
Rethinking Semantic Segmentation: A Prototype View

Tianfei Zhou1, Wenguan Wang2,1*, Ender Konukoglu1, Luc Van Gool1
1 Computer Vision Lab, ETH Zurich 2 ReLER, AAII, University of Technology Sydney

https://github.com/tfzhou/ProtoSeg

Abstract

Prevalent semantic segmentation solutions, despite their
different network designs (FCN based or attention based)
and mask decoding strategies (parametric softmax based or
pixel-query based), can be placed in one category, by con-
sidering the softmax weights or query vectors as learnable
class prototypes. In light of this prototype view, this study un-
covers several limitations of such parametric segmentation
regime, and proposes a nonparametric alternative based on
non-learnable prototypes. Instead of prior methods learning
a single weight/query vector for each class in a fully para-
metric manner, our model represents each class as a set of
non-learnable prototypes, relying solely on the mean fea-
tures of several training pixels within that class. The dense
prediction is thus achieved by nonparametric nearest proto-
type retrieving. This allows our model to directly shape the
pixel embedding space, by optimizing the arrangement be-
tween embedded pixels and anchored prototypes. It is able to
handle arbitrary number of classes with a constant amount
of learnable parameters.We empirically show that, with FCN
based and attention based segmentation models (i.e., HR-
Net, Swin, SegFormer) and backbones (i.e., ResNet, HRNet,
Swin, MiT), our nonparametric framework yields compel-
ling results over several datasets (i.e., ADE20K, Cityscapes,
COCO-Stuff), and performs well in the large-vocabulary
situation. We expect this work will provoke a rethink of the
current de facto semantic segmentation model design.

1. Introduction
With the renaissance of connectionism, rapid progress

has been made in semantic segmentation. Till now, most of
state-of-the-art segmentation models [15, 34, 49, 135] were
built upon Fully Convolutional Networks (FCNs) [79]. De-
spite their diversified model designs and impressive results,
existing FCN based methods commonly apply parametric
softmax ( ) over pixel-wise features for dense pre-
diction (Fig. 1(a)). Very recently, the vast success of Trans-
former [105] stimulates the emergence of attention based
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Figure 1. Different sematic segmentation paradigms: (a-b) para-
metric vs (c) nonparametric. Modern segmentation solutions, no
matter using (a) parametric softmax or (b) query vectors for mask
decoding, can be viewed as learnable prototype based methods that
learn class-wise prototypes in a fully parametric manner. We in-
stead propose a nonparametric scheme (c) that directly selects sub-
cluster centers of embedded pixels as prototypes, and achieves per-
pixel prediction via nonparametric nearest prototype retrieving.

segmentation solutions. Many of these ‘non-FCN’ models,
like [118, 139], directly follow the standard mask decoding
regime, i.e., estimate softmax distributions over dense visual
embeddings (extracted from patch token sequences). Inter-
estingly, the others [20, 100] follow the good practice of
Transformer in other fields [11, 82, 113] and adopt a pixel-
query strategy (Fig. 1(b)): utilize a set of learnable vectors
( ) to query the dense embeddings for mask prediction.
They speculate the learned query vectors can capture class-
wise properties, however, lacking in-depth analysis.

Noticing there exist two different mask decoding strate-
gies, the following questions naturally arise: ¶ What are the
relation and difference between them? and · If the learn-
able query vectors indeed implicitly capture some intrinsic
properties of data, is there any better way to achieve this?

Tackling these two issues can provide insights into mod-
ern segmentation model design, and motivate us to rethink
the task from a prototype view. The idea of prototype based
classification [31] is classical and intuitive (which can date
back to the nearest neighbors algorithm [23] and find evi-
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dence in cognitive science [60, 91]): data samples are classi-
fied based on their proximity to representative prototypes of
classes. With this perspective, in §2, we first answer ques-
tion ¶ by pointing out most modern segmentation methods,
from softmax based to pixel-query based, from FCN based
to attention based, fall into one grand category: parametric
models based on learnable prototypes. Consider a segmenta-
tion task withC semantic classes. Most existing efforts seek
to directly learn C class-wise prototypes – softmax weights
or query vectors – for parametric, pixel-wise classification.
Hence question · becomes more fundamental: ¸ What are
the limitations of this learnable prototype based parametric
paradigm? and ¹ How to address these limitations?

Driven by question ¸, we find there are three critical limi-
tations: First, usually only one single prototype is learned per
class, insufficient to describe rich intra-class variance. The
prototypes are simply learned in a fully parametric manner,
without considering their representative ability. Second, to
map aH×W×D image feature tensor into aH×W×Cseman-
tic mask, at least D×C parameters are needed for prototype
learning. This hurts generalizability [115], especially in the
large-vocabulary case; for instance, if there are 800 classes
andD=512, we need 0.4M learnable prototype parameters
alone. Third, with the cross-entropy loss, only the relative
relations between intra-class and inter-class distances are op-
timized [89, 111, 134]; the actual distances between pixels
and prototypes, i.e., intra-class compactness, are ignored.

As a response to question ¹, in §3, we develop a nonpa-
rametric segmentation framework, based on non-learnable
prototypes.Specifically, building upon the ideas of prototype
learning [116, 133] and metric learning [40, 64], it is fully
aware of the limitations of its parametric counterpart. Inde-
pendent of specific backbone architectures (FCN based or
attention based), our method is general and brings insights
into segmentation model design and training. For model
design, our method explicitly sets sub-class centers, in the
pixel embedding space, as the prototypes. Each pixel data
is predicted to be in the same class as the nearest prototype,
without relying on extra learnable parameters. For training,
as the prototypes are representative of the dataset, we can
directly pose known inductive biases (e.g., intra-class com-
pactness, inter-class separation) as extra optimization crite-
ria and efficiently shape the whole embedding space, instead
of optimizing the prediction accuracy only. Our model has
three appealing advantages: First, each class is abstracted by
a set of prototypes, well capturing class-wise characteristics
and intra-class variance. With the clear meaning of the pro-
totypes, the interpretability is also enhanced – the prediction
of each pixel can be intuitively understood as the reference
of its closest class center in the embedding space [3, 7].
Second, due to the nonparametric nature, the generalizabil-
ity is improved. Large-vocabulary semantic segmentation
can also be handled efficiently, as the amount of learnable

prototype parameters is no longer constrained to the number
of classes (i.e., 0 vs D×C). Third, via prototype-anchored
metric learning, the pixel embedding space is shaped as well-
structured, benefiting segmentation prediction eventually.

By answering questions ¶-¹, we formalize prior methods
within a learnable prototype based, parametric framework,
and link this field to prototype learning and metric learning.
We provide literature review and related discussions in §4.

In §5.2, we show our method achieves impressive results
over famous datasets (i.e., ADE20K [140], Cityscapes [22],
COCO-Stuff [10]) with top-leading FCN based and attention
based segmentation models (i.e., HRNet [108], Swin [78],
SegFormer [118]) and backbones (i.e., ResNet [45], HRNet
[108], Swin [78], MiT [118]). Compared with the paramet-
ric counterparts, our method does not cause any extra com-
putational overhead during testing while reduces the amount
of learnable parameters. In §5.3, we demonstrate our method
consistently performs well when increasing the number of
semantic classes from 150 to 847. Accompanied with a set
of ablative studies in §5.4, our extensive experiments verify
the power of our idea and the efficacy of our algorithm.

Finally, we draw conclusions in §6. This work is expec-
ted to open a new venue for future research in this field.

2. Existing Semantic Segmentation Models as
Parametric Prototype Learning

Next we first formalize the existing two mask decod-
ing strategies mentioned in §1, and then answer question ¶
from a unified view of parametric prototype learning.
Parametric Softmax Projection. Almost all FCN-like and
many attention-based segmentation models adopt this strat-
egy. Their models comprise two learnable parts: i) an en-
coder φ for dense visual feature extraction, and ii) a classi-
fier ρ (i.e., projection head) that projects pixel features into
the semantic label space. For each pixel example i, its em-
bedding i∈RD, extracted from φ, is fed into ρ for C-way
classification:

p(c|i) =
exp(w>c i)∑C

c′=1 exp(w>c′i)
, (1)

where p(c|i)∈[0, 1] is the probability that i being assigned
to class c. ρ is a pixel-wise linear layer, parameterized by
W= [w1, · · ·,wC ]∈RC×D; wc∈RD is a learnable projec-
tion vector for c-th class; the bias term is omitted for brevity.
Parametric Pixel-Query. A few attention-based segmen-
tation networks [118, 139] work in a more ‘Transformer-
like’ manner: given the pixel embedding i∈RD, a set of C
query vectors, i.e., E= [e1, · · ·, eC ]∈RC×D, are learned to
generate a probability distribution over the C classes:

p(c|i) =
exp(ec∗ i)∑C

c′=1 exp(ec′ ∗ i)
, (2)

where ‘∗’ is inner product between `2-normalized inputs.

2583



LCE (Eq. 7)

LPPC (Eq. 11)

LPPD (Eq. 12)

φ

φ

Figure 2. Architecture illustration of our non-learnable prototype based nonparametric segmentation model during the training phase.

Prototype-based Classification. Prototype-based classifi-
cation [31, 33] has been studied for a long time, dating back
to the nearest neighbors algorithm [23] in machine learn-
ing and prototype theory [60, 91] in cognitive science. Its
prevalence stems from its intuitive idea: represent classes
by prototypes, and refer to prototypes for classification. Let
{pm}Mm=1 be a set of prototypes that are representative of
their corresponding classes {cpm∈{1, · · ·, C}}m. For a data
sample i, prediction is made by comparing i with {pm}m,
and taking the class of the winning prototype as response:

ĉi = cpm∗ , with m∗ = arg min
m
{〈i,pm〉}Mm=1, (3)

where i and {pm}m are embeddings of the data sample and
prototypes in a feature space, and 〈·, ·〉 stands for the dis-
tance measure, which is typically set as `2 distance (i.e.,
||i−pm||) [123], yet other proximities can be applied.

Further, Eqs. 1-2 can be formulated in a unified form:

p(c|i) =
exp(−〈i, gc〉)∑C

c′=1 exp(−〈i, gc′〉)
, (4)

where gc∈RD can be either wc in Eq. 1 or ec in Eq. 2.
With Eqs. 3-4, we are ready to answer questions ¶·. Both

the two types of methods are based on learnable prototypes;
they are parametric models in the sense that they learn one
prototype gc, i.e., linear weight wc or query vector ec, for
each class c (i.e.,M=C ). Thus one can consider softmax pro-
jection based methods ‘secretly’ learn the query vectors. As
for the difference, in addition to different distance measures
(i.e., inner product vs cosine similarity), pixel-query based
methods [118, 139] can feed the queries into cross-attention
decoder layers for cross-class context exchanging, rather
than softmax projection based counterparts only leveraging
the learned class weights within the softmax layer.

With the unified view of parametric prototype learning,
a few intrinsic yet long ignored issues in this field unfold:

First, prototype selection [36] is a vital aspect in the de-
sign of a prototype based learner – prototypes should be typ-
ical for their classes. Nevertheless, existing semantic seg-
mentation algorithms often describe each class by only one
prototype, bearing no intra-class variation. Moreover, the
prototypes are directly learned in a fully parametric man-
ner, without accounting for their representative ability.

Second, the amount of the learnable prototype parameters,
i.e., {gc∈RD}Cc=1, grows with the number of classes. This
may hinder the scalability, especially when a large number
of classes are present. For example, if there are 800 classes
and the pixel feature dimensionality is 512, at least 0.4M
parameters are needed for prototype learning alone, making
large-vocabulary segmentation a hard task. Moreover, if we
want to represent each class by ten prototypes, instead of
only one, we need to learn 4M prototype parameters.

Third, Eq. 3 intuitively shows that prototype based learn-
ers make metric comparisons of data [8]. However, existing
algorithms often supervise dense segmentation representa-
tion by directly optimizing the accuracy of pixel-wise pre-
diction (e.g., cross-entropy loss), ignoring known inductive
biases [83, 84], e.g., intra-class compactness, about the fea-
ture distribution. This will hinder the discrimination poten-
tial of the learned segmentation features, as suggested by
many literature in representation learning [76, 95, 114].

After tackling question ¸, in the next section we will detail
our non-learnable prototype based nonparametric segmenta-
tion method, which serves as a solid response to question¹.

3. Non-Learnable Prototype based Nonpara-
metric Semantic Segmentation

We build a nonparametric segmentation framework that
conducts dense prediction by a set of non-learnable class pro-
totypes, and directly supervises the pixel embedding space
via a prototype-anchored metric learning scheme (Fig. 2).
Non-Learnable Prototype based Pixel Classification. As
normal, an encoder network (FCN based or attention based),
i.e., φ, is first adopted to map the input image I∈Rh×w×3,
to a 3D feature tensor I∈RH×W×D. For pixel-wise C-way
classification, rather than prior semantic segmentation mod-
els that automatically learn C class weights {wc∈RD}Cc=1

(cf. Eq. 1) or C queries vectors {ec ∈ RD}Cc=1 (cf. Eq. 2),
we refer to a group of CK non-learnable prototypes, i.e.,
{pc,k∈RD}C,K

c,k=1, which are based solely on class data sub-
centers. More specifically, each class c∈{1, · · ·, C} is rep-
resented by a total of K prototypes {pc,k}Kk=1, and proto-
type pc,k is determined as the center of k-th sub-cluster of
training pixel samples belonging to class c, in the embed-
ding space φ. In this way, the prototypes can comprehen-
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sively capture characteristic properties of the corresponding
classes, without introducing extra learnable parameters out-
side φ. Analogous to Eq. 3, the category prediction of each
pixel i∈I is achieved by a winner-take-all classification:

ĉi = c∗, with (c∗, k∗) = arg min
(c,k)

{〈i,pc,k〉}C,K
c,k=1, (5)

where i ∈ RD stands for the `2-normalized embedding of
pixel i, i.e., i∈I , and the distance measure 〈·, ·〉 is defined
as the negative cosine similarity, i.e., 〈i,p〉=−i>p.

With this exemplar-based reasoning mode, we first de-
fine the probability distribution of pixel i over theC classes:

p(c|i)=
exp(−si,c)∑C

c′=1exp(−si,c′)
, with si,c =min{〈i,pc,k〉}Kk=1, (6)

where the pixel-class distance si,c ∈[−1, 1] is computed as
the distance to the closest prototype of class c. Given the
groundtruth class of each pixel i, i.e., ci ∈ {1, · · ·, C}, the
cross-entropy loss can be therefore used for training:

LCE = − log p(ci|i)

= − log
exp(−si,ci)

exp(−si,ci)+
∑

c′6=ci
exp(−si,c′)

.
(7)

In our case, Eq. 7 can be viewed as pushing pixel i closer to
the nearest prototype of its corresponding class, i.e., ci, and
further from other close prototypes of irrelevant classes, i.e.,
c′ 6= ci. However, only adopting such training objective is
not enough, due to two reasons. First, Eq. 7 only considers
pixel-class distances, e.g., si,c, without addressing within-
class pixel-prototype relations, e.g., 〈i,pci,k〉. For example,
for discriminative representation learning, pixel i is expec-
ted to be pushed further close to a certain prototype (i.e., a
particularly suitable pattern) of class ci, and, distant from
other prototypes (i.e., other irrelevant but within-class pat-
terns) of class ci. Eq. 7 cannot capture this nature. Second,
as the pixel-class distances are normalized across all classes
(cf. Eq. 6), Eq. 7 only optimizes the relative relations between
intra-class (i.e., si,ci ) and inter-class (i.e., {si,c′}c′6=ci ) dis-
tances, instead of directly regularizing the cosine distances
between pixels and classes. For example, when the intra-
class distance si,ci of pixel i is relatively smaller than other
inter-class distances {si,c′}c′6=ci , the penalty from Eq. 7 will
be small, but the intra-class distance si,ci might still be large
[89, 134]. Next we first elaborate on our within-class online
clustering strategy and then detail our two extra training ob-
jectives which rely on prototype assignments (i.e., cluster-
ing results) and address the above two issues respectively.
Within-Class Online Clustering. We approach online clu-
stering for prototype selection and assignment: pixel sam-
ples within the same class are assigned to the prototypes
belonging to that class, and the prototypes are then updated
according to the assignments. Clustering imposes a natural
bottleneck [55] that forces the model to discover intra-class
discriminative patterns yet discard instance-specific details.

Thus the prototypes, selected as the sub-cluster centers, are
typical of the corresponding classes. Conducting clustering
online makes our method scalable to large amounts of data,
instead of offline clustering requiring multiple passes over
the entire dataset for feature computation [13].

Formally, given pixels Ic = {in}Nn=1 in a training batch
that belong to class c (i.e., cin = c), our goal is to map the
pixels Ic to the K prototypes {pc,k}Kk=1 of class c. We
denote this pixel-to-prototype mapping as Lc = [lin ]Nn=1∈
{0, 1}K×N , where lin = [lin,k]Kk=1∈{0, 1}K is the one-hot
assignment vector of pixel in over the K prototypes. The
optimization of Lc is achieved by maximizing the similarity
between pixel embeddings, i.e., Xc=[in]Nn=1∈RD×N , and
the prototypes, i.e., P c=[pc,k]Kk=1∈RD×K :

max
Lc

Tr(Lc>P c>Xc),

s.t. Lc∈{0, 1}K×N , Lc>1K = 1N ,Lc1N =
N

K
1K ,

(8)

where 1K denotes the vector of all ones of K dimensions.
The unique assignment constraint, i.e., Lc>1K = 1N , en-
sures that each pixel is assigned to one and only one pro-
totype. The equipartition constraint, i.e., Lc1N = N

K1K ,
enforces that on average each prototype is selected at least
N
K times in the batch [13]. This prevents the trivial solu-
tion: all pixel samples are assigned to a single prototype,
and eventually benefits the representative ability of the pro-
totypes. To solve Eq. 8, one can relax Lc to be an element
of the transportation polytope [2, 24]:

max
Lc

Tr(Lc>P c>Xc) + κh(Lc),

s.t. Lc∈RK×N
+ , Lc>1K = 1N ,Lc1N =

N

K
1K ,

(9)

where h(Lc)=
∑

n,k−lin,k log lin,k is an entropy, and κ>0
is a parameter that controls the smoothness of distribution.
With the soft assignment relaxation and the extra regular-
ization term h(Lc), the solver of Eq. 9 can be given as [24]:

Lc = diag(u) exp
(P c>Xc

κ

)
diag(v), (10)

where u ∈ RK and v ∈ RN are renormalization vectors,
computed by few steps of Sinkhorn-Knopp iteration [24].
Our online clustering is highly efficient on GPU, as it only
involves a couple of matrix multiplications; in practice,
clustering 10K pixels into 10 prototypes takes only 2.5 ms.
Pixel-Prototype Contrastive Learning. With the assign-
ment probability matrix Lc= [lin ]Nn=1∈ [0, 1]K×N , we on-
line group the training pixels Ic = {in}Nn=1 into K proto-
types {pc,k}Kk=1 within class c. After all the samples in cur-
rent batch are processed, each pixel i is assigned to ki-th
prototype of class ci, where ki = arg maxk{li,k}Kk=1 and
li,k ∈ li. It is natural to derive a training objective for pro-
totype assignment prediction, i.e., maximize the prototype
assignment posterior probability. This can be viewed as a
pixel-prototype contrastive learning strategy, and addresses
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the first limitation of Eq. 7:

LPPC =−log
exp(i>pci,ki/τ)

exp(i>pci,ki/τ)+
∑

p−∈P− exp(i>p−/τ)
, (11)

where P−={pc,k}C,K
c,k=1

/
pci,ki

, and the temperature τ con-
trols the concentration level of representations. Intuitively,
Eq. 11 enforces each pixel embedding i to be similar with
its assigned (‘positive’) prototype pci,ki

, and dissimilar with
other CK−1 irrelevant (‘negative’) prototypes P−. Com-
pared with prior pixel-wise metric learning based segmenta-
tion models [111], which consume numerous negative pixel
samples, our method only needs CK prototypes for pixel-
prototype contrast computation, neither causing large mem-
ory cost nor requiring heavy pixel pair-wise comparison.
Pixel-Prototype Distance Optimization. Building upon the
relative comparison over pixel-class/-prototype distances,
Eq. 7 and Eq. 11 inspire inter-class/-cluster discrinimitive-
ness, but less consider reducing the intra-cluster variation,
i.e., making pixel features of the same prototype compact.
Thus a compactness-aware loss is used for further regulari-
zing representations by directly minimizing the distance be-
tween each embedded pixel and its assigned prototype:

LPPD =(1− i>pci,ki)
2. (12)

Note that both i and pci,ki are `2-normalized. This training
objective minimizes intra-cluster variations while maintain-
ing separation between features with different prototype as-
signments, making our model more robust against outliers.
Network Learning and Prototype Update. Our model is
a nonparametric approach that learns semantic segmenta-
tion by directly optimizing the pixel embedding space φ.
It is called nonparametric because it constructs prototype
hypotheses directly from the training pixel samples them-
selves. Thus the parameters of the feature extractor φ are
learned through stochastic gradient descent, by minimizing
the combinatorial loss over all the training pixel samples:

LSEG = LCE + λ1LPPC + λ2LPPD. (13)

Meanwhile, the non-learnable prototypes {pc,k}C,K
c,k=1 are

not learned by stochastic gradient descent, but are computed
as the centers of the corresponding embedded pixel sam-
ples. To do so, we let the prototypes evolve continuously
by accounting for the online clustering results. Particularly,
after each training iteration, each prototype is updated as:

pc,k ← µpc,k + (1− µ)īc,k, (14)

where µ ∈ [0, 1] is a momentum coefficient, and īc,k in-
dicates the `2-normalized, mean vector of the embedded
training pixels, which are assigned to prototype pc,k by on-
line clustering. With the clear meaning of the prototypes,
our segmentation procedure can be intuitively understood
as retrieving the most similar prototypes (sub-class centers).
Fig. 3 provides prototype retrieval results for person and car
with K=3 prototypes for each. The prototypes are associ-

Figure 3. Visualization of pixel-prototype similarity for person
(top) and car (bottom) classes. Please refer to §3 for details.

ated with different colors (i.e., red, green, and blue). For
each pixel, its distance to the closest prototype is visualized
using the corresponding prototype color. As can be seen, the
prototypes well correspond to meaningful patterns within
classes, validating their representativeness.

4. Related Work
In this section, we review representative work in seman-

tic segmentation, prototype learning and metric learning.
Semantic Segmentation. Recent years have witnessed re-
markable progress in semantic segmentation, due to the fast
evolution of backbone architectures– fromCNN-based (e.g.,
VGG [97], ResNet [45]) to Transformer-like [105] (e.g., ViT
[30], Swin[78]), andsegmentationmodels–from FCNs [79]
to attention networks (e.g., SegFormer [118]). Specifically,
FCN[79] isamilestone; it learns dense prediction efficiently.
Since it was proposed, numerous efforts have been devoted
to improving FCN, by, for example, enlarging the receptive
field [15, 16, 25, 124, 128, 135]; strengthening context cues
[4, 43, 47, 48, 56, 57, 70, 75, 77, 81, 90, 126, 128,
129, 132, 138, 141]; leveraging boundary information [6,
14, 27, 66, 127, 131, 137]; incorporating neural attention
[34, 41, 42, 49, 50, 63, 68, 101, 110, 112, 136]; or automat-
ing network engineering [18, 69, 72, 85]. Lately, Transfor-
mer based solutions [20, 100, 118, 139] attained growing at-
tention; enjoying the flexibility in long-range dependency
modeling, fully attentive solutions yield impressive results.

Different from current approaches that are typically built
upon learnable prototypes, in pre-deep era, many segmenta-
tion systems are nonparametric [32, 73, 74, 80, 102, 103].
By absorbing their case-based reasoning ideas, we build a
nonparametric segmentation network, which explicitly de-
rives prototypes from sample clusters and hence directly
optimizes the embedding space with distance metric con-
straints. In [62, 111], while cluster-/pixel-level metric loss
is adopted to regularize representation, the pixel class is still
inferred via parametric softmax. [53] purely relies on class
embeddings, which, however, are fully trainable. Thus [53,
62, 111] are all parametric methods. As far as we know, [52]
is the only non-learnable prototype, deep learning based se-
mantic segmentation model. But [52] treats image regions
as prototypes, incurring huge memory and computational
demand. Besides, [52] only considers the relative differ-
ence between inter-and intra-class sample-prototype dis-
tances like the parametric counterparts. Our method is more
principled with fewer heuristic designs. Unlike [52], we rep-
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resent prototypes as sub-cluster centers and obtain online
assignments, allowing our method to scale gracefully to any
dataset size. We encourage a sparse distance distribution
with compactness-awareness, reinforcing the embedding
discrimination. With a broader view, a few embedding based
instance segmentation approaches [26, 86] can be viewed as
nonparametric, i.e., treat instance centroids as prototypes.

Prototype Learning. Cognitive psychological studies evi-
dence that people use past cases as models when learning to
solve problems [1, 87, 125]. Among various machine learn-
ing algorithms, ranging from classical statistics based meth-
ods to Support Vector Machine to Multilayer Perceptrons[9,
31, 33, 96], prototype based classification gains particu-
lar interest, due to its exemplar-driven nature and intuitive
interpretation: observations are directly compared with re-
presentative examples. Based on the nearest neighbors rule
– the earliest prototype learning method [23], many famous,
nonparametric classifiers are proposed [36], such as Learn-
ing Vector Quantization (LVQ) [61], generalized LVQ [94],
and Neighborhood Component Analysis [37, 93]. There has
been a recent surge of interest to integrate deep learning into
prototype learning, showing good potential in few-shot [98],
zero-shot [54], and unsupervised learning [116, 120], as
well as supervised classification [38, 83, 115, 123] and
interpretable networks [65]. Remarkably, as many few-shot
segmentation models can be viewed as prototype-based net-
works [29, 106, 109], our work sheds light on the possibility
of closer collaboration between the two segmentation fields.

Metric Learning. The selection of proper distance measure
impacts the success of prototype based learners [8]; metric
learning and prototype learning are naturally related. As the
literature on metric learning is vast [58], only the most rel-
evant ones are discussed. The goal of metric learning is to
learn a distance metric/embedding such that similar samples
are pulled together and dissimilar samples are pushed away.
It has shown a significant benefit by learning deep represen-
tation using metric loss functions (e.g., contrastive loss [40],
triplet loss [95], n-pair loss [99]) for applications (e.g., im-
age retrieval [107], face recognition [95]). Recently, metric
learning showed good potential in unsupervised representa-
tion learning. Specifically, many instance-based approaches
use the contrastive loss [39, 88] to explicitly compare pairs
of image representations, so as to push away features from
different images while pulling together those from trans-
formations of the same image [17, 19, 44, 46, 88]. Since
computing all the pairwise comparisons on a large dataset
is challenging, some clustering-based methods turn to dis-
criminate between groups of images with similar features
instead of individual images [2, 5, 12, 13, 64, 104, 119,
121, 122]. Our prototype-anchored metric learning strat-
egy shares a similar spirit of posing metric constraints over
prototype (cluster) assignments, but it is to reshape the pixel
segmentation embedding space with explicit supervision.

5. Experiment
5.1. Experimental Setup
Datasets. Our experiments are conducted on three datasets:
• ADE20K [140] is a large-scale scene parsing benchmark

that covers 150 stuff/object categories. The dataset is di-
vided into 20k/2k/3k images for train/val/test.

• Cityscapes [22] has 5k finely annotated urban scene im-
ages, with 2,975/500/1,524 for train/val/test. The
segmentation performance is evaluated over 19 challeng-
ing categories, such as rider, bicycle, and traffic light.

• COCO-Stuff [10] has 10k images gathered from COCO
[71], with 9k and 1k for train and test, respectively.
There are 172 semantic categories in total, including 80
objects, 91 stuffs and 1 unlabeled.

Training. Our method is implemented on MMSegmenta-
tion [21], following default training settings. In particular,
all backbones are initialized using corresponding weights
pre-trained on ImageNet-1K [92], while remaining layers
are randomly initialized. We use standard data augmen-
tation techniques, including random scale jittering with a
factor in [0.5, 2], random horizontal flipping, random crop-
ping as well as random color jittering. We train models
using SGD/AdamW for FCN-/attention-based models, re-
spectively. The learning rate is scheduled following the
polynomial annealing policy. In addition, for Cityscapes,
we use a batch size of 8, and a training crop size of 768×768.
For ADE20K and COCO-Stuff, we use a crop size of
512× 512 and train the models with batch size 16. The
models are trained for 160k, 160k, and 80k iterations on
Cityscapes, ADE20K and COCO-Stuff, respectively. Ex-
ceptionally, for ablation study, we train models for 40K
iterations. The hyper-parameters are empirically set to:
K=10, m=0.999, τ=0.1, κ=0.05, λ1 =0.01, λ2 =0.01.
Testing. For ADE20K and COCO-Stuff, we rescale the
short scale of the image to training crop size, with the as-
pect ratio kept unchanged. For Cityscapes, we adopt sliding
window inference with the window size 768×768. For sim-
plicity, we do not apply any test-time data augmentation.
Our model is implemented in PyTorch and trained on eight
Tesla V100 GPUs with a 32GB memory per-card. Testing
is conducted on the same machine.
Baselines. We mainly compare with four widely recognized
segmentation models, i.e., two FCN based (i.e., FCN [79],
HRNet [108]) and two attention based (i.e., Swin [78] and
SegFormer [118]). For fair comparison, all the models are
based on our reproduction, following the hyper-parameter
and augmentation recipes used in MMSegmentation [21].
Evaluation Metric. Following conventions [15, 79], mean
intersection-over-union (mIoU) is adopted for evaluation.

5.2. Comparison to State-of-the-Arts
ADE20K [140] val. Table 1 reports comparisons with rep-
resentative models on ADE20K val. Our nonparametric
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Figure 4. Qualitative results of Segformer [118] and our approach (from left to right: ADE20K [140], Cityscapes [22], COCO-Stuff [10]).

Method Backbone
# Param

(M)
mIoU
(%)

DeepLabV3+ [ECCV18] [16] ResNet-101 [45] 62.7 44.1
OCR [ECCV20] [129] HRNetV2-W48 [108] 70.3 45.6

MaskFormer [NeurIPS21] [20] ResNet-101 [45] 60.0 46.0
UperNet [ECCV20] [117] Swin-Base [78] 121.0 48.4

OCR [ECCV20] [129] HRFormer-B [130] 70.3 48.7
SETR [CVPR21] [139] ViT-Large [30] 318.3 50.2

Segmenter [ICCV21] [100] ViT-Large [30] 334.0 51.8
†MaskFormer [NeurIPS21] [20] Swin-Base [78] 102.0 52.7

FCN [CVPR15] [79] 68.6 39.9
Ours

ResNet-101 [45]
68.5 41.1 ↑ 1.2

HRNet [PAMI20] [108] 65.9 42.0
Ours

HRNetV2-W48 [108]
65.8 43.0 ↑ 1.0

Swin [CVPR21] [78] 90.6 48.0
Ours

Swin-Base [78]
90.5 48.6 ↑ 0.6

SegFormer [NeurIPS21] [118] 64.1 50.9
Ours

MiT-B4 [118]
64.0 51.7 ↑ 0.8

†: backbone is pre-trained on ImageNet-22K.
Table 1. Quantitative results (§5.2) on ADE20K [140] val.

Method Backbone
# Param

(M)
mIoU
(%)

PSPNet [CVPR17] [135] ResNet-101 [45] 65.9 78.4
PSANet [ECCV18] [136] ResNet-101 [45] - 78.6

AAF [ECCV18] [59] ResNet-101 [45] - 79.1
Segmenter [ICCV21] [100] ViT-Large [30] 322.0 79.1

ContrastiveSeg [ICCV21] [111] ResNet-101 [45] 58.0 79.2
MaskFormer [NeurIPS21] [20] ResNet-101 [45] 60.0 80.3
DeepLabV3+ [ECCV18] [16] ResNet-101 [45] 62.7 80.9

OCR [ECCV20] [129] HRNetV2-W48 [108] 70.3 81.1
FCN [CVPR15] [79] 68.6 78.1

Ours
ResNet-101 [45]

68.5 79.1 ↑ 1.0
HRNet [PAMI20] [108] 65.9 80.4

Ours
HRNetV2-W48 [108]

65.8 81.1 ↑ 0.7
Swin [CVPR21] [78] 90.6 79.8

Ours
Swin-Base [78]

90.5 80.6 ↑ 0.8
SegFormer [NeurIPS21] [118] 64.1 80.7

Ours
MiT-B4 [118]

64.0 81.3 ↑ 0.6

Table 2. Quantitative results (§5.2) on Cityscapes [22] val.

scheme obtains consistent improvements over the baselines,
with fewer learnable parameters. In particular, it yields
1.2% and 1.0% mIoU improvements over the FCN-based
counterparts, i.e., FCN [79] and HRNet [108]. Similar
performance gains (0.6% and 0.8%) are obtained over re-
cent attention-based models, i.e., Swin [78] and SegFormer
[118], manifesting the high versatility of our approach.
Cityscapes [22] val. Table 2 shows again our compelling
performance on Cityscapes val. Specifically, our approach
surpasses all the competitors, i.e., 1.0% over FCN, 0.7%
over HRNet, 0.8% over Swin, and 0.6% over Segformer.
COCO-Stuff [10] test. As listed in Table 3, our approach
also demonstrates promising performance on COCO-Stuff

Method Backbone
# Param

(M)
mIoU
(%)

SVCNet [CVPR19] [28] ResNet-101 [45] - 39.6
DANet [CVPR19] [34] ResNet-101 [45] 69.1 39.7
SpyGR [CVPR20] [67] ResNet-101 [45] - 39.9

MaskFormer [NeurIPS21] [20] ResNet-101 [45] 60.0 39.8
ACNet [ICCV19] [35] ResNet-101 [45] - 40.1
OCR [ECCV20] [129] HRNetV2-W48 [108] 70.3 40.5

FCN [CVPR15] [79] 68.6 32.5
Ours

ResNet-101 [45]
68.5 34.0 ↑ 1.5

HRNet [PAMI21] [108] 65.9 38.7
Ours

HRNetV2-W48 [108]
65.8 39.9 ↑ 1.2

Swin [CVPR21] [78] 90.6 41.5
Ours

Swin-Base [78]
90.5 42.4 ↑ 0.9

SegFormer [NeurIPS21] [118] 64.1 42.5
Ours

MiT-B4 [118]
64.0 43.3 ↑ 0.8

Table 3. Quantitative results (§5.2) on COCO-Stuff [10] test.

test. It outperforms all the baselines. Notably, with MiT-
B4 [118] as the network backbone, our approach earns an
mIoU score of 43.3%, establishing a new state-of-the-art.
Qualitative Results. Fig. 4 provides qualitative compari-
son of Ours against Segformer [118] on representative ex-
amples in the three datasets. We observe that our approach
is able to handle diverse challenging scenarios and produce
more accurate results (as highlighted in red dashed boxes).

5.3. Scalability to Large-Vocabulary Semantic Seg-
mentation

Today, rigorous evaluation of semantic segmentation
models is mostly performed in a few category regime (e.g.,
19/150/172 classes for Cityscapes/ADE20K/COCO-Stuff),
while the generalization to more natural large-vocabulary
setting is ignored. In this section, we demonstrate the re-
markable superiority of our method in large-vocabulary set-
ting. We start with the default setting in ADE20K [140]
which includes 150 semantic concepts. Then, we gradually
increase the number of concepts based on their visibility
frequency, and train/test models on the selected number of
classes. In this experiment, we use MiT-V2 [118] as the
backbone and train models for 40k iterations.

The results are summarized in Table 4, from which we
find that: i) For the parametric scheme, the amount of proto-
type parameters increases with vocabulary size. For the ex-
treme case of 10 prototypes and 847 classes, the number of
prototype parameters is 6.5 M, accounting for ∼20% of to-
tal parameters (i.e., 33.96 M). In sharp contrast, our scheme
requires no any learnable prototype parameters. ii) Our
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150 classes 300 classes 500 classes 700 classes 847 classesMethod # Proto
mIoU (%) # Param (M) mIoU (%) # Param (M) mIoU (%) # Param (M) mIoU (%) # Param (M) mIoU (%) # Param (M)

parametric 1 45.1 27.48 (0.12) 36.5 27.62 (0.23) 25.7 27.80 (0.39) 19.8 27.98 (0.54) 16.5 28.11 (0.65)
nonparametric

(Ours) 1 45.5 ↑ 0.4 27.37 (0) 37.2 ↑ 0.7 27.37 (0) 26.8 ↑ 1.1 27.37 (0) 21.2 ↑ 1.4 27.37 (0) 18.1 ↑ 1.6 27.37 (0)

parametric 10 45.7 28.56 (1.2) 37.0 29.66 (2.3) 26.6 31.26 (3.9) 20.8 32.86 (5.4) 17.7 33.96 (6.5)
nonparametric

(Ours) 10 46.4 ↑ 0.7 27.37 (0) 37.8 ↑ 0.8 27.37 (0) 27.9 ↑ 1.3 27.37 (0) 22.1 ↑ 1.3 27.37 (0) 19.4 ↑ 1.7 27.37 (0)

Table 4. Scalability study (§5.3) of our nonparametric model against the parametric baseline (i.e., SegFormer [118]) on ADE20K [140].
For each model variant, we report its segmentation mIoU, parameter numbers of the entire model as well as the prototypes (in the bracket).

LCE LPPC LPPD mIoU
(Eq. 7) (Eq. 11) (Eq. 12) (%)

3 45.0
3 3 45.9
3 3 45.4
3 3 3 46.4

(a) Training Objective L

# Prototype mIoU (%)

K = 1 45.5
K = 5 46.0
K = 10 46.4
K = 20 46.5
K = 50 46.4

(b) Prototype Number K

Coefficient µ mIoU (%)

µ = 0 44.9
µ = 0.9 45.9
µ = 0.99 46.0
µ = 0.999 46.4
µ = 0.9999 46.3

(c) Momentum Coefficient µ

Distance Measure mIoU (%)

Standard 45.7
Huberized 45.2

Cosine 46.4

(d) Distance Measure
Table 5. A set of ablative studies (§5.4) on ADE20K [140] val. All model variants use MiT-B2 [118] as the backbone.

method achieves consistent performance elevations against
the parametric counterpart under all settings. These results
well demonstrate the utility of our nonparametric scheme
for unrestricted open-vocabulary semantic segmentation.

5.4. Diagnostic Experiment

To investigate the effect of our core designs, we conduct
ablative studies on ADE20K [140] val. We use MiT-B2
[118] as the backbone and train models for 40K iterations.
Training Objective. We first investigate our overall train-
ing objective (cf. Eq. 13). As shown in Table 5a, the model
with LCE alone achieves an mIoU score of 45.0%. Adding
LPPC or LPPD individually brings gains (i.e., 0.9%/0.4%),
revealing the value to explicitly learn pixel-prototype rela-
tions. Combing all the losses together leads to the best per-
formance, yielding an mIoU score of 46.4%.
Prototype Number Per Class K. Table 5b reports the per-
formance of our approach with regard to the number of pro-
totype per class. For K = 1, we directly represent each
class as the mean embedding of its pixel samples. The pixel
assignment is based simply on ground-truth labels, with-
out using online clustering (Eqs. 8-9). This baseline ob-
tains a score of 45.5%. Further, when using more proto-
types (i.e., K = 3), we see a clear performance boost (i.e.,
45.5%→ 46.0%). The score further improves when allow-
ing 5 or 10 prototypes; however, increasing K beyond 10
gives marginal returns in performance. As a result, we set
K = 10 for a better trade-off between accuracy and com-
putation cost. This study confirms our motivation to use
multiple prototypes for capturing intra-class variations.
Coefficient µ. Table 5c quantifies the effect of momentum
coefficient (µ in Eq. 14) which controls the speed of proto-
type updating. The model performs reasonably well using a
relatively large coefficient (i.e., µ∈ [0.999, 0.9999]), show-
ing that a slow updating is beneficial. When µ is 0.9 or
0.99, the performance decreases, and drops considerably at

the extreme case of µ=0.
Distance Measure. By default, we use cosine distance (re-
fer to as ‘Cosine’) to measure pixel-prototype similarity as
denoted in Eq. 6, Eq. 11 and Eq. 12. However, other choices
are also applicable. Here we study two alternatives. The
first is the standard Euclidean distance (i.e., ‘Standard’),
i.e., 〈x,y〉 = ‖x−y‖2. In contrast to ‘Cosine’, here x
and y are un-normalized real-valued vectors. To handle
the non-differentiability in ‘Standard’, we further study an
approximated Huber-like function [51] (‘Huberized’), i.e.,
〈x,y〉=δ(

√
‖x− y‖2/δ2 + 1−1). The hyper-parameter δ

is empirically set to 0.1. As we find from Table 5d that ‘Co-
sine’ performs much better than other un-normalized Eu-
clidean measurements. The Huberized norm does not show
any advantage over ‘Standard’.

6. Conclusion and Discussion
The vast majority of recent effort in this field seek to learn

parametric class representations for pixel-wise recognition.
In contrast, this paper explores an exemplar-based regime.
This leads to a nonparametric segmentation framework,
where several typical points in the embedding space are se-
lected as class prototypical representation, and distance to
the prototypes determines how a pixel sample is classified.
It enjoys several advantages: i) explicit prototypical repre-
sentation for class-level statistics modeling; ii) better gener-
alization with nonparametric pixel-category prediction; and
iii) direct optimization of the feature embedding space. Our
framework is elegant, general, and yields outstanding per-
formance. It also comes with some intriguing questions.
For example, to pursue better interpretability, one can op-
timize the prototypes to directly resemble pixel- or region-
level observations [52, 65]. Overall, we feel the results in
this paper warrant further exploration in this direction.
Acknowledgements This work was supported by CCF-Baidu
Open Fund and ARC DECRA DE220101390 .
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