. Sev-
eral recently proposed SOTA methods are also included.
First, “DeepAll” (i.e., directly training on aggregated source
domains and testing on target domains) is regarded as
the baseline in our evaluation. Moreover, we choose five
DG methods for comparison, including IBN-Net [33] and
DSON [37]: two normalization based methods, MLDG [19]
and Fed-DG [25]: two meta-learning based methods, and
DoFE [40]: a domain-invariant feature learning approach.
These DG methods mentioned above all focus on learning
or keeping domain invariant information, while our method
focuses on selecting the most similar domain information to
help generalization on target domains.

As we expected, our method outperforms all other meth-
ods on average results of Dice score and HD with huge
margins. Specifically, on source domain T2, our method
achieves the highest average Dice score of 54.44% and the
lowest average HD of 19.05 mm. Compared to the best
results of other approaches (vs. “DeepAll” ), we increased
the Dice score by a large margin of 19.27%. Similarly, on
source domain T1CE, our method improves the Dice score

620861



Table 3. Comparison of different methods on the Abdominal Multi-Organ dataset. ↑: the higher the better, ↓: the lower the better.

Abdominal MRI → Abdominal CT Abdominal CT → Abdominal MRI

Method Dice (%) ↑ Hausdorff Distance (mm) ↓ Dice (%) ↑ Hausdorff Distance (mm) ↓

Spleen R. Kid L. Kid Liver Average Spleen R. Kid L. Kid Liver Average Spleen R. Kid L. Kid Liver Average Spleen R. Kid L. Kid Liver Average

No Adaptation 7.98 6.53 7.60 7.21 7.33 53.20 49.91 52.81 47.53 50.86 6.16 6.03 3.37 2.80 4.59 35.97 44.23 26.00 33.85 35.01

DeepAll 17.37 17.86 16.56 18.05 17.46 36.37 38.74 37.42 37.02 37.39 22.81 26.49 21.02 23.43 23.44 28.65 17.95 10.33 16.61 18.39
IBN-Net [33] 11.11 12.50 15.67 14.96 13.56 40.21 42.31 39.06 38.52 40.03 19.31 25.08 22.65 27.14 23.55 30.05 20.16 15.67 19.08 21.24
DSON [37] 7.12 7.98 10.06 9.26 8.61 45.17 40.36 42.13 49.33 44.25 8.05 18.60 15.72 8.50 12.72 46.55 9.65 16.58 19.72 23.12
MLDG [19] 31.89 34.21 34.88 37.85 34.71 29.40 26.13 27.88 25.03 27.11 41.05 37.44 35.82 39.46 38.44 25.61 12.76 12.06 12.12 15.64
DoFE [40] 33.18 37.33 36.20 44.67 37.85 18.58 12.18 17.24 17.81 16.45 41.36 36.97 36.47 39.55 38.59 25.52 9.98 11.69 16.92 16.03

Fed-DG [25] 32.54 36.15 41.12 47.06 39.22 12.75 9.78 12.90 9.61 11.26 21.48 18.54 57.40 58.22 38.91 21.94 27.73 10.51 6.50 16.67
Ours 37.53 37.87 40.94 42.14 39.62 11.45 8.81 10.44 9.68 10.10 68.36 71.54 73.70 67.27 70.22 6.40 2.00 1.37 1.99 2.94

by 20.51% compared to the best SOTA result (vs. “IBN-
Net”). We also observe an interesting fact that on source do-
main T2, the average results of baseline “DeepAll” surpass
all other DG methods. This is because all of the compared
DG methods mainly focus on addressing DG tasks with
small distribution shift (e.g., cross-center tasks) when ap-
plying to DG tasks with large distribution shift (e.g., cross-
modality tasks), their performance will deteriorate a lot. We
believe the superior performance can be attributed to the
fact that, with the DN-based model and style-based selec-
tion, our method is capable of generalizing well on target
domains in cross-modality DG tasks.

Additionally, we notice that a single segmentation model
trained on Dss and Dss (i.e., “Source-Similar” and “Source-
Dissimilar” in Table 1) separately could not guarantee gen-
eralization quality on all target domains. Taking source
domain T2, for example, in “Source-Similar”, the model
gets a Dice score of 71.49% on target domain Flair. How-
ever, when testing on target domain T1 and T1CE, the Dice
scores are only 5.58% and 8.87%. Similarly, in “Source-
Dissimilar”, the Dice score on Flair is only 0.48%. This
indicates that separately trained on Dss or Dsd, the model
can not generalize well on all target domains.

The segmentation performance of all methods on the
Cardiac dataset and Abdominal Multi-Organ dataset is
given in Table 2 and Table 3. In both experiments, the aver-
age performance of “No Adaptation” is surprisingly worse
than all other methods. This reveals that without adaptation
or generalization techniques, the model is unable to gener-
alize on target domains. Furthermore, we still notice that
the baseline “DeepAll” can outperform some other well-
designed DG methods in both tasks, which further illus-
trates that most DG methods are not suitable for DG tasks
with large domain shift. Given that our method is special-
ized in dealing with the cross-modality DG task, we achieve
stable performance gain on both segmentation tasks.

We visualize the segmentation results of our method and
other methods on three tasks in Figure 4, 5 and 6. They
show that our model can produce more accurate segmenta-
tion results of target domains, especially having good spa-
tial continuity of segmentation targets.

Input Images DeepAll IBN-Net DSON MLDG DoFE Fed-DG Ours Ground Truth

Figure 4. Visualization results (i.e., Flair, T1 and T1CE) of BraTS
dataset obtained by our method and other methods trained on
source domain T2, together with the ground truth.

Input Images DeepAll IBN-Net DSON MLDG DoFE Fed-DG Ours Ground Truth

Figure 5. Visualization results on Cardiac segmentation task of
different methods. First two rows: “MR to CT” task; Last two
rows: “CT to MR” task.

Input Images DeepAll IBN-Net DSON MLDG DoFE Fed-DG Ours Ground Truth

Figure 6. Visualization results on Multi-Organ segmentation task
of different methods. First two rows: “MR to CT” task; Last two
rows: “CT to MR” task.
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Table 4. Results of our model without style-based selection on
BraTS dataset.

Source-Similar BN Path

Domain T2 Flair T1CE T1 Average

T2 82.52 75.87 9.58 6.48 30.64
T1CE 14.48 47.31 73.50 63.64 62.72

Source-Dissimilar BN Path

Domain T2 Flair T1CE T1 Average

T2 1.42 0.94 40.17 49.36 30.16
T1CE 63.00 23.57 3.83 7.34 31.30

4.3. Discussion

Efficacy of Style-based Path Selection. Since our model
involves the DN module, we wish to validate the effec-
tiveness of our style-based path selection module. Specifi-
cally, on BraTS dataset, we evaluate predictions obtained by
source-similar BN path and source-dissimilar BN path on
all domains (including source domain). As reported in Ta-
ble 4, each row represents modality of source domain, and
each column represents modality of tested domain. We cal-
culate average Dice scores of all target domains (underlined
results in the table). It shows that neither source-similar BN
path nor source-dissimilar BN path can generalize well on
all target domains. Additionally, we display results of our
style-based selection method with source-similar BN path
and source-dissimilar BN path in Figure 7. It reveals that
our method is more robust. Also, we ensemble the results
produced by source-similar BN path and source-dissimilar
BN path. The blue, green, orange and red bars represent
results of source-similar BN, source-dissimilar BN, ensem-
ble predictions, and style-based selection module, respec-
tively. It indicates that ensemble predictions cannot receive
promising results, and our style-based selection could help
select relative optimal results.

Efficacy of Style Augmentation. In Section 3.1, we ran-
domly generate three images as source-similar and three
images as source-dissimilar in each case by using Bézier
Curves. The number of pairs of control points Bézier Curve
is proportional to the number of augmented images, which
will contribute to more training time. We conduct an ab-
lation study to analyze how the number of transformation
functions pairs will influence results. So, we explore differ-
ent numbers of control point pairs from 1 to 5 in Figure 8.
The vertical axis represents the Dice score and the horizon-
tal axis represents the number of functions. We observe that,
regardless of the number of transformation functions, seg-
mentation results of our method exceed other methods by
a large margin. This proves that the number of transforma-
tion functions will not affect the results of our method much
when controlled in a reasonable range.

Analysis on Cross-center Task. To further verify the per-
formance of our method on cross-center DG tasks, we eval-
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Figure 7. Dice score comparison of style-based selection method,
non-selection method and ensemble policy on BraTS dataset.
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Figure 8. The segmentation performance on BraTS dataset of our
method and other SOTA methods based on different numbers of
control point pairs.

uate our method on cross-center prostate segmentation [27].
This is a well-organized cross-center dataset for prostate
MRI segmentation. In this task, the Dice score of our
method is 84.19%, and the baseline (“DeepAll”) and SOTA
(“DoFE” [40]) methods obtain Dice scores of 85.46% and
87.48% (reported in [40]), respectively. Although our
method does not outperform others in cross-center tasks,
their gaps are relatively small. We need to mention that
our approach aims to solve DG tasks with large domain
shift (e.g., cross-modality task), and results in Section 4.2
also prove that our method shows huge advantages on three
datasets of cross-modality DG tasks.

5. Conclusion
In this paper, we first attempt to study the generalizable

cross-modality medical image segmentation task. We em-
ploy Bézier Curves to augment single source domain Ds

into different styles and split them into source-similar do-
main Dss and source-dissimilar domain Dsd. Moreover, we
design a dual-normalization module to estimate domain dis-
tribution information. During the test stage, we select the
nearest feature statistics according to style-embeddings in
the dual-normalization module to normalize target domain
features for generalization. Our method shows significant
improvement compared to other state-of-the-art methods on
BraTS, Cardiac and Abdominal Multi-Organ datasets.
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