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Abstract

Neuromorphic vision sensor is a new bio-inspired imag-
ing paradigm that reports asynchronous, continuously per-
pixel brightness changes called ‘events’ with high tempo-
ral resolution and high dynamic range. So far, the event-
based image reconstruction methods are based on artifi-
cial neural networks (ANN) or hand-crafted spatiotempo-
ral smoothing techniques. In this paper, we first imple-
ment the image reconstruction work via deep spiking neu-
ral network (SNN) architecture. As the bio-inspired neural
networks, SNNs operating with asynchronous binary spikes
distributed over time, can potentially lead to greater com-
putational efficiency on event-driven hardware. We pro-
pose a novel Event-based Video reconstruction framework
based on a fully Spiking Neural Network (EVSNN), which
utilizes Leaky-Integrate-and-Fire (LIF) neuron and Mem-
brane Potential (MP) neuron. We find that the spiking neu-
rons have the potential to store useful temporal information
(memory) to complete such time-dependent tasks. Further-
more, to better utilize the temporal information, we propose
a hybrid potential-assisted framework (PA-EVSNN) using
the membrane potential of spiking neuron. The proposed
neuron is referred as Adaptive Membrane Potential (AM-
P) neuron, which adaptively updates the membrane poten-
tial according to the input spikes. The experimental results
demonstrate that our models achieve comparable perfor-
mance to ANN-based models on IJRR, MVSEC, and HQF
datasets. The energy consumptions of EVSNN and PA-
EVSNN are 19.36× and 7.75× more computationally ef-
ficient than their ANN architectures, respectively. The code
and pretrained model are available at https://sites.
google.com/view/evsnn.

1. Introduction

Event cameras [2, 5] are bio-inspired vision sensors that
pose a paradigm shift in the way visual information is ac-
quired. Compared with standard cameras, event cameras
have high temporal resolution, high dynamic range (140 dB
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vs. 60 dB of standard cameras), and low power consump-
tion. Event cameras work asynchronously, recording the
stream of events (t, x, y, p) which includes the timestamp,
pixel location and polarity of the brightness changes.

Despite the advantages of the event data, it is not friend-
ly to human vision and traditional computer vision [48, 53].
As a solution, image reconstruction bridges the gap between
human visualization and events, giving us an intuition of
the rich information encoded by events. On other hand, im-
age is a useful representation for conventional frame-based
computer vision [42]. Reconstructing images from asyn-
chronous events has been explored in various researches.
Early works attempt to recover the intensity of an image
from events based on hand-crafted priors [46, 47, 3, 30].
Recently, deep neural network based reconstruction model-
s [52, 42, 43, 48, 50, 34, 55] have demonstrated impressive
performance. The events usually be transformed in to time-
surfaces, event images or voxel grids as the input of con-
volutional neural network. However, large artificial neural
networks (ANN) can be memory and computationally in-
tensive [48], consuming power and hampering the low la-
tency of event cameras.

In fact, the sparse event data can be effectively com-
bined with neuromorphic hardware for low-power spiking
neural network (SNN) applications [14]. Compared with
ANN, SNN is more biologically realistic and its neurons
communicate with each other via discrete spikes instead of
continuous-valued activations. Visual systems [32, 1] con-
structed with SNN and event cameras have demonstrated
their capacity in solving visual tasks as well as prominent
energy-efficiency. However, most of the SNN work has so
far been focused on problems like classification [10, 59, 62],
optical estimation [35, 15], motion segmentation [33], and
angular velocity regression [11]. To the best of our knowl-
edge, we are the first to attempt image reconstruction task
based on a deep SNN architecture.

In this paper, we propose a novel Event-based Video re-
construction framework based on a fully Spiking Neural
Network (EVSNN), which utilizes the Leaky-Integrate-and-
Fire (LIF) neurons and a Membrane Potential (MP) neuron.
To better extract the temporal information, we propose a hy-
brid potential-assisted framework (PA-EVSNN) using the
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membrane potential of spiking neurons. The main contri-
butions of this paper are summarized as follows:

1) We first explore a fully spiking neural network
(EVSNN) architecture on event-based image reconstruc-
tion, which utilizes LIF neuron and MP neuron. This is
also the first attempt to develop a deep SNN for image re-
construction task.

2) We propose a hybrid potential-assisted SNN (PA-
EVSNN), which uses adaptive membrane potential (AMP)
neurons to improve the temporal receptive field of EVSNN.
AMP neurons can adjust the membrane time constant ac-
cording to the input spike to adapt to various reconstruction
scenes.

3) The experiments on public datasets demonstrate that
the proposed models have comparable performance to ex-
isting ANN-based models, while the energy consumptions
of EVSNN and PA-EVSNN are 19.36× and 7.75× more
computationally efficient than their ANN architectures, re-
spectively. Compared to E2VID, the proposed EVSNN and
PA-EVSNN achieve 24.15× and 8.76× more computation-
ally efficient improvement, respectively.

2. Related work
Spiking Neural Network Supervised learning of SNNs
was first proposed by SpikeProp [4], it used a linear ap-
proximation to overcome the non-differentiable threshold-
triggered firing mechanism of SNNs, backpropagation
was utilized to update weight. Some works applied to
single-layer SNN optimization appeared, including Tem-
potron [13], Re-SuMe [37], and SPAN [28]. Recently,
the surrogate gradient method provides an effective solu-
tion for training multi-layer SNN [25, 18, 57, 49, 24, 19].
It utilized surrogate derivatives to define the derivative of
the threshold-triggered firing mechanism. Therefore, SNN
can be optimized by gradient descent algorithm like ANNs,
which makes the training of deep SNN possible.

Most of the learning-based SNN work has so far been
focused on problems like classification [10, 59, 62], opti-
cal estimation [35, 15, 15], motion segmentation [33], and
angular velocity regression [11]. There are also some unsu-
pervised SNNs [67, 63] proposed for image reconstruction
based on spike camera [66]. Among them, [15] and [38]
utilized deep SNNs for optical and depth estimation, respec-
tively. In addition, Lee et al. [23] proposed an ANN-SNN
hybrid architecture for optical estimation, using SNN as en-
coder and ANN as decoder and residual block. Zhang et
al. [61] proposed the ANN-SNN hybrid network for event-
based synthetic aperture imaging.
Event-based Video Reconstruction Video reconstruction
is an important topic in event-based vision field. Early re-
construction works are based on hand-crafted features to es-
timate intensity from events, e.g. optimization [3], regular-
ization [30] and temporal filtering [46, 47]. Some work-

Figure 1. The event representation and work flow of our frame-
work. The event stream (red/blue dots represent on/off events,
respectively) is split into multiple windows and transformed into
continuous voxel grids. Each voxel grid includes N temporal bin-
s with different information. Our SNN recurrent uses the current
single channel temporal bin and last membrane potentials of each
spiking neuron to generate new reconstructions at each moment.

s [7, 20, 41] also applied SLAM to estimate the brightness.
Recently, deep learning methods have shown impressive
performance on event-based video reconstruction. Wang
et al. [52] utilized generative adversarial network (GAN)
to reconstruct intensity with real grayscale frames. Rebecq
et al. [42, 43] proposed an effective E2VID model which
based on a U-Net [44] model. The network was trained in a
supervised manner with a synthetic dataset generated from
ESIM [40]. Scheerlinck et al. [48] proposed a light-weight
framework to achieve fast inference speed with only a mi-
nor drop in accuracy. Stoffregen et al. [50] proposed to use
more complex synthetic dataset to train the network, bring-
ing a large performance boost on real datasets. Federico et
al. [34] proposed a novel self-supervised learning method
for image reconstruction, getting rid of training data. Weng
et al. [55] presented a hybrid CNN-transformer network for
image reconstruction.

In this work, different from the above ANN-based mod-
els, we first propose to use the energy-efficient deep SNN
models for reconstructing videos from event stream.

3. Method
3.1. Input Representations

To process the asynchronous event with SNN, the event
data is needed to be converted into an event representation
which includes the temporal information. In this work, we
use the continuous voxel grid [65] to train and test our mod-
el, which is defined as: E(x, y, tn) =

∑
i pi max(0, 1 −

|tn − t∗i |), where t∗i = B−1
∆T (ti − t0), t∗i is the normalized

event timestamp. As shown in Fig. 1, the event stream can
be adaptively divided into continuous bins of voxel grid.

3.2. Spiking Neurons

ANN and SNN can model the same types of network
topologies, but SNN replaces the artificial neuron model
with a spiking neuron model. The artificial neuron model
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operates on a weighted sum of inputs, and passing the re-
sult through a sigmoid or ReLU nonlinearity. In SNN, the
weighted sum of inputs contributes to the membrane po-
tential of the spiking neuron. If the membrane potential of
the spiking neuron reaches a threshold, then the neuron will
emit a spike to its subsequent connections. The information
in SNN is propagated by discrete spikes,thus spiking neuron
is the basic computing unit.
LIF Neurons The Leaky Integrate-and-Fire (LIF) mod-
el [12] is a widely used neuron model in SNN, which is
more biologically realistic than the Integrate-and-Fire (IF)
neuron model. The subthreshold dynamics of LIF neuron is
defined as τ dV (t)

dt = −(V (t)− Vrest) +X(t), where V (t)
represents the membrane potential of the neuron at time t,
X(t) represents the input to neuron, τ is the membrane time
constant. A spike fires if V (t) exceeds the threshold Vth,
Vrest is the resting potential after firing. For better represen-
tation, we rewrite the above equation as the discrete form:Vt = Vt−1 +

1

τ
(−(Vt−1 − Vrest) +Xt)

St = H(Vt − Vth)
(1)

where Vt denotes the membrane potential after neuronal dy-
namics at t. St denotes the spike output at t, H(·) denotes
the Heaviside step function which is defined as H(x) = 1
for x ≥ 0 and H(x) = 0 for x < 0. We set Vrest = Vreset

in our work. LIF neuron can extract temporal information
during the integration and firing process, however, its output
is binary spikes which can only represent limited informa-
tion. Moreover, after each firing process, Mt is reset thus
the temporal information is also partially lost. Based on
above, we introduce the membrane potential neurons.
Membrane Potential Neurons The membrane potential
neurons (MP neurons) are non-spiking neurons which out-
put membrane potential instead of spikes [51, 58]. In our
image reconstruction task, MP neurons can extract more
useful temporal information hidden in the neurons. The dy-
namics of the MP neurons is same as LIF neuron. For MP
neurons, Mt is equal to Vt since there is no spike fire and Vt

reset process. If we set Vrest = 0, Eq. 1 can be written as:Vt = (1− 1

τ
)Vt−1 +

1

τ
Xt

Ot = Vt

(2)

where Ot denotes the output of the neuron at t. Eq. 2 is sim-
ilar to the function of recurrent neural networks. The mem-
brane time constant τ controls the balance between remem-
bering Xt and forgetting Vt−1. Thus it can be considered
as a simple version of Long Short-Term Memory (LSTM)
module [16].

3.3. The Proposed SNN Model

In this paper, we propose two SNN architectures
for event-based reconstruction, namely EVSNN and PA-

Figure 2. The dynamics of LIF neuron and MP LIF neuron.
For LIF neurons, if the membrane potential reaches a threshold,
then the neuron will emit a spike to its subsequent connections and
reset to resting state. At each time step, MP LIF neuron outputs
its membrane potential as the weighted sum of input spikes.

EVSNN. EVSNN is a fully spiking neural network, al-
l synaptic operations in the network are SNN operations.
PA-EVSNN shares the same spiking encoder and decoder
architecture, with the additional MP neurons to improve the
performance. Both models are fully convolutional network-
s, the architecture is shown in Fig. 3.
EVSNN (A fully spiking neural network) Our EVSNN
is a variant of the U-shaped model [44]. First, the event
data is transformed into event voxels. For each time step, a
1×W×H event voxel is fed in to EVSNN and transformed
as the size of Nc×W1×H1, followed by Ne encoder layer-
s, Nr residual blocks, Nd decoder layers, and a final image
prediction layer. The number of channels is doubled after
each encoder layer. All spiking neurons in encoder layers,
decoder layers, and residual blocks are LIF neurons, which
enables computationally efficiency. To ensure a fully SNN
architecture, EVSNN utilizes concatenate as spike skip con-
nection. In the final image prediction layer, MP LIF neuron
is introduced to integrate all spikes and predict the gray s-
cale image. An ablation of each network component can
be found in Sec. 4.4. We use Nc = 32, Ne = Nd = 3
and Nr = 1. EVSNN can handle most scenes in existing
datasets while the computationally efficiency is 19.36 times
than ANN architecture.
PA-EVSNN (Potential-assisted EVSNN) EVSNN is a ful-
ly SNN with very low energy consumption. However, the
reconstruction performance is limited by the binary spikes
(e.g., the gray scale of the image is not rich enough). Based
on EVSNN, we further propose a potential-assisted EVSNN
model. MP neuron is introduced in each encoder and de-
coder layer to help extract the temporal information hidden
in the spikes. We also propose an adaptive membrane po-
tential (AMP) neuron, which greatly enhances the tempo-
ral receptive field of the network. Notice that although the
backbone of PA-EVSNN is SNN architecture, the introduc-
tion of MP neuron brings non binary spikes in the network
(about 8.4% ANN floating-point operations), thus we con-
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Figure 3. The proposed spiking neural network architecture. EVSNN is a fully spiking neural network, composed of head, encoder,
residual block, decoder, and prediction layers. Based on EVSNN as backbone, PA-EVSNN introduces MP neurons to further improve the
performance. MP LIF denotes MP neurons with the dynamics of LIF. As floating-point multiplication operations are introduced by MP
neurons, we consider PA-EVSNN as a hybrid network. The energy consumptions of EVSNN and PA-EVSNN are 19.36 × and 7.75 ×
more computationally efficient than their ANN architectures. Please refer to our supplementary material for details of network architecture.

Figure 4. The adaptive membrane potential (AMP) neuron
block. (a) An AMP neuron block in Fig. 3. (b) The dynamics
of AMP LIF neuron. The membrane time constant τ is adjusted
by the input ol−1

t . (c) The details of AMP neuron block.

sider PA-EVSNN as a hybrid network. Compared to exist-
ing ANN models, PA-EVSNN still has great advantages in
energy consumption (7.75 × more efficient) while achiev-
ing comparable performance. More detailed analysis of the
SNN and ANN operations can be found in Sec. 4.5.
Adaptive Membrane Potential Neurons As analyzed in
Sec. 3.2, the membrane time constant τ in MP neuron plays
an analogous role as the gates in LSTM module. [10] pro-
posed the parametric LIF neuron by introducing a learnable
τ in classification task. Inspired by this, we propose an
adaptive membrane potential neuron (AMP neuron). Differ-
ent from the fixed τ of parametric LIF neuron learned from
the training dataset, AMP neuron can adjust τ according to
the input spike to adapt to various reconstruction scenes.

According to Eq. 2, ideally, when the light changes fast,
the network should choose a large τ to remember more new
information while forgetting more last memory, and vice
versa. Due to the event measures the change of light inten-
sity, the average spike firing rate reflects the global motion
of the scene to a certain extent, which is useful for esti-
mating a proper τ . The spike firing rate of each channel
in l-th layer can be estimated by F = AvgPool(Sl), where
AvgPool(·) denotes the average pooling operation, Sl is the
spike tensor of l-th layer. Then the local motion intensity of
input spikes can be estimated by I = MaxPool(Conv(Sl)),
where MaxPool(·) denotes the max pooling operation. Fi-
nally, the membrane time constant is updated by

τ =
1

S(Linear([F, I]))
(3)

where S(·) denotes the sigmoid activation function,
Linear(·) is the full connection layer shown in Fig. 4.
Loss Functions We use LPIPS loss and temporal consis-
tency loss: Ltotal =

∑L
k=0 LR

k + λ
∑L

k=L0
LTC
k , where

LR
k is the LPIPS loss [60], LTC

k is temporal consistency
loss [22, 43].

3.4. Training Details of SNN

During the training process, we set L in loss function
same as the training sequence length (i.e., 40 - 60), and L0

is set as 2. In each time step, an event voxel with the size of
1 ×H1 ×W1 is fed into the network. According to Eq. 4,
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Figure 5. The backpropagation of spiking neurons. For LIF
neurons, we use ArcTan as surrogate function to calculate the
derivative of spiking function. For MP neurons, the gradients can
be directly computed by Eq. 4.

the backpropagated errors pass through the spiking neuron
layer and MP neuron layer using BackPropagation Through
Time (BPTT) [56]. In BPTT, the network is unrolled for all
discrete time-steps. The loss is calculated every 5 time step-
s, and the weight update is computed as the sum of gradients
from each time-step as follows:

∆wl =
∑
n

∂Ltotal

∂olt

∂olt
∂V l

t

∂V l
t

∂wl
(4)

where
∂olt
∂V l

t

=

{
H

′

1(Vt − Vth) if olt = Sl
t

1 if olt = V l
t

where olt is the output of the neuron at time t, ∂olt
∂V l

t
denotes

the derivative of spike with respect to the membrane poten-
tial after charging at time step t. Since ∂olt

∂V l
t

is not differen-
tiable, we adopt surrogate gradient method [31] to calculate
it. The shifted ArcTan function H1(x) =

1
π arctan(πx)+ 1

2
is utilized as the surrogate function of the Heaviside step
function H(·). If the neuron is a spiking neuron, we have
. Otherwise, if the neuron is a MP neuron with no spiking
output, then olt = V l

t , we have ∂olt
∂V l

t
= 1 which is similar to

an ANN activation function.

4. Experiments
4.1. Experimental setup

For fair comparison to ANN-based reconstruction meth-
ods, we use the exact same synthetic data from E2VID [43]
to train our SNN. The dataset is generated by ESIM, an
event simulator, and consists of 950 training sequences
and 50 validation sequences. MS-COCO images [26] are
mapped to a 3D plane and random 6-DOF camera motions
are used to trigger events. During training, the nonzero val-
ues of event tensors are normalized as mean and standard
deviation is 0 and 1, respectively. The events and images
are randomly cropped to 128×128 to augment the data.

Our models are implemented with SpikingJelly [9], an
open-source deep learning framework for SNNs based on
PyTorch [36]. An NVIDIA TITAN Xp GPU is used to train
our model. We adopt the batch size of 8 and Adam optimiz-
er [21] in the training process. The network is trained for

100 epochs, with a learning rate of 0.002. The weight λ of
temporal consistency loss is set as 1. The reset value Vreset

of all neurons is set to 0, and the membrane time constant τ
of LIF neurons is set to 2.

4.2. Evaluation on Public Datasets

We evaluate our model on three public datasets IJR-
R [29], MVSEC [64], and HQF [50]. Following [43]
and [48], to ensure the intensity values lay within a similar
range, we apply histogram normalization to both the output
and groundtruth frames. Moreover, to make the timestamp-
s of the reconstruction and groundtruth strictly consisten-
t, we use the events between two adjacent frames to gen-
erate each reconstruction. We compare our models with
four state-of-the-art-methods E2VID [43], FireNet [48],
SPADE-E2VID [6], and E2VID+ [50]. All results are gen-
erated by the pre-trained model from the original paper. We
compared reconstructed images against groundtruths using
the metrics: mean squared error (MSE), structural similarity
(SSIM) [54] and perceptual similarity (LPIPS) [60].

The main quantitative results are presented in Table 1.
Notice that E2VID+ is trained on a more challenging syn-
thetic dataset, while the other five methods are trained on
the same data as [43]. To sum up, E2VID+ performs best in
most datasets. SPADE-E2VID performs well on MVSEC
dataset, but the SSIM and LPIPS are lower than E2VID on
IJRR and HQF datasets. The results show that EVSNN can
handle these scenes. Our PA-EVSNN achieves compara-
ble performance to ANN-based models such as E2VID and
FireNet. Please refer to our supplementary material for ad-
ditional quantitative and qualitative results.

4.3. Temporal Component Ablation

Inspired by [43], we design an experiment to measure
the effective size of the temporal receptive field of SNN and
ANN. As shown in Fig.7, four different settings are tested:
ANN w/o recurrent, ANN + LSTM (E2VID), SNN + LIF
(EVSNN), and SNN + LIF + AMP LIF. These networks
are all based on U-Net architecture with three encoders. To
verify the ability of spiking neurons in temporal informa-
tion extraction, at initialization phase (T = 1-50), the states
of temporal components (e.g., LSTM and spiking neuron)
are initialized at zero. The images at each moment are re-
constructed by continuous event input. Then we artificially
stop the events at T=50. In subsequent iterations after T
= 50, we feed the empty event tensors to the network and
reconstruct images to test the effective size of temporal re-
ceptive field.

To better analyze the results, we randomly pick 50 event
sequences from dynamic 6dof of IJRR dataset, and plot the
average values of MSE, SSIM, LPIPS in Fig. 8. The spike
firing rates of EVSNN and PA-EVSNN are also reported.
The results shown in Fig 7 and 8 show that E2VID, EVSNN,
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Figure 6. Qualitative comparison with state-of-the-art ANN-based methods. We compare our SNN models with four ANN-based
models (SPADE-E2VID, FireNet, E2VID, and E2VID+) on IJRR (Row 1-2), HQF (Row 3-4), and MVSEC (Row 5) datasets. The results
show that the proposed EVSNN and PA-EVSNN perform comparably to most ANN-based models, and the energy consumptions are 24.15
times and 8.76 times lower than E2VID, respectively (see Table 7). More qualitative results can be found in our supplementary material.

Table 1. Comparison on IJRR, HQF, and MVSEC Datasets.

Method IJRR MVSEC HQF

MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓
∗E2VID 0.059 0.643 0.338 0.138 0.377 0.651 0.081 0.545 0.406
∗FireNet 0.060 0.602 0.340 0.105 0.361 0.600 0.065 0.542 0.391
∗SPADE-E2VID 0.063 0.572 0.365 0.095 0.443 0.556 0.080 0.512 0.424
∗1E2VID+ 0.043 0.618 0.321 0.088 0.427 0.490 0.047 0.560 0.338
†EVSNN (Ours) 0.061 0.570 0.362 0.104 0.389 0.538 0.086 0.482 0.433
†PA-EVSNN (Ours) 0.046 0.626 0.367 0.107 0.403 0.566 0.061 0.532 0.416

1 E2VID+ is trained on the simulated dataset proposed in [50] , while other five models are all trained on the simulated dataset from [43].
∗ ANN model. † SNN model. Notice that the energy consumption of SNN is much lower than that of ANN, see Table 7 for detail.

and PA-EVSNN can complete initialization in 10 iterations.
As T increases, the quantitative results of E2VID, EVSNN,
and PA-EVSNN continue to improve, which shows the ef-
fectiveness of temporal component. In contrast, the quan-
titative scores of ANN w/o recurrent do not change signif-
icantly, since it has no temporal component. After T=50,
the quantitative score of E2VID, EVSNN, and PA-EVSNN
decreases slowly, indicating that our SNN model has tem-
poral receptive field similar to ANN + LSTM. Assisted by
the membrane potential, PA-EVSNN performs better than
EVSNN on quantitative scores. To sum up, our SNN struc-
ture has the capacity of temporal information extracting al-
though it may be weaker than ANN+LSTM.

4.4. Spiking Neural Network Architecture

We investigate different SNN network architectures. All
the experiments are conducted on IJRR dataset.
Spiking Neurons In the first ablation study, we explore
the effect of different spiking neurons on the reconstruc-
tion performance. We test three types of spiking neurons
in EVSNN: IF neuron, LIF neuron, and PLIF (parametric
LIF) neuron. Since IF neuron simply integrates inputs and
lacks the decay mechanism, its performance is worse than
the other two neurons. For the other two spiking neuron-
s, a membrane time constant controls the decay. As shown

in the upper part of Table 2, LIF neurons perform slightly
better than PLIF neurons.
Membrane Potential Neurons Based on the EVSNN-LIF
architecture, we further analyze the effects of MP neurons.
Fig. 7 and 8 show that MP neurons can improve the recon-
struction quality of SNN. We test four types of MP neurons:
MP IF, MP LIF, MP PLIF, and AMP LIF. These neurons
are non-spiking neurons which output membrane potential
instead of spikes. PLIF neurons can learn a fixed membrane
time constant based on the training dataset. However, the
fixed membrane time constant learned from synthetic data
may be not suitable for complex scenes. As shown in the
lower part of Table 2, our AMP LIF performs best because
it can adaptively adjust the decay rate by the input spikes.
Spike Skip Connection Spike skip connection gathers
the spike outputs of the encoder and decoder. An effec-
tive connection operation can greatly improve the perfor-
mance of SNN. Based on the EVSNN-LIF and PA-EVSNN-
AMP LIF architectures, we study four types of spike con-
nections. As shown in Table 3, ADD performs best because
it retains more information by adding spikes of the encoding
and decoding layers. However, it brings non-spike output,
e.g., the addition of two spikes will output 2, which breaks
the fully SNN architecture and adds additional power con-
sumption. In contrast, OR, IAND, and CONCAT all output
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Figure 7. Comparison on the different temporal components of SNN and ANN. This figure shows image reconstructions of different
ANN and SNN variants at initialization and end phases. At initialization phase (T = 1-50), the states of temporal components (e.g., LSTM
and spiking neuron) are initialized at zero, all models are fed continuous event tensors to test the reconstruction of each moment. In
subsequent iterations after T = 50, the models are fed empty event tensors to test the effective size of temporal receptive field.

Figure 8. Quantitative analysis of the temporal components. This figure shows the MSE, SSIM, LPIPS, and spike firing rate at each
iteration. The experiment setting is same as Fig.7, four ANN and SNN variants (ANN w/o recurrent, ANN + LSTM, SNN + LIF, and SNN
+ LIF + AMP LIF) are tested. The results show that spiking neuron can improve the ability of temporal information extracting.

Table 2. Ablation studies of spiking neurons and MP neurons.
Model MSE↓ SSIM↑ LPIPS↓
EVSNN-IF 0.108 0.341 0.608
EVSNN-PLIF 0.063 0.569 0.367
EVSNN-LIF 0.061 0.570 0.362
PA-EVSNN-MP IF 0.121 0.362 0.741
PA-EVSNN-MP LIF 0.056 0.597 0.388
PA-EVSNN-MP PLIF 0.053 0.599 0.378
PA-EVSNN-AMP LIF 0.042 0.632 0.376

Table 3. Ablation studies of different spike skip connections.

Model MSE↓ SSIM↑ LPIPS↓
1EVSNN-ADD 0.049 0.586 0.350
2EVSNN-OR 0.063 0.534 0.395
3EVSNN-IAND 0.051 0.557 0.357
4EVSNN-CONCAT 0.061 0.570 0.362
1PA-EVSNN-ADD 0.041 0.635 0.388
2PA-EVSNN-OR 0.064 0.591 0.436
3PA-EVSNN-IAND 0.055 0.602 0.410
4PA-EVSNN-CONCAT 0.046 0.626 0.367

Defining the connect operation as g(Al, Bl), where Al ∈ {0,1} and Bl ∈
{0,1} denote the spike output of l-th encoder and decoder, respectively. The
different connections can be implemented as
1 ADD: gADD(Al, Bl) = Al + Bl
2 OR: gOR(Al, Bl) = max(Al, Bl)
3 IAND: gIAND(Al, Bl) = (1 − Al) · Bl
4 CONCAT: gCON.(Al, Bl) = [Al, Bl]

spikes. As shown in Table 3, CONCAT performs best while
the IAND also performs well. Although the number of pa-
rameters of CONCAT is twice that of IAND, we choose
CONCAT in our architecture for better performance.
Number of Encoders and Residual blocks Finally, we
search the number of encoders and residual blocks. The
results are shown in Table 4, e.g., EVSNN-e3-res1 means
EVSNN with three encoders and one residual block. Con-

sidering both the performance and complexity, we choose
EVSNN-e3-res1 and PA-EVSNN-e3-res1 as our models.

4.5. Energy Consumption and Limitation Analysis

Energy Comparison of SNN and ANN Typically, the
number of synaptic operations is used as a metric for bench-
marking the computational energy of neuromorphic hard-
ware [27]. In ANN, each operation computes a dot-product
involving one floating-point (FP) multiplication and one FP
addition as a multiply-accumulate (MAC) computation. In
contrast, the computations in SNN implemented on neuro-
morphic hardware are event-driven. Therefore, in the ab-
sence of spikes, there are no computations and no active en-
ergy is consumed [8]. Thus, in SNN, each operation is only
one FP addition due to binary spikes. The low consumption
of SNN synapse operation combined with activation sparsi-
ty provides large improvements in computational efficiency.

To compare the consumption between SNN and ANN ar-
chitectures, the evaluation should be conducted on the same
structure [39]. Thus, we compute the energy consumption
between our SNN models and their ANN versions (e.g., re-
place the spiking neurons with ReLU). In most technolo-
gies, the addition operation is much cheaper than the multi-
plication operation. We compute the energy cost/operation
for ANNs and SNNs in 45nm CMOS technology. The en-
ergy cost for 32-bit ANN MAC operation is 5.1 more than
SNN addition operation (4.6pJ vs. 0.9pJ) [17].
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Table 4. Ablation studies of different network architectures.
Model MSE↓ SSIM↑ LPIPS↓
EVSNN-e2-res1 0.060 0.569 0.364
EVSNN-e3-res1 0.061 0.570 0.362
EVSNN-e4-res1 0.061 0.576 0.379
EVSNN-e3-res0 0.061 0.569 0.360
EVSNN-e3-res2 0.067 0.570 0.371
PA-EVSNN-e2-res1 0.050 0.628 0.376
PA-EVSNN-e3-res1 0.046 0.626 0.367
PA-EVSNN-e4-res1 0.048 0.618 0.379
PA-EVSNN-e3-res0 0.058 0.599 0.413
PA-EVSNN-e3-res2 0.046 0.615 0.361

Table 5. Spike firing rate of EVSNN and PA-EVSNN.

Layer
Spiking Neuron

Num.
Neuron

Type
Spike Firing Rate

EVSNN PA-EVSNN
Head 32×H×W LIF 0.2479 0.2444
Down1 64×H×W LIF 0.2459 0.2308
Down2 128×H×W LIF 0.1352 0.1339
Down3 256×H×W LIF 0.1174 0.1183
Res1-1 256×H×W LIF 0.1241 0.1098
Res1-2 256×H×W LIF 0.1308 0.1200
Up1 128×H×W LIF 0.1905 0.1983
Up2 64×H×W LIF 0.3338 0.3573
Up3 32×H×W LIF 0.3580 0.3081

Overall spike firing rate 0.2642 0.2511

The number of synaptic operations in SNN can be cal-
culated by multiplying #OPANN

1 by the spike firing rate.
For example, a spike rate of 1 (every neuron fired) implies
that the number of operations for ANN and SNN are the
same (though operations are MAC in ANN while addition
in SNNs). Lower spike rates denote more sparsity in spike
events and higher energy-efficiency. As shown in Table 5,
we count the average spike firing rate of EVSNN and PA-
EVSNN on IJRR dataset. The comparison results are shown
in Table 6. Notice that our models do not require multiple
time-steps simulation, which brings a great advantage in en-
ergy consumption. For EVSNN, all operations are SNN op-
erations, the average spike firing rate is 26.4%, its energy
consumption is 19.36 × lower than ANN. Since there are
8.4% MAC operations in PA-EVSNN, the average spike fir-
ing rate of spiking neurons is 25.1%, it costs 7.75 × lower
energy consumption compared to its fully ANN version.
Energy Comparison with E2VID Here we compare
the energy consumption of our models with E2VID. Ta-
ble 7 reports the energy comparsion2 with 180×240 in-
put size. Each ANN operation consumes 4.6 pJ, brings
20.07G×4.6pJ = 9.232×10−2J energy consumption. Com-
pared to LSTM, GRU is a recurrent module with fewer pa-
rameters. Our EVSNN has 16.12G SNN operation with
26.4% spike firing rate, which costs 16.12G×26.4%×0.9pJ
= 3.83×10−3J. For PA-EVSNN, we consider the 1.49G
operations which come from MP neurons as ANN oper-

1In ANN-based model, the number of ANN operations (MAC) is de-
fined by #OPANN =

∑
kw ×kh × cin ×hout ×wout × cout, where

kw and kh are kernel size, cin and cout are the number of input and chan-
nels, hout and wout are output feature map size, and fin and fout is the
number of input (output) features.

2Energy = #OPANN ×4.6pJ+#OPSNN ×0.9pJ×SpikeRate.
Notice that #OPSNN must be operated on binary spikes (i.e., 0 or 1).

Table 6. Comparison of compute energy between ANN and SNN.

EVSNN PA-EVSNN
1(a) Normalized #OPANN 1 1
2(b) Normalized #OPSNN 0.264 0.251
3(c) Normalized #OPMP layer 0 0.084
4(d) ANN/SNN Energy 19.36 7.75

1 #OPANN is the total number of ANN operations if all spiking neurons are
replaced with an ANN activation function (e.g., ReLU).
2 #OPSNN = SpikeRate × #OPANN .
3 MP layer contains FP multiplications and additions, thus its consumption is
considered same as ANN.
4 Each operation in ANN (SNN) consumes 4.6pJ (0.9pJ). ANN/SNN Energy can
be calculated by (a)×4.6

(c)×4.6+(1−(c))×(b)×0.9
.

Table 7. Energy comparison of E2VID and our models.
E2VID
-LSTM

E2VID
-GRU EVSNN PA-EVSNN

Para. Num. 10.71M 9.16 M 4.41M 4.62M
Spike Rate - - 0.264 0.251
#OPANN 20.07G 17.63G 0 1.49G
#OPSNN 0 0 16.12G 16.35 G
Energy (10−3J) 92.32 81.10 3.83 10.55
1Normalized

Energy 1 0.8783 0.0414 0.1142

1The energy consumptions of EVSNN and PA-EVSNN are 24.15× and 8.76×
more computationally efficient than E2VID, respectively.

ations. Thus, the overall energy cost of PA-EVSNN is
1.49G×4.6pJ+16.35G×25.1%×0.9pJ = 1.055×10−2J. In
summary, the energy consumptions of EVSNN and PA-
EVSNN are 24.15 × and 8.76 × more computationally ef-
ficient than E2VID, respectively.

Limitation To make SNN training faster and more sta-
ble, we add the batch normalization (BN) after convolution
(CONV) layer. Notice that BN can be folded in a CONV
layer after training [45]. However, BN is not unbiased. If
there is no spike input, BN will also produces non-zero val-
ues, which may activate spiking neurons. This will increase
the spike rate of SNN, thereby increasing energy consump-
tion (see Fig. 8, the spike rate > 0 when no event input (T
> 50)). Reducing the spike rate may be a future direction.

5. Conclusion

In this paper, we have presented EVSNN and PA-
EVSNN models, the event-based video reconstruction mod-
els based on SNN architecture. We show that the spiking
neurons have the capability of extracting temporal informa-
tion, and SNN can achieve large scale regression tasks such
as event-based video reconstruction. Compared to E2VID,
the proposed EVSNN and PA-EVSNN have 24.15× and
8.76× more computationally efficient improvement, which
shows great potential of SNN for low consumption applica-
tions. We believe that the development of energy-efficient
SNN models for large-scale regression tasks is promising.
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[43] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide S-
caramuzza. High speed and high dynamic range video with
an event camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019. 1, 2, 4, 5, 6

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.
Springer, 2015. 2, 3

[45] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu,
Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven
networks for image classification. Frontiers in neuroscience,
11:682, 2017. 8

[46] Cedric Scheerlinck, Nick Barnes, and Robert Mahony.
Continuous-time intensity estimation using event cameras.
In IEEE Asian Conference on Computer Vision (ACCV),
pages 308–324. Springer, 2018. 1, 2

[47] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Asyn-
chronous spatial image convolutions for event cameras.
IEEE Robotics and Automation Letters, 4(2):816–822, 2019.
1, 2

[48] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick
Barnes, Robert Mahony, and Davide Scaramuzza. Fast im-
age reconstruction with an event camera. In IEEE Winter
Conference on Applications of Computer Vision (WACV),
pages 156–163, 2020. 1, 2, 5

[49] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike
layer error reassignment in time. arXiv preprint arX-
iv:1810.08646, 2018. 2

[50] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuz-
za, Tom Drummond, Nick Barnes, Lindsay Kleeman, and
Robert Mahony. Reducing the sim-to-real gap for event cam-
eras. In European Conference on Computer Vision (ECCV),
pages 534–549. Springer, 2020. 1, 2, 5, 6

[51] Beck Strohmer, Rasmus Karnøe Stagsted, Poramate
Manoonpong, and Leon Bonde Larsen. Integrating non-
spiking interneurons in spiking neural networks. Frontiers
in Neuroscience, 15:184, 2021. 3

[52] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. Event-based
high dynamic range image and very high frame rate video
generation using conditional generative adversarial network-
s. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10081–10090, 2019. 1, 2

3603



[53] Xiao Wang, Jianing Li, Lin Zhu, Zhipeng Zhang, Zhe Chen,
Xin Li, Yaowei Wang, Yonghong Tian, and Feng Wu. Visev-
ent: Reliable object tracking via collaboration of frame and
event flows, 2021. 1

[54] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing, 13(4):600–612, 2004. 5

[55] Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. Event-
based video reconstruction using transformer. In Proceed-
ings of the IEEE/CVF International Conference on Comput-
er Vision, pages 2563–2572, 2021. 1, 2

[56] Paul J Werbos. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990. 5

[57] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping
Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in Neuro-
science, 12:331, 2018. 2

[58] Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng
Wang, and Ye Tang. Liaf-net: Leaky integrate and analog fire
network for lightweight and efficient spatiotemporal infor-
mation processing. IEEE Transactions on Neural Networks
and Learning Systems, 2021. 3

[59] Yannan Xing, Gaetano Di Caterina, and John Soraghan. A
new spiking convolutional recurrent neural network (scrnn)
with applications to event-based hand gesture recognition.
Frontiers in Neuroscience, 14:1143, 2020. 1, 2

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586–595, 2018. 4, 5

[61] Xiang Zhang, Wei Liao, Lei Yu, Wen Yang, and Gui-Song X-
ia. Event-based synthetic aperture imaging with a hybrid net-
work. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14235–14244,
2021. 2

[62] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-
works. arXiv preprint arXiv:2011.05280, 2020. 1, 2

[63] Yajing Zheng, Lingxiao Zheng, Zhaofei Yu, Boxin Shi, Y-
onghong Tian, and Tiejun Huang. High-speed image recon-
struction through short-term plasticity for spiking cameras.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6358–6367, 2021. 2

[64] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd
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