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Abstract

Lidars are depth measuring sensors widely used in au-
tonomous driving and augmented reality. However, the
large volume of data produced by lidars can lead to high
costs in data storage and transmission. While lidar data can
be represented as two interchangeable representations: 3D
point clouds and range images, most previous work focus on
compressing the generic 3D point clouds. In this work, we
show that directly compressing the range images can lever-
age the lidar scanning pattern, compared to compressing
the unprojected point clouds. We propose a novel data-
driven range image compression algorithm, named RID-
DLE (Range Image Deep DeLta Encoding). At its core is
a deep model that predicts the next pixel value in a raster
scanning order, based on contextual laser shots from both
the current and past scans (represented as a 4D point cloud
of spherical coordinates and time). The deltas between pre-
dictions and original values can then be compressed by en-
tropy encoding. Evaluated on the Waymo Open Dataset and
KITTI, our method demonstrates significant improvement in
the compression rate (under the same distortion) compared
to widely used point cloud and range image compression
algorithms as well as recent deep methods.

1. Introduction
Lidar (or LiDAR, short for light detection and ranging)

sensors are commonly used in applications that require 3D
scene understanding such as autonomous driving and aug-
mented reality. However, with the growing resolution of
lidars, storing and transmitting large volumes of sequential
lidar data become a challenge. There is a strong need to
develop effective algorithms for lidar data compression.

While the measurements of a lidar scan are often used as
a 3D point cloud, the raw lidar data can be represented as
a more structured format: a range image, where each pixel
corresponds to a laser shot, each row represents shots from
the same laser, each column represents shots at a specific az-
imuth rotation angle. Given the lidar scanning mechanism
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(directions of the lasers) and sensor poses (6D poses in the
global coordinate at the timestamp of every shot), a range
image and its corresponding point cloud can be converted
interchangeably and losslessly. By organizing the points in
a range image, instead of storing the three-dimensional co-
ordinates of the points, we can just store one-dimensional
ranges (around 3x saving in storage). Given this observa-
tion, in contrast to previous works that focus on compress-
ing 3D point clouds [9,16,23], we propose to directly com-
press range images to leverage the lidar scanning patterns.

As range images are in the image format, naturally we
can apply existing compression methods for optical images
(RGB or grayscale); however, those methods have their lim-
itations. For example, the PNG format is often used to com-
press depth images in indoor datasets [4, 11, 25], where the
depth value are normalized and quantized to 16-bit integers
and compressed losslessly. While PNG also applies to com-
press lidar range images, it is not data-driven and does not
use temporal information. There are also attempts to use
auto-encoder networks [31] to lossily compress range im-
ages by storing the bottleneck layer output. However, as
range values often have a much wider distribution than RGB
colors, it is challenging to learn an accurate reconstruction,
especially at the object boundaries.

In this work, we propose RIDDLE (Range Image Deep
DeLta Encoding), a data-driven algorithm to compress
range images with predictive neural networks (Fig. 2). Our
method is inspired by the use of delta encoding in PNG im-
age compression. However, instead of simply computing a
difference between close-by pixels, we adopt a deep model
to predict the pixel value from context pixels. The deep
model takes a local patch of the decoded range image and
predicts the attributes of the next pixel in a raster-scanning
order (a similar process to the sequential image decoder
PixelCNN [33]). We can then entropy encode the residu-
als between the predicted values and the original values to
achieve lossless compression under a chosen quantization
rate. In this scheme, the more accurate the prediction is,
the smaller the entropy of the residuals are – improving the
compression rate is equivalent to developing a more accu-
rate predictive model.

What is unique in our model design is that we represent
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local image patches as point clouds in the spherical coordi-
nates (with azimuth, elevation and range values) to reflect
the non-uniform ray angles of each shot (or pixel), which
lifts the 2D pixels to 3D point clouds. By further lifting the
3D points to 4D with a timestamp channel, we can unify
the way we represent context pixels/points from both the
current and history scans. Since our model directly takes
in point clouds, neither interpolation (to the image grid) nor
image cropping (projected points from history frames may
span different image regions) is needed. On the other hand,
as to the model output formulation, instead of directly re-
gressing the pixel values (which is often multi-modal), we
treat each pixel in the input patch as an anchor and predict
a confidence score as well as a residual value per anchor.

Evaluated on the large-scale Waymo Open Dataset
(WOD) [26], we show that our method reduces the bitrate
by more than 65% for the same distortion (measured using
the point-to-point Chamfer distance) or reducing more than
85% distortion for the same bitrate, compared to the MPEG
standard compression method G-PCC [14] while also sig-
nificantly outperforming other baselines like Draco [1] and
PNG. On the KITTI dataset [13], we compare with prior
art deep compression methods (using octrees) and show our
method has a clear advantage over them, thanks to its use
of the range image representation and the accurate predic-
tion model. We also evaluate the impact of compression
on downstream perception tasks such as 3D object detec-
tion and provide extensive ablation studies to validate our
design choices.

2. Related Work
Point cloud compression As 3D applications rise, recent
years have seen an increasing number of algorithms pro-
posed for point cloud compression. One family of the meth-
ods uses octrees to represent and compress quantized point
clouds [10, 12, 24]. The Motion Picture Experts Group
(MPEG) has released a related point cloud compression
(PCC) standard, called geometry-based PCC (G-PCC) [14],
using the octree structure and various ways to predict the
next-level content. More recently, Octsqueeze [16] was
proposed to use a neural network as a conditional entropy
model to estimate the octree occupancy symbols, and MuS-
CLE [9] extends it by including temporal prior from pre-
vious frames. VoxelContextNet [23] further leverages the
voxel context for the octree structure prediction. These
neural network-based methods consistently show improve-
ments over G-PCC which uses hand-crafted entropy mod-
els. While the octree-based methods are flexible to model
arbitrary point clouds (from either a lidar sensor or multi-
view reconstruction), they do not make use of the point dis-
tribution patterns in lidar range images.

As a lidar point cloud can be represented as a range im-
age, image-based compression methods can be adapted for

its compression. For example, [3, 7, 15] applied traditional
image compression methods such as JPEG, PNG and TIFF
to compress the range images. A sequence of range im-
ages could be seen as a video, and video-based compres-
sion method like H.264 was applied to compress lidar se-
quences [20]. MPEG also proposed a PCC (V-PCC) stan-
dard that compresses dynamic point clouds via HEVC video
codex [14]. Our work extends them to leverage deep models
and delta encoding to compress range images.

Auto-encoders have been used to achieve lossy compres-
sion of point clouds. [34, 35] proposed to train an encoder-
decoder point cloud reconstruction network and entropy en-
code the bottleneck layer as the compressed data. Similarly,
[31] trained an auto-encoder to reconstruct range images
and compress the bottleneck vectors. While these meth-
ods may achieve high compression rates, the reconstructed
point clouds could have strong artifacts, especially at the
object boundaries resulting in unbounded errors in the lossy
compression scheme.

Learned image and video compression Image and video
compression are well-studied fields with many standards
(for example: PNG, JPEG, TIFF for images, H.264 and
HEVC for videos). Among them, PNG is highly related to
our work as it uses lossless image compression using delta
encoding. With the popularity of deep convolutional neu-
ral networks for image understanding, deep model-based
image and video compression have also been widely ex-
plored [5, 6, 18, 19, 29, 30]. Many of them leverage an
encoder-decoder neural network (for example, a variational
auto-encoder [5]) for the compressing (encoding the image
to a latent vector) and decompressing (decode/generate the
image from the vector). For the decoding architectures, se-
quential models such as PixelCNN [21] and PixelRNN [33]
inspired our predictive model design.

3. Problem Formulation
For most lidar sensors, one scan can be interchangeably

represented as either a point cloud P ∈ RN×C or a range
image I ∈ RH×W×C , where N is the number of points, H
and W are height and width of the range image (H is the
number of laser beams in the lidar and W is the number of
shots per laser per frame), C is the feature dimension for
each point. Each valid pixel in the range image represents
a laser shot corresponding to one point in the point cloud.
The channels include the range value and other attributes
such as reflection intensity. The conversion rule between a
point cloud and a range image depends on the laser scanning
mechanism (the laser shot azimuth and elevation angles) as
well as the sensor poses (the 6D pose of the laser sensor at
the time of each laser shot), as illustrated in Fig. 1.

Specifically, in a range image I , given a pixel location
(i, j) (which maps to a specific laser shot angle) and its
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Figure 1. Illustration of laser shots. Left: A single laser shot.
Right: Laser shots across time (in a bird’s eye view). We show
four consecutive laser shots (with delta azimuth angle ω) that mea-
sure the ranges from the (moving) sensor to the object. To convert
the range values to a point cloud, we need to know the ranges, the
shot angles, as well as the sensor poses at each shot.

range value, we get a laser measurement (r, θ, α) where r
is the range value, θ (azimuth or yaw) and α (elevation or
pitch) are the shot angles relative to the lidar sensor coordi-
nate. The measurement can be converted to a point p in the
sensor coordinate by:

p = (x, y, z) = (r cosα cos θ, r cosα sin θ, r sinα) (1)

As at the time of each laser shot, the sensor pose [R|t]
(rotation and translation in the global coordinate) can be
different (Fig. 1). To aggregate the shots into a point cloud,
we need to convert the points to a shared global coordinate
system to get the point set P = {Rip

T
i + ti}, i = 1, ..., N

where i is the index of the laser shot in a scan/range image.
Reversely, given the point cloud P of a scan (in the

global coordinate), to convert it to the range image, we first
need to transform each point to the sensor coordinate corre-
sponding to its time of the shot. Then, we can easily get the
(r, θ, α) by the reverse process of Eq. 1, which then maps
back to the row and column indices.

For our lidar range image compression, we first quantize
the range image I by rounding its pixel values to a predeter-
mined quantization precision. Then our goal is to compress
the quantized range image I ′ to a bitstream b ∈ [0, 1]n (with
an n as small as possible), which can later be decompressed
into the exact quantized range image I ′. It is lossy with re-
spective to the raw range image but lossless regarding the
quantized range image.

Note that for calibrated lidars such as the ones used in the
Waymo Open Dataset [26], each pixel in the range image
corresponds to a fixed shot angle (θ, α) for the same lidar,
so the angles do not need to be stored for the compression 1.
Besides, as sensor poses are often stored separately from
range images and are shared with other modules (such as

1For the main lidars used in WOD, pixel elevations are determined by
the laser beam inclinations (64 numbers) and azimuths can be calculated
based on uniform azimuth rotation. For other lidars such as Velodyne
HDL-64, azimuth rotation angles are not uniform and need to be stored
(one number for each column, costing only ∼ 0.1Kb per frame) [32].

raw range images

Quantization Deep Delta 
Encoding

Entropy 
Encoding

quantized 
range image

residual 
map

bitstream

Figure 2. The deep delta encoding pipeline for lidar range im-
age compression. Given a lidar range image, we first quantize
the attribute values and then run inference of the predictive model
on the quantized range image to derive residuals. Finally we use
entropy encoders to compress the residuals to a bitstream.

localization), we do not need to store sensor poses either.
Only the range image needs to be compressed.

4. Range Image Deep Delta Encoding
We first describe our overall compression pipeline in

Sec. 4.1, then dive deep into the design of our prediction
model in Sec. 4.2, and finally describe how we entropy en-
code the residuals in Sec. 4.3.

4.1. Pipeline Overview

As shown in Fig. 2, the input to our compression pipeline
is a raw range image. First, we quantize the range image
with a certain quantization precision (this allows us to store
the deltas as discrete symbols). Next, the core part of the
pipeline is the deep delta encoding. We train a deep model
to predict the next pixel value in a raster scanning order.
We then save the delta between the prediction (quantized)
and the original (quantized) pixel value instead of saving
the original pixel value. As the deltas are smaller and more
concentrated in distribution than the original pixel values,
they can be compressed more effectively. At the last step,
the deltas (or the residual map) are entropy encoded to a
compressed bitstream.

4.2. Deep Delta Encoding

Commonly used delta encoding adopts a linear predic-
tion model to estimate the pixel values. In its simplest form,
to predict a pixel Ii,j at the i-th row and j-th column, its left
pixel Ii,j−1 is used as the prediction. Other linear filters of
left, up and nearby pixels can also be used. The delta be-
tween the prediction and the original pixel value is stored
to be compressed. In our work, we propose to train a deep
neural network to predict the pixel values and show that it
can achieve significant improvement in prediction accuracy
and compression rate. Next, we first introduce our model in
its intra-prediction format (only using the information from
the current frame/scan for the prediction) and then describe
how we extend it to take temporal input from history scans.
Please see the supplementary for more details on the model
architecture, the losses and the training process.
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Intra-frame Prediction Model Formally, the network
models the conditional probability of the k-th pixel value
(in the raster scanning order) conditioned on the quantized
pixel values before k: p(Ik; Θ) = p(Ik|{I ′k−1, ..., I

′
1}; Θ),

where Θ are the network weights, I ′ is the quantized range
image and I is the unquantized raw range image. Empir-
ically, as shown in Fig. 3, instead of using the entire past
context (e.g. with a RNN model), we can use local image
patch of shape h × w as the context to predict the bottom
right pixel of the patch, similar to the idea of the sequential
image decoder PixelCNN [21].

Although the input to our network is an image patch, it
is quite different from a typical RGB one. The relations
of the range image pixels depend on the location of the
patch and even the calibration of a specific lidar because the
laser shot angles are often non-uniformly distributed. This
is even more prominent in the inter-frame prediction when
we re-project the points from history scans to the coordi-
nate of the current shot. Therefore, we augment the range
image with two extra channels: the delta azimuth and delta
elevation angles relative to the angles of the to-be-predicted
pixel, which lifts the 2D pixels to the 3D spherical coordi-
nate. Furthermore, as range prediction is a geometry esti-
mation problem, we found that empirically, using a 3D deep
learning model such as PointNet [22] leads to more accurate
prediction compared to using a 2D convolutional network.

As shown in Fig. 3, given the lidar calibration data, we
first convert the range image patch to a mini point cloud
(with maximally hw−1 points). Instead of directly regress-
ing the pixel range value, which suffers from the uncertainty
caused by the multi-modal distribution of attributes (esp. on
the object boundaries), we formulate the prediction as an
anchor-based classification and anchor-residual regression
problem, where valid pixels in the range image patch are
the anchors. The deep network predicts which pixel is the
closest in value to the bottom right pixel and regresses a
residual (it is an overloaded word here; it is different from
the residual map in delta encoding) with respect to each an-
chor pixel.

Temporal Model The temporal model extends the intra-
frame prediction model by leveraging contexts from both
the current scan and the past scan. The point cloud repre-
sentation (compared to the 2D pixel representation) enables
us to unify the input from the past and current scans as we
can represent all laser shots in the 4D (spherical plus time)
coordinates.

Given the current scan (quantized) range image I ′T and
the past scan range image I ′T−1, assume we want to predict
the range value of pixel (i, j) in the current scan (k-th pixel
in the raster scanning order). A naive baseline approach to
use temporal data is to take the same neighborhood at that in
I ′T (in terms of pixel rows and columns) from the last scan

I ′T−1 and concatenate it with the current frame image patch.
However, this approach does not take the ego-motion of the
lidar sensor into account. As the lidar moves over time,
the range image patch with the same rows and columns can
correspond to vastly different physical space.

To take sensor poses into consideration, instead of query-
ing pixels of the last frame using the row and column in-
dices, we should query neighbors using 3D points in the
global coordinate (Fig. 3). However, as we do not know
the ground truth range value for the pixel (i, j), we have
to approximate the query by using a predicted range (e.g.
using the left pixel range or the predicted value from the
intra-frame model). Given pixel (i, j)’s laser shot angle
(θ, α) and its estimated range r̂, we get a point in the global
coordinate, following Sec. 3. Then given the points from
last frame in the global coordinate, we can directly query
neighbors in the 3D space (using KDtrees to accelerate the
query). Those neighboring points from last frame can then
be projected to laser shot (i, j)’s spherical coordinate (to the
points in the sensor coordinate at the time of the laser shot
and then transform to the spherical coordinate), to obtain
extra points as temporal contexts. 2 This is equivalent to
assuming the points from the last frame are static, and we
re-scan the scene at the sensor location at the time of the
laser shot (i, j). To distinguish the points from the last and
current frames, we augment the points with an extra time
channel (with 1 indicating the last frame and 0 indicating
the current frame).

Note that the reprojected points from the last frame do
not directly correspond to the rows and columns of the cur-
rent frame range image. Considering such input as a point
cloud is convenient as we do not require any interpolation
to turn the points to the image grid or any predefined neigh-
borhood size for image cropping.

Inference. At inference time (for compression), we start
from the top left patch of the range image to pre-
dict pixel I ′1 or I ′1,1 and store the residual. This pro-
cess continues in a raster scanning order to predict pix-
els I1,2, ..., I1,W , I2,1, ..., Ii,j , ..., IH,W . The residual map
(deltas between the prediction and quantized values) of size
H × W would be compressed by the entropy encoder. At
decompression time, we run the prediction model in the
same raster-scanning order, which takes input as already
reconstructed pixels {I ′1, .., I ′k−1}, predicts the next pixel
value Îk and then reconstruct the pixel from saved resid-
ual as I ′k = Îk + δk, where δk is the stored delta of pixel
k = (i−1)W+j. This process can be parallelized by divid-
ing the input range image into blocks and run the inference

2Strictly, even the pixels/points from the current frame need be re-
projected to the sensor coordinate at the time of the shot (i, j). We have
this reprojection in our intra-frame model but the impact is small as the
sensor moves little between a few pixels.
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in parallel for each block (discussed in the supplementary).

4.3. Entropy Encoding

After the predictive delta encoding, we get a residual
map/array of the range image. An entropy encoder is used
to leverage the sparsity pattern in the residual map to com-
press it. Given an accurate prediction model, most of the
residuals would be zero. We adopt two methods to entropy
encode the residuals. In practice, we select the entropy en-
coder with the highest compression rates depending on the
quantization rates and the predictor.

The first method is to represent the residuals using a
sparse representation, with the values of the nonzero resid-
uals and their indices in the array, which can then be arith-
metically encoded to further reduce its size. The second
method is to represent the residuals using run-length en-
coding, which achieves better compression rates when the
residuals are not very sparse, i.e., when quantization step is
small. After obtaining the run-length representation, we use
LZMA compressor to further reduce its size.

5. Experiments
In this section, we first introduce the datasets and the

metrics in Sec. 5.1. Then we report compression results
compared with strong baselines and prior art methods in
Sec. 5.2 both quantitatively and qualitatively. We further
evaluate the impact of compressed data to downstream per-
ception tasks (3D detection of vehicles and pedestrians) in
Sec. 5.3. Finally, we provide extensive analysis experiments
to validate our design choices in Sec. 5.4.

5.1. Dataset and Metrics

Waymo Open Dataset (WOD) [26] WOD is the main
dataset we experiment with, as it provides rich lidar cali-
bration data and full sensor poses. WOD includes a total
number of 1,150 sequences with 798 for training and 202
for validation. Each sequence lasts around 20 seconds with
a sampling frequency of 10Hz. A 64-beam lidar is used,
providing range images of 64 rows and 2,650 columns, with
provided lidar calibration metadata (beam inclination an-
gles). The range channel is cropped to 75m, and each raw
range value is stored as a 32-bit float in default. We use the
training set to train our deep model and evaluate on the val-
idation set. Only the first return range images are used in
our experiments.

SemanticKITTI [8] We also evaluate our method on Se-
manticKITTI (which enhances KITTI [13] with semantic
labels) to compare with prior art methods OctSqueeze [16]
and MuSCLE [9] (since they do not release code, we can-
not compare with them on the WOD). We directly apply the
WOD trained model on SemanticKITTI test split (sequence

11-21). However, as KITTI only released the point cloud
data but not the the raw range images nor the sensor poses,
we have to refer to the manual of the Velodyne lidar [2] used
by KITTI to convert a point cloud to the spherical coordi-
nate to get a pseudo range image with 64 rows and 2,088
columns. For our method, we compress the pseudo range
images and do not additionally store the azimuth and eleva-
tion of the pixels, as their storage in actual Velodyne range
images are negligible (elevations are known and azimuths
can be compressed to less than 1Kb per frame [32]).

Metrics Following previous works [9,14,16], we use two
geometric metrics to evaluate the reconstruction quality of
the compressed point cloud data: point-to-point Cham-
fer distance and point-to-plane peak signal-to-noise ratio
(PSNR). We report these metrics as a function of bitrates
i.e., the average number of bits to store one lidar point.

The point-to-point Chamfer distance CDsym measures
the average point distances between two point clouds
(smaller the better). For a given point cloud P =
{pi}i=1,...N and the reconstructed point cloud P̂ =
{p̂j}j=1,...M :

CD(P, P̂ ) =
1

|P |
∑
i

min
j

∥pi − p̂j∥2 (2)

CDsym(P, P̂ ) = max{CD(P, P̂ ),CD(P̂ , P )} (3)

The second metric, the peak signal-to-noise ratio
(PSNR) [28] (the larger the better), measures the ratio be-
tween the “resolution” of the point cloud r and the average
point-to-plane error between the original point cloud P and
the reconstructed point cloud P̂ :

PSNR(P, P̂ ) = 10 log10
r2

max{MSE(P, P̂ ),MSE(P̂ , P )}
(4)

where MSE(P, P̂ ) = 1
|P |

∑
i((pi − p̂i) · ni)

2 is the point-

to-plane distance, p̂i is the closest point in P̂ to pi, r =
maxpi∈P minj ̸=i∥pi − pj∥2 is the intrinsic resolution of
the original point cloud. We estimate the normal ni using
Open3D [36] with k = 12 for k nearest neighbor.

5.2. Compression Results

In this section, we compare our methods with compet-
itive baselines as well as prior art lidar data compression
methods. We focus on compressing the range channel or
the 3D coordinates of the points as it is the most studied
attribute among the others (intensity, elongation) and some
of the methods in comparison do not support compressing
other attributes. See supplementary material for more re-
sults on compressing the other channels. We adjust the
quantization precision of the range images to achieve dif-
ferent compression rates (bits per point) of our method.
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Figure 3. The deep prediction model. Given a range image patch from frame T with quantized attribute values (e.g. range), we lift pixels
to the spherical coordinate with azimuth and elevation angles from lidar calibration. To leverage context points from the past frame T-1, a
query point is generated to find neighbors among points at frame T-1. Those neighbor points are then projected to the spherical coordinate
of the pixel to be predicted. Our predictor takes the union of the intra-frame and temporal context points and predicts the attribute of the
pixel (i, j) with anchor classification and regression (with each input point as an anchor).

Baselines: G-PCC [14] is a point cloud compression
method proposed by the MPEG, using octrees. Draco [1]
is a popular point cloud compression algorithm based on
Kdtrees proposed by Google. We also compare with two
prior art deep model based methods 3: OctSqueeze [16] is
a octree-based method that uses a neural network to predict
the next-level symbol of the octree; MuSCLE [9] further
strengthens OctSqueeze by leveraging multi-sweep (tempo-
ral) data for the octree prediction. In terms of range image
representation, we compare with PNG (intra-frame) as well
as HEVC (a video compression standard) on top of PNG for
temporal range image compression. For the PNG compres-
sion, the range is coded with 16 bits with a varying scal-
ing factor to control the distortion/compression rate. We
also compare with Cluster [27], a range image-based lidar
data compression algorithm with a pipeline of segmenta-
tion, clustering, 3D-HEVC encoding and ground prediction.
Besides, supplementary provides a further experiment com-
paring with an auto-encoder based method on range images
(not included here due to its poor performance).

Implementation Details Our intra-frame prediction
model, RIDDLE, takes in a context image patch of size
10 × 10 (the bottom right pixel is masked out) and uses a
PointNet [22] like architecture for the prediction (without
the T-Net structure, adapted the output to predict anchor
classification and regression). The input to the network is
a 3D point cloud in a spherical coordinate with azimuth,
elevation relative to the bottom right pixel and the range
relative to the mean range of valid context points. Our

3There is another deep net based work VoxelContextNet [23], yet as
they did not release code nor the detailed definition of the evaluation met-
rics, we could not compare with them.

temporal model, RIDDLE-T, uses the same network
architecture as the intra-frame one but takes in an extra
100 points from the last scan (projected to the spherical
coordinate of the next pixel). Please see supplementary for
more details.

Waymo Open Dataset Results We report the bitrate ver-
sus reconstruction quality metrics (PSNR, Chamfer dis-
tance) of competing methods on all frames from the se-
quences in the validation set of the Waymo Open Dataset.
As shown in Fig. 4, our method significantly outperforms
prior methods. At the same Chamfer distance around 0.005,
our method reduces the bitrate by more than 65% com-
pared to G-PCC (from 10.78 bpp to 3.65 bpp). At the bi-
trate of around 4, our method reduces the distortion (mea-
sured by Chamfer distance) by more than 85%. Our method
also has a larger bitrate improvement over previous methods
when the reconstruction quality is higher. This indicates our
method has more advantage over baselines when the data
quality requirement is higher.

SemanticKITTI Results Since prior art methods [9, 16]
have not released the code or the compression model, we
turn to the SemanticKITTI dataset to compare with them
(we got the raw values of the curves reported in the MuS-
CLE [9] paper from the authors). We apply our model
trained on the Waymo Open Dataset directly to the Se-
manticKITTI lidar point clouds (by creating pseudo range
images).

As shown in Fig. 5, our method is more than 50% lower
in bitrate (at around 4.3 bpp) with the same Chamfer dis-
tance at around 0.005 compared to all prior art methods,
showing significant advantages. This strong lead attributes

17217



Figure 4. Evaluation of the compression methods with geometric metrics on the Waymo Open Dataset val set. Left: Chamfer distance
v.s. bit per point (bbp); Right: PSNR v.s. bpp. At a certain bitrate, lower the Chamfer distance or higher the PSNR, better the reconstruction
quality.

Figure 5. Evaluation of the compression methods with geomet-
ric metrics on the SemanticKITTI test set. We only present our
intra-frame model here as the per pixel sensor pose is unavailable
in SemanticKITTI.

Figure 6. Impact of lidar data compression to 3D object detec-
tion quality on the Waymo Open Dataset val set. We train Point-
Pillars [17] detectors using the raw point clouds (with no compres-
sion) from the WOD train set and evaluate them with the com-
pressed point clouds (or point clouds from the compressed range
images) on the WOD validation set.

to our choice of directly compressing the range images as
well as the effective deep model.

Qualitative results. In Fig. 7, we show the reconstructed
lidar point clouds from our method, Draco and G-PCC. We
can see that the point cloud reconstructed from our method

remarkably resembles the original point cloud in geometry
even when the bitrate is ambitiously set very low, thanks to
compressing directly on the range images to keep the point
distribution pattern.

5.3. Impact to Downstream Perception Tasks

For applications like autonomous driving, we want to
understand the impact of lidar data compression to down-
stream perception tasks such as 3D object detection. To
understand such impact, we trained a widely used PointPil-
lars detector [17] on uncompressed point clouds using the
Waymo Open Dataset train set, for the vehicle class and
pedestrian class respectively. Detection quality is measured
by mean average precision (mAP).

As shown in Fig. 6, our method outperforms other com-
peting baselines in maintaining the best mAP with the same
bitrate. At the bitrate around 2, our method leads the sec-
ond best method (G-PCC) by more than 1 point on vehi-
cle detection and 3 points on pedestrian detection. We can
also see that pedestrian detection is more sensitive to data
distortion probably due to the smaller average object sizes
compared to vehicles.

5.4. Analysis Experiments

In this section we ablate our deep model in terms of ar-
chitecture choice, loss design and temporal context. In or-
der to compare prediction quality independent from the en-
tropy encoder, we use a prediction accuracy as the metrics
for ablation studies. The prediciton accuracy (acc.) is de-
fined as the percentage of zero deltas (i.e. perfect predic-
tion under quantization) in the range image residual map,
under a specific quantization precision (e.g. δ = 0.1m 4).
A prediction q for the quantized range value p′ is counted
as correct if |q − p′| < δ/2. Supplementary provides more
analysis related to entropy encoders and model latency.

4Note 0.1m is not that coarse as average point displacement after the
quantization is only 2.5cm
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model acc. @0.1m
previous valid value 54.35
linear interpolation 54.64
12-layer CNN 64.62
PointNet (adpated) 65.75

Table 1. Effects of prediction models.

loss function acc. @0.1m
MSE 59.83
MAE 61.64
multi-bin loss 59.66
anchor cls. + reg. 65.75

Table 2. Effects of loss functions.

temporal context acc. @0.1m
none (intra-frame) 65.75
10× 10 image 67.34
100 knn points 69.23

Table 3. Effects of temporal input.

G-PCC (4.02bpp) Draco (4.02bpp) PNG (4.02bpp) Ours (4.02bpp)

Error Colormap

Groundtruth (32bpp)

0.00        26.46         52.91        79.37       105.83       132.29      158.74     185.20       211.66       238.11     mm

Figure 7. Visualization of reconstructed point clouds, colored by per point Chamfer distance (error bar colormap on the bottom).
From left to right: raw, G-PCC, Draco, PNG and RIDDLE (ours). It is clear that our method, under the same bit per point, has mush less
distortion. Best viewed in color with zoom in.

Effects of predictor choices. Table 1 compares several
architecture choices. The simplest choice is to use the left
valid pixel as the prediction to the current pixel: Îi,j =
I ′i,j−1. Another extension is to use linear interpolation of
close-by pixels: Îi,j = I ′i,j−1+I ′i−1,j−I ′i−1,j−1. Note that
for both cases, first valid pixel is used in case the nearby one
is an empty pixel. We see that deep models can significantly
outperform linear models while the point-cloud-based ar-
chitecture shows a stronger empirical result compared to
ConvNet on the image representation.

Effects of loss functions. Table 2 compares several loss
choices for our model supervision. With direct attribute
prediction as a regression problem, we can see using the
mean absolute error (MAE, L1 loss) is superior to using the
mean squared error (MSE, L2 loss) as it is affected less by
the large errors on the object boundaries. Turning the depth
regression problem to a multi-bin classification and regres-
sion problem (with classification and intra-bin regression
for each depth bin of size 1m) does not help much either as
shown in the third row. Our proposed formulation (anchor
classification with regression) leads to 4.11 points increase
in prediction accuracy compared to the second best option
of using mean absolute error.

Effects of temporal contexts. Table 3 shows the benefits
of adding temporal contexts to the prediction model. We see
that even the naive concatenation of the image patch of the
last frame with the same rows and columns (second row)
can already help. A more careful handling of the temporal
points by considering sensor poses (as described in Sec. 4.2)
leads to more gains of using the temporal data.

6. Conclusion

With improving lidar sensor resolution and growing data
volume, how to efficiently store and transmit lidar data
becomes a challenging problem in many 3D applications,
such as autonomous driving and augmented reality. To ad-
dress this challenge, we propose a novel lidar data com-
pression algorithm named RIDDLE (Range Image Deep
DeLta Encoding), which combines the succinctness of tra-
ditional delta encoding and the expressiveness of deep neu-
ral networks, with support of using temporal contexts. Ex-
periments over the Waymo Open Dataset and KITTI show
that compared to previous methods, the proposed approach
yields significant improvement in the point cloud recon-
struction quality and the downstream perception model per-
formance, under the same compression rates.
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[5] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.
End-to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016. 2
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