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Abstract

Due to the rising concern of data privacy, it’s reason-
able to assume the local client data can’t be transferred
to a centralized server, nor their associated identity label
is provided. To support continuous learning and fill the
last-mile quality gap, we introduce a new problem setup
called “local-adaptive face recognition (LaFR)”. Leverag-
ing the environment-specific local data after the deployment
of the initial global model, LaFR aims at getting optimal
performance by training local-adapted models automati-
cally and un-supervisely, as opposed to fixing their initial
global model. We achieve this by a newly proposed embed-
ding cluster model based on Graph Convolution Network
(GCN), which is trained via meta-optimization procedure.
Compared with previous works, our meta-clustering model
can generalize well in unseen local environments. With the
pseudo identity labels from the clustering results, we fur-
ther introduce novel regularization techniques to improve
the model adaptation performance. Extensive experiments
on racial and internal sensor adaptation demonstrate that
our proposed solution is more effective for adapting face
recognition models in each specific environment. Mean-
while, we show that LaFR can further improve the global
model by a simple federated aggregation over the updated
local models.

1. Introduction
Face recognition [30] has been commercialized widely

for a variety of applications, such as FaceID, surveillance
monitoring. The COVID-19 pandemic even accelerates the
biometric technologies for touch-less solutions, such as face
recognition enabled payment and access control. Although
remarkable progress has been achieved lately, one has to
admit that face recognition still hasn’t been fully solved.
Among many other remaining challenges (i.e., vulnerabil-
ity for adversarial attack [4]), how to scale up the repre-

* indicates equal contribution.

Figure 1. Local-Adaptive Face Recognition (LaFR): For each lo-
cal environment, a specialized model is produced by the adapter
module with only the pre-trained model and images from the en-
vironment. Note that there is no real identity label associated with
the images, the meta-cluster model generates pseudo labels for ro-
bust model adaptation.

sentation learning to reduce the risk of fairness and bias to
support various local environments becomes a more urgent
challenge. As studied in previous works [14, 39, 44], such
fairness and bias issues come from both algorithmic de-
sign and under-represented data distributions. For example,
when the model is predominantly trained on RGB images,
it generalizes poorly for images captured by Infrared cam-
eras. Likewise, for a model pre-trained on Caucasian only,
it performs substantially worse for African and Indian.

While it is worthwhile to push the domain-invariant face
recognition [10, 25] with the hope of generalizing to ev-
erywhere without adaptation, it is arguably that the chal-
lenges for real-world scenarios could be more than we ex-
pected. So the question is: given an imperfect pre-trained
model, how can we improve and fill the last-mile perfor-
mance gap for each local environment and thereafter scale
up the process? In this paper, we are interested in study-
ing how to properly adapt the pre-trained model to a “spe-
cialized” one that tailors for the specific environment in an
automatic and unsupervised manner. Here, the “environ-
ment” could be defined broadly, including a specific new
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camera sensor (i.e. an infrared camera with particular wave-
length), a unique identity distribution with racial bias, or
a physical environment that has unique camera placement
and lighting condition, etc. We call such a problem setup as
“Local-Adaptive Face Recognition (LaFR)”, whose work-
flow (see Fig. 1) starts from an imperfect pre-trained global
model deployed to a specific environment, where it accu-
mulates some amount of new data. It then applies unsu-
pervised adaptation technique to adapt the initial model lo-
cally, hence no data is transferred to server. Finally, after
the adaptation, the new model is expected to perform much
better than the initial global model as it is trained to tailor
that environment. As an optional step, Federated Learn-
ing [24] is further employed to aggregate many such local
models in a secure manner. Therefore, “LaFR” essentially
provides a way to scale up the representation learning and
model generalization via such “dual-loop” paradigm.

Although unsupervised domain adaptation (UDA) [37]
has been widely studied in person re-identification (re-
ID) [7, 18–20, 28, 43, 47], it is much less explored in face
recognition except [33, 39]. Most of those works either de-
signed special for person re-ID [7], or their setups require
both source and target dataset to be available during the
adaptation stage, or they only aim at closed-set problem.
Moreover, person re-ID works heavily depend on variants
of triplet loss, as we show in prior works, there are more ro-
bust losses (i.e., CircleLoss [29]) that proved to work better
for face recognition.

To overcome the challenges, we first introduce a graph-
based meta-clustering algorithm designed to predict pseudo
labels for any unlabelled dataset. To do this, we collect a
set of labeled datasets from multiple domains and extract
their face embeddings from the given pre-trained model, we
then apply Graph Convolution Network (GCN) to model
the non-convex structure relationship for face embeddings
within each set, which is trained efficiently through meta-
learning [6] to make the cluster prediction more general-
izable for the unseen dataset. Secondly, to better facili-
tate the transfer learning, we introduce a new technique by
transferring the representation of class (pseudo label) cen-
ter from the pre-trained model to the classifier of the new
model and keep it fixed while only fine-tuning the feature
representation in the context of margin-based training ob-
jectives such as [3,29,34]. Moreover, instead of regularizing
the feature distance (commonly used in knowledge distilla-
tion [8,13,27]), we regularize the network weights to ensure
a small deviation between the pre-trained and the new local
model.

To summarize, we make the following major contribu-
tions: (1) we introduce a novel unsupervised model adap-
tation problem setup for face recognition, we argue that it’s
practical yet scalable motivated from both continuous learn-
ing and data privacy concerns; (2) we use graph convolution

network (GCN) to model the dataset structure and predict
the clustering labels, through a meta learning framework;
(3) Our novel regularized center transfer (RCT) technique
can significantly reduce the risk of overfitting and improve
transfer learning performance for even smaller datasets; (4)
Experiments show that our entire solution not only outper-
form other strong baselines for local adaption but also en-
able the federated learning to further improve the global
model.

2. Related Works
Generalized Face Recognition Most of the recent works
focus on generalizing the representation power through
novel loss functions, such as CircleLoss [29], Arcface [3],
Regularface [5] and AM-SoftMax [34], with both solid the-
oretical foundation and remarkable empirical results are re-
ported in SOTA models. A set of other new works tar-
get to improve the performance from the data distribution
perspective, including data augmentation [44] for under-
represented classes, improved training strategy for unbal-
anced and long-tailed data [45], and uncertainty modeling
for noisy training set [2]. More recently, generalized rep-
resentation learning has received more and more attention.
[26] learns universal representations to tackle pose, resolu-
tion, and occlusion variation, while [10] uses meta-learning
to make it easily generalized to the unseen domain without
requiring adaptation. [35] proposes to use the adversarial
decorrelation technique to make the identity representation
invariant to age information. Causal relationship modeling
through Invariant Risk Minimization [1] is a promising di-
rection to address the out-of-distribution (OOD) challenge,
yet, no impressive results have been reported so far for face
recognition. Our method is both compatible and comple-
mentary with all those latest works. Improving the gener-
alization capability of the pre-trained model will provide a
better initialization for subsequent adaptation.

Unsupervised Domain Adaptation (UDA) There is a
large body of research works in unsupervised domain adap-
tion [37] for person re-identification [7, 18–20, 28, 43, 47],
semantic segmentation [31], image classifications [22, 33,
36] and attribute recognition [15]. However, most of those
approaches either target for closed-set setting or require
both source and target to be available during the adaptation
to align the feature distribution through maximum mean
discrepancy (MMD) [32]. Conceptually, a clustering tech-
nique is first needed to assign a pseudo label to each image
before the training. Prior person re-ID works have explored
various heuristic methods such as bottom-up cluster [19]
and tracklet-based clustering [18]. In contrast, our cluster-
ing is achieved through a graph convolution network (GCN)
to learn the intrinsic structure for each unseen data-set via
meta-learning. To our best knowledge, there is little work
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Figure 2. Overview of our Local-Adaptive face recognition (LaFR) framework. Meta-Cluster Model Training: A Graph Convolution
Network (GCN) based embedding cluster model is trained with the meta-optimization procedure to generalize well in unseen local en-
vironments. Test-time Local Adaptation: In the local adaptation phase, we obtain the pseudo identity label of local face images from
the meta-cluster model. Given the pre-trained face recognition model, local images, and their corresponding pseudo labels, the proposed
Regularized Center transfer (RCT) technique can adapt the model more robustly to produce a specialized face recognition model.

of applying UDA for face recognition [23, 27]. Perhaps
the most closely related work is [39] in which a traditional
MMD loss is required to be employed. However, as we ar-
gued before, in the context of “LaFR”, the source data is not
available during the adaptation due to the data privacy and
security concern.

Graph Convolution Network based Face Clustering
Face clustering is another fundamental problem in com-
puter vision, which is also quite related to our work. A re-
cent series of studies [41,42,46] show that supervised clus-
tering performs significantly better than the conventional
unsupervised ones such as K-Means [21] and Spectral-
Clustering [16]. The reason behind is that these Graph Con-
volution Network (GCN) [17] based methods are more ca-
pable of finding the local non-convex structures. Inspired
by such remarkable progress, we move one step further
and marry GCN-based clustering with meta-learning [6] to
make the resulting clustering model more adaptive to the
unseen dataset.

3. Overview
Given an imperfect pre-trained model Θ0, our whole sys-

tem requires a labeled dataset SC in the global-end, which
consists of a few subsets (SC1

, ...,SCk
) from multiple do-

mains to train a novel graph-based meta-clustering model
Φ. Once trained, given any unlabelled new dataset SA on a
specific local environment, we will feed it into Φ to obtain
the pseudo label for each image. Then, we apply our pro-
posed regularized center transfer (RCT) technique to per-
form the adaptation and produce a specialized local model

ΘA tailors for that environment. Figure 2 illustrates the
framework of our system.

4. Graph-based Meta-Clustering Learning
4.1. Preliminary of Graph Convolution Network

Given a face embedding set S = {fi, yi}Ni=1, which yi
is the corresponding identity label of each embedding. We
first define a graph G(V, E) that connects each image with
its K-NN neighbor, and the affinity matrixA is computed by
cosine similarity between fi and its neighbor fj(j ∈ Ni),
soAij = aij = cos(fi, fj) andNi represents the neighbors
of fi. Let us use F0 ∈ RN×din to represent the input fea-
ture embedding for a Graph Convolution Network(GCN),
then after l layers of convolutions on the graph, the feature
embedding Fl ∈ RN×dout becomes

Fl = σ(g(Ā, Fl−1)W
G
l−1) (1)

where Ā = D̄−1(A + I) and D̄ii =
∑

j(A + I)j is a
diagonal degree matrix, WG

l−1 ∈ R2×din×dout is a trainable
matrix to transfer the input embedding into a new space, σ
is the nonlinear activation function(i.e., ReLU), and g(·, ·)
is a concatenation function following previous works [41,
42, 46], which is defined as

g(Ā, Fl−1) = [(Fl−1)
T , (ĀFl−1)

T ]T (2)

In the context of this work, as we want to learn how to
predict the face clustering for a given dataset, we let the
last layer output a 1-D confidence value for each vertex.
Assume c′ represents the vector of confidence values for

20303



each vertex, then

c′ = FlW
G + b (3)

where WG is the projection matrix and b is the bias, both are
learnable. Again, following the design of “GCN-V” [41],
we define the ground-truth confidence ci as

ci =
1

|Ni|
∑
j∈Ni

(1(yj = yi)− (1(yj ̸= yi))) · aij (4)

where 1() is an indicator function. Therefore, we minimize
the following loss to train GCN:

LG(Φ) =
1

N

N∑
i

|ci − c′i| (5)

where c′i is the confidence value from c′ for the correspond-
ing vertex i, and Φ represents the parameters of the GCN
model. Intuitively, a lower ci means this vertex could lie
near the boundary between two different clusters according
to the local graph structure.

4.2. Meta-Clustering with GCN

By no means we are the first to apply GCN for face clus-
tering given the impressive works done recently [41,42,46].
Nevertheless, our work is compatible yet builds on top of
them by changing the training strategy into a meta-learning
paradigm. We are interested in solving the aforementioned
Local-Adaptive face recognition scenarios, where the pre-
trained model is already deployed and their source data is
not available anymore. Therefore, an automatic and un-
supervised adaptation from a pre-trained model becomes a
necessary and urgent problem, in order to massively scale-
up the adaptation.

To train a meta-clustering model on GCN, we first col-
lect a few labeled datasets SC1 , ...,SCk

from CK different
domains and then perform domain-level sampling for outer-
loop iteration, where we sample CK − 1 domains data for
the meta-train while the data from the remaining domain for
the meta-test. Our goal is to let this GCN be more gener-
alizable for any dataset from unseen domains. We describe
the detailed training procedure in Algorithm 1. Specifically,
We start with a randomly initialized GCN parameter setting
Φ0, and for each meta-train iteration, we perform the con-
ventional GCN training via the following equation:

Φ
′
= Φ− α∇ΦLG

mtr(Φ) (6)

where LG
mtr(Φ) denotes the loss on the meta-train dataset.

The model is then tested on the meta-test dataset. Similarly,
we compute the corresponding loss as LG

mte(Φ
′
) with the

updated model Φ
′
. The meta-model will then be updated

jointly from both gradients (Line #8). This process is iter-
ated until it reaches the maximum.

Algorithm 1 Graph-based Meta-Clustering

Input: Initialize Φ as Φ0; Datasets S[SC1 , ...,SCk
]; Hyper-

parameters α, β, ξ
Output: Φ

1: for iter < MaxIter do
2: Split: S into Smtr and Smte randomly
3: Meta-Train:
4: Train on Smtr : Φ

′
= Φ− α∇ΦLG

mtr(Φ)
5: Meta-Test:
6: Compute loss on Smte : LG

mte(Φ
′
)

7: Meta-optimization: Update Φ
8: Φ = Φ− β(∇ΦLG

mtr(Φ) + ξ∇ΦLG
mte(Φ

′
))

9: end for

5. Unsupervised Model Adaptation
As discussed before, our pipeline should only take

the pre-trained model Θ0 and an unlabeled dataset SA
({xi}Ni=1) accumulated from the specific local environment
as input. We will then run the above graph-based meta-
clustering module to obtain the estimated number of pseudo
“identity”(or class) labels as well as their belonging images.
Let us denote (xi, yi) as one training image embedding with
its associated pseudo ID: yi, one can then employ any of the
recent loss functions such as ArcFace [3], AM-Softmax [34]
and CircleLoss [29] to train the adapted model ΘA from Θ0.

5.1. Preliminary of Face Recognition Training

The early idea behind face recognition is to treat
it as a classification problem and apply standard soft-
max loss to train the deep face representation: L =

− 1
N

∑N
i=1 log

e
WT

yi
fi+byi∑C

j=1 e
WT

j
fi+bi

,where fi ∈ Rd denotes the

deep feature learned through the network for each image;
Wi ∈ Rd represents the corresponding classifier vector
from the last fully connected layer for label yi, and bi
is the bias term. By normalizing both classifier vector
∥ Wj ∥= 1 and ∥ fi ∥= 1, while adding a scale fac-
tor γ, we get WT

j fi =∥ wj ∥∥ fi ∥ cos θj = cos θj ,
where θj is the angle between wj and fi, for simplicity,
we also fix bj = 0. To improve the generalization, re-
cent study shows that adding different types of margins
[29] [34] [3] can bring significant gain in many places.
For example, ArcFace [3] adds angular margin while AM-
softmax [34] adds cosine margin. Without loss of gen-
erality, we take AM-softmax to as the training objective:
L(Θ) = − 1

N

∑N
i=1 log

eγ(cos(θyi
)−m)

eγ(cos(θyi
)−m)+

∑C
j ̸=yi

eγ cos θj
, where

C is the total number of classes, and m is the margin that
needs empirically determined.
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5.2. Regularized Center transfer (RCT)

We assume pre-trained representation (from Θ0) already
has strong discriminative power. After training, images be-
longing to the same identity tend to be clustered in a small
region on the hyper-sphere, while still maintaining a cosine
margin (defined as m) with images from different identi-
ties. If the pre-trained model was trained with a large num-
ber of different identities, the cluster area for each identity
should have been squeezed on the hyper-sphere to reduce
the intra-class variation. Let us denote CΘ0

yi
as the center

of the face embedding for yi on the pre-trained model, then
CΘ0

yi
= 1

Mi

∑Mi

k=1 1(yk = yi)f
Θ0

k , where Mi is the total
number of images belonging to class yi. Inspired by center
loss [40], instead of learning fi and its corresponding Wyi

from the new dataset from scratch, we propose to trans-
fer this pre-trained class center as prior knowledge to the
adapted model ΘA, so basically we want to have CΘA

yi
to

be as close to CΘ0
yi

as possible during the adaptation. In the
context of AM-softmax [34] or other latest training objec-
tives such as CircleLoss [29], we notice that classifier vector
Wyi is also close to CΘ0

yi
even though they are not exactly

the same. Therefore, in practice, to simplify the learning
process, we directly use CΘ0

yi
to initialize each correspond-

ing Wyi
, rather than learning it from scratch. To further

reduce the overfitting risk when adapting to a small dataset,
we add another model regularization term to let ΘA not de-
viate too much from Θ0. Our final loss function is defined
as follows:

L(ΘA) = −
1

N

N∑
i=1

log
eγ(cos(θyi )−m)

eγ(cos(θyi )−m) +
∑C

j ̸=yi
eγ cos θj

+ λ ∥ ΘA −Θ0 ∥22
(7)

subject to

W = W ∗/∥W ∗ ∥,
f = f∗/∥ f∗ ∥,
cos θj = WT

j fi,

Wyi = CΘ0
yi

(8)

where W is the normalized classifier matrix, x is the
normalized feature vector for each image, λ is a hyper-
parameter to trade-off between the loss on the new dataset
and the model regularization term. During the model adap-
tation training, we initialize each Wyi

with CΘ0
yi

and keep
it fixed and only fine-tune the feature representation. Com-
pared with standard transfer learning without RCT, our reg-
ularized center transfer can better preserve the pre-trained
representation, especially for small datasets, therefore re-
ducing the risk of overfitting.

5.3. Federated Aggregation

As we argued in Sec. 1, with the rising concern of data
privacy, it is reasonable to assume that training data would
be highly de-centralized across different clients in the fu-
ture, where model adaptation is conducted first locally at
each client and later on being aggregated via federated
learning [24] in a secure way. We argue that our proposed
unsupervised modal adaptation is designed to further facil-
itate such fully automated “dual-loop” learning paradigm.
To reduce the risk of losing privacy and adversarial attack,
we remove the top classification layer and only transfer the
backbone model parameters between each client and server
and conduct simple model averaging, we denote such par-
tial averaging setup as “FedPav” in our experiments [48].

6. Experimental Settings
6.1. Datasets and Protocols

In each Local-Adaptive face recognition (LaFR) pro-
tocol, the pre-trained face recognition model is trained
with base dataset SB = {xB

i , y
B
i }, and the meta-cluster

GCN model is trained with multiple non-overlapped labeled
datasets SC = {xC1

i , yC1
i } ∪ {x

C2
i , yC2

i } ∪ ...{xCk
i , yCk

i }.
While deploying the model in the specific scenario, the
model is adapted with unlabeled dataset SA = {xA

i } from
the environment. The final face recognition performance is
evaluated on the testing dataset ST = {xT

i , y
T
i }. Here, xi

and yi represent the i-th face image and the corresponding
identity label, respectively. Note that the base dataset SB is
not available during clustering and adaptation.

Adapt to Different Local Races The existence of face
image distribution shift between different races has been
proved in related works [39] [38], so we re-organized the
racial datasets collected by [39] to build the LaFR pro-
tocols. We leverage the Caucasian dataset from BUPT-
Transferface [39] as SB for base face recognition model
training, and racial faces in-the-wild (RFW) dataset [39]
is used as ST for testing after adaptation. BUPT-
Balancedface [39], which has non-overlapped 7k subjects
for each race, is leveraged for meta-cluster model training
and further adaptation. The dataset details are summarized
in Table 1. We build three leave-one-out protocols, which
one of the races from {African, Asian, Indian} is selected
as the local target, and dataset from other races can be used
for meta-cluster GCN model training.

Adapt to Different Local Infrared Sensors Different
wavelengths have different penetration rates into human
skins, leading to different contrasts on the IR face images.
Most cameras are sensitive to 850nm infrared light and gen-
erally considered to have higher contrast than 940nm in-
frared light. Meanwhile, different cameras also adapt dif-
ferent Image Signal Processors (ISP), so the way to handle
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Dataset Race # Subjects # Images
SB Caucasian 10000 468139

SC ,SA
Indian 7000 275095
Asian 7000 325475

African 7000 324376

ST
Indian 2984 10308
Asian 2492 9688

African 2995 10415

Table 1. Statistics of the datasets for races.
Dataset Sensor # Subjects # Images
SB RGB 94,430 5,179,510

SC ,SA

IR-A 430 57,818
IR-B 250 34,592
IR-C 220 30,689
IR-D 400 55,312

ST

IR-A 210 28,916
IR-B 3,372 27,155
IR-C 200 14,035
IR-D 235 32,388

Table 2. Statistics of the datasets for sensors.

tone-mapping, noise reduction, and blurriness are different
too, which causes another type of significant appearance
distribution bias across different sensors. In this paper, we
are interested in studying how to adapt a pre-trained RGB
face recognition model to different local environments, each
of which mimics a specific infrared camera enabled face
recognition scenario. As there is no public infrared cam-
era dataset with different ISP or wavelength, we collected
an internal dataset with four different infrared camera sen-
sors that capture infrared wavelength ranging from 850 nm
to 940 nm. Figure 3 shows a few typical examples sam-
pled from our four datasets, whose details are summarized
in Table 2. We partition the collected dataset by identity
to form SC , SA, and ST , and we leverage commonly used
RGB dataset MS-1M [12] as SB . Similarly, we build four
leave-one-out protocols, where we use datasets from 3 sen-
sors to train our proposed meta-clustering while the remain-
ing one for both adaptation and final testing.

6.2. Evaluation Metrics

Face Embedding Clustering Given the ground truth la-
bel from adaptation datasets SA, the intermediate face clus-
tering result from the GCN model can be evaluated to indi-
cate the accuracy of identity label assignment during adap-
tation. Two common clustering metrics [41, 42]: Pairwise
F-score (FP ) and B-Cubed F-score (FB) are used, which
calculate the harmonic mean of precision and recall. The
metric Fp puts relatively more emphasis on large face clus-
ters, while FB weights clusters linearly based on their size.

Local Adaptive Face Recognition The face recognition
performance in the adaptation target is evaluated with stan-
dard face recognition metrics. In race adaptation protocols,
we calculate the verification accuracy on 6000 difficult pairs

Figure 3. Top: Infrared Images captured by 4 different infrared
cameras (the first two capture 940nm wavelength, the other two
850nm); Bottom: Their corresponding RGB images captured by
another 4 RGB cameras.

selected by [39]. In sensor adaptation protocols, we report
the False Non-Match Rates where the False Match Rate is
1e-6 (FNMR@FMR=1e-6).

6.3. Implementation Details

Meta-Clustering with GCN Training For GCN model
training, we set the meta learning rate α to 0.1, the outer
loop learning rate β to 0.1, and the meta loss weight ξ to
1.0 to conduct the meta optimization. In all experiments, we
set the momentum to 0.9 and train 30000 iterations with the
SGD optimizer. In each iteration, we randomly select one
dataset from SC as the meta-test set and the other datasets
as the meta-train set. It takes around 7 hours to train on one
TITAN X GPU.

Model Adaptation After clustering, we follow [41] to
set a threshold τ to 0.8 to cut off the edges with small sim-
ilarities, and obtain the pseudo identity labels by simply
connecting each vertex to their nearest neighbors. During
model adaptation with Regularized Center Transfer (RCT),
we follow Equ. 7 to calculate the face embeddings center
of each identity according to the pseudo labels. We set the
model regularization λ to 0.1 and employ CircleLoss [29] as
the classification loss. In all adaptation experiments, we set
the learning rate to 0.001 and train for 50 epochs. It takes
around 5 hours to train on one TITAN X GPU.

7. Experimental Results
7.1. Adapt to Different Races

Face Embedding Clustering With the ground truth iden-
tity label (not available during clustering and adaptation)
from the dataset SA, we can evaluate the intermediate face
clustering results from different methods using the F-score
metrics described in Sec. 6.2. We compare the clus-
tering performance with the original GCN [41] method,
which uses all the datasets in SC to build a large graph
and learn the embedding confidence prediction through the
supervised training scheme described in [41]. Besides,
we also compare with another distance-based clustering
method [39], which connects all the embedding pairs whose
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Methods African Asian Indian
Distance-based [39] 0.0086 / 0.7282 0.0035 / 0.6267 0.6891 / 0.7481

GCN [41] 0.6115 / 0.8132 0.3492 / 0.6432 0.8559 / 0.8725
Meta-GCN 0.8129 / 0.8535 0.3768 / 0.6876 0.8849 / 0.8551

Table 3. Comparison of face embedding clustering performance
on three racial adaptation protocols. Two common clustering met-
rics: Pairwise / Bcubed F-score (FP /FB) pairs are reported.

cosine distance between them is less than a fixed threshold.
We report the result with the threshold 0.3, which has the
best performance across all sampled thresholds. The clus-
tering performance of racial adaptation protocols is shown
in Table 3, and we denote our proposed meta-clustering
method as “meta-GCN”. From the results, we can observe
that the simple distance-based clustering method [39] has
a very low Pairwise F-score (FP ) but high Bcubed F-score
(FB) in some adaptation protocols, which means that it can-
not handle large embedding clusters. Our proposed “meta-
GCN” outperforms the original GCN [41] in most of the
benchmarks. It indicates that the proposed meta-learning
scheme can learn more generalized GCN parameters and
cluster the face embeddings better in unseen local environ-
ments. The clustering output with higher F-scores produces
cleaner pseudo identity labels, which benefit more to the
model adaptation process.

RCT Technique for Model Adaptation To evaluate the
effectiveness of our proposed Regularized Center Transfer
(RCT) technique, we leverage the ground truth (GT) iden-
tity labels from the adaptation dataset SA to perform model
adaptation. We compare the result with standard transfer
learning, which is adapting the face recognition model with-
out regularizing the classifier during the adaptation process.
From Table 4, we have the following observations. First, the
pre-trained model cannot perform well on three local targets
without adaptation due to the race gap. Second, standard
fine-tuning could possibly harm the face recognition model
(ex. Indian protocol) due to the risk of overfitting on small
dataset, which is illustrated in Figure 4) where it shows RCT
is superior to standard fine-tuning across different size of
identities. Third, our regularization techniques can effec-
tively prevent the local model from overfitting and optimize
the representation better than fine-tuning by a large mar-
gin in all protocols. Furthermore, we conduct ablation ex-
periments to study the effect of different loss functions and
the regularization term used in RCT. Results from Table 5
demonstrate that: 1) Our RCT can work with other margin-
based classification loss like AM-softmax [34], but perform
better with the SOTA CircleLoss [29]. 2) The weight regu-
larization term (controlled by λ) does contribute a lot to the
final adaptation performance.

End-to-end Unsupervised LaFR We further conduct
end-to-end Local-Adaptive face recognition (LaFR) exper-
iments, which combine face embedding clustering meth-

Methods Caucasian African Asian Indian
Pre-trained 0.9512 0.8537 0.8633 0.9047

SA-GT + Fine-tune - 0.8758 0.8705 0.8528
SA-GT + RCT - 0.9227 0.9212 0.9323

Table 4. Deployment model performance comparison while using
the ground-truth (GT) labels from adaptation dataset (SA) on three
racial protocols. Verification accuracy on 6000 pairs of the testing
dataset (ST ) is reported.

Methods African Asian Indian
Pre-trained 0.8537 0.8633 0.9047

RCT (AM-Softmax, λ=0.0) 0.9125 0.9050 0.9048
RCT (CircleLoss, λ=0.0) 0.9145 0.9033 0.9120

RCT (AM-Softmax, λ=0.1) 0.9158 0.9153 0.9278
RCT (CircleLoss, λ=0.1) 0.9227 0.9212 0.9323

Table 5. The influence of loss function choices and weight reg-
ularization λ on racial adaptation protocols. All experiments are
conducted with “SA-GT + RCT” setting.

Methods African Asian Indian
Pre-trained 0.8537 0.8633 0.9047
MFR [11] 0.8882 0.8768 0.9118

Distance-based [39] + RCT 0.7613 0.7488 0.8862
GCN [41] + RCT 0.8692 0.8717 0.8940
Meta-GCN + RCT 0.8912 0.8773 0.9258
SA-GT + RCT 0.9227 0.9212 0.9323

Table 6. Deployment model performance comparison while using
pseudo identity labels from different clustering methods com-
bined with RCT on three racial protocols. Verification accuracy
on 6000 pairs of the testing dataset (ST ) is reported.

ods (from Table 3) with the proposed RCT adaptation tech-
nique. The end-to-end LaFR performance on three race pro-
tocols are shown in Table 6. The result in the last row which
adopts ground truth (GT) labels from SA serves as the upper
bound of end-to-end unsupervised LaFR methods. We also
re-implement and compare with the recent generalized face
recognition method MFR [11] in our protocol. The dataset
in SC are leveraged into the meta-optimization process to
obtain a better universal model. Although MFR works bet-
ter than standard pretraining, we still observe the perfor-
mance gap between MFR and our adaptation results, indi-
cating the value of local adaptation for optimized perfor-
mance. Meanwhile, Table 6 also shows that our proposed
“meta-GCN” outperforms both distance-based [39] and reg-
ular GCN [41] based clustering methods in our protocols,
which proves the effectiveness of the graph representation
as well as the meta learning on top of the GCN.

7.2. Adapt to Different Sensors

We conduct similar end-to-end LaFR experiments on
four infrared sensor adaptation protocols, note that those
sensors are from real industry face recognition systems.
From Table 7 and Figure 5, we have the following observa-
tions. First, as the upper bound for tested end-to-end LaFR
methods, “SA-GT + RCT” can reduce the adaptation non-
match error up to 70% compared with the strong RGB pre-
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Figure 4. Performance comparison between SA-GT + Fine-tune
and SA-GT + RCT under different percent of identities on the
“African” adaptation protocol.

Figure 5. The ROC curves of deployed models evaluated on all
pairs of (a) IR-A, (b) IR-B, (c) IR-C, (d) IR-D protocols.

Label Loss FedPav IR-A IR-B IR-C IR-D
SB-GT (Pre-trained) 0.0344 0.0330 0.0633 0.0626
SpC [9] UCL [9] 0.0332 0.0298 0.0579 0.0623
SpC [9] RCT 0.0256 0.0256 0.0443 0.0425

D-based [39] RCT 0.0267 0.0254 0.0433 0.0384
GCN [41] RCT 0.0245 0.0223 0.0358 0.0331
Meta-GCN RCT 0.0212 0.0198 0.0298 0.0299
Meta-GCN RCT ✓ 0.0207 0.0188 0.0274 0.0267
SA-GT RCT 0.0175 0.0158 0.0192 0.0251
SA-GT RCT ✓ 0.0175 0.0164 0.0187 0.0228

Table 7. Comparison between different LaFR methods on sen-
sor adaptation protocols. The performance is measured by
FNMR@FMR=1e-6, the lower the better.

trained model, which demonstrate the effectiveness of our
adaptation regularization techniques for face recognition.
Second, with limited number of identities collected in the
environment (ex. 220 in IR-C), standard fine-tuning (“SA-
GT + fine-tune”) is prone to overfitting and cannot achieve
better performance while sensor adaptation compared with
the pre-trained model. Third, our proposed “Meta-GCN +
RCT” achieves the best performance in all protocols among
different clustering methods, which shows the generaliza-
tion ability and robustness of our meta-clustering GCN
model in different scenarios.

Algorithm 2 Model Adaptation in Federated Learning

Input: Pretrained model on server Θ0
s; Client models Θ0

ci ;
Client datasets Di (i=1,2,...,K);

Output: Client models ΘT
ci ;

1: for each step t = 0 to T-1 do
2: for each model i = 1 to K do
3: Θt+1

ci ← RCT (Θt
s, Θt

ci , Di)
4: end for
5: Θt+1

s ← 1
K

∑K
i=1Θ

t
ci

6: end for

Compared with SOTA Domain-adaptive ReID To
show the necessity of our proposed solution, we further
compare with the SOTA object Re-ID method [9]. We ap-
plied both their Self-paced Clustering(SpC) and the Unified
Contrastive Loss(UCL) in our system. Even though SpC
performs impressively on person reID task, their techniques
are still inferior to our proposed Meta-GCN with RCT on
the task of sensor adaptation for face recognition, which
is likely caused by the unique challenging nature of face
recognition task.

Experiments on Federated Learning We conduct exper-
iments to verify the effectiveness of our LaFR in feder-
ated learning setting. Assuming there are K clients (i =
1, 2, ...,K), each associates with unlabeled private dataset
Di, and the face recognition model Θt

i at the optimization
dual-loop step t. The continual model adaptation process
within federated learning setup is shown in Algorithm 2.
The training procedure contains 20 rounds of dual-loop, and
each dual-loop consists of a local adaptation and a partial
federated aggregation (FedPav) which averages the back-
bone parameters from the local clients. The results shown
in Tab. 7 verify the effectiveness of the federated learning
pipeline to iteratively improve the local face recognition
models without breaching user’s privacy on each client.

8. Conclusions
We introduce a new problem setup called “Local-

Adaptive Face Recognition (LaFR)”, which aims to produce
specialized face recognition models tailored for each local
environment. Our proposed graph-based meta-clustering
model can better cluster the face embeddings for unseen en-
vironments, which provides cleaner identity labels in an un-
supervised manner during adaptation. Combined with the
proposed RCT module, our framework can robustly pro-
duce LaFR models adapted from imperfect pre-trained face
recognition models. The effectiveness of our framework
is proven on various protocols, including racial and sensor
adaptation, with or without federated aggregation. We hope
these efforts can open up future directions towards special-
ized face recognition models at scale.
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