
Occlusion-robust Face Alignment using A Viewpoint-invariant Hierarchical
Network Architecture

Congcong Zhu1, Xintong Wan1, Shaorong Xie1, Xiaoqiang Li1*, Yinzheng Gu2

1School of Computer Engineering and Science, Shanghai University
2Shanghai HYCloud Network Technology Co. Ltd.

{congcongzhu, wanxintong, srxie, xqli}@shu.edu.cn, guyinzheng@gpushare.com

Abstract

The occlusion problem heavily degrades the localization
performance of face alignment. Most current solutions for
this problem focus on annotating new occlusion data, in-
troducing boundary estimation, and stacking deeper mod-
els to improve the robustness of neural networks. How-
ever, the performance degradation of models remains un-
der extreme occlusion (i.e. average occlusion of over 50%)
because of missing a large amount of facial context infor-
mation. We argue that exploring neural networks to model
the facial hierarchies is a more promising method for deal-
ing with extreme occlusion. Surprisingly, in recent stud-
ies, little effort has been devoted to representing the facial
hierarchies using neural networks. This paper proposes a
new network architecture called GlomFace to model the fa-
cial hierarchies against various occlusions, which draws in-
spiration from the viewpoint-invariant hierarchy of facial
structure. Specifically, GlomFace is functionally divided
into two modules: the part-whole hierarchical module and
the whole-part hierarchical module. The former captures
the part-whole hierarchical dependencies of facial parts
to suppress multi-scale occlusion information, whereas the
latter injects structural reasoning into neural networks by
building the whole-part hierarchical relations among facial
parts. As a result, GlomFace has a clear topological inter-
pretation due to its correspondence to the facial hierarchies.
Extensive experimental results indicate that the proposed
GlomFace performs comparably to existing state-of-the-art
methods, especially in cases of extreme occlusion. Models
are available at https://github.com/zhuccly/
GlomFace-Face-Alignment.

1. Introduction
Although great effort [4, 9, 16, 21, 46, 47, 51, 54] has

been devoted to face alignment, the localization accuracy

*Corresponding author.

Figure 1. Insight of the proposed GlomFace.

remains unsatisfactory under various occlusions. Especially
for the current situation, under which people have to wear
medical masks due to the COVID-19 pandemic. The fol-
lowing reasons cause the problem. Firstly, some landmarks
are inevitably invisible, and partial facial information is not
available. Secondly, large-scale occlusion datasets (average
occlusion of over 50%) are scarce because annotating land-
marks under occlusion is a great challenge. Thirdly, general
neural network architectures cannot model the spatial rela-
tionship between facial components [35].

Some studies [30, 53] deal with the occlusion problem
by enhancing the coupling of facial context features. How-
ever, the excessive coupling may introduce occlusion in-
formation over the whole face, resulting in the degrada-
tion of localization accuracy on non-occluded areas. Meth-
ods such as [22, 23, 40, 41] integrate related tasks (e.g. vis-
ibility estimation and uncertainty prediction) to improve
the occlusion robustness. However, the related tasks can-
not directly impose the shape constraint over all landmarks
and may even introduce additional annotation and compu-
tational costs. Recently, boundary estimation has been in-
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tegrated into heatmap-based models [18, 19, 42, 46] and has
become a mainstream solution to occlusion, which predicts
facial boundaries to provide the shape constraint. Nonethe-
less, boundary estimation is prone to failure due to the loss
of boundary information under extreme occlusion, leading
to drift in all landmarks, as shown in the second image
of Figure 2. In addition, boundary estimation is computa-
tionally complex. Therefore, the performance degradation
caused by occlusion remains an unsolved problem.

There is the fact that facial landmarks describe the physi-
ological structure of a human face, which inherently possess
viewpoint-invariant hierarchies. The hierarchies are not dis-
turbed by any external environments and thus can be con-
sidered to be powerful clues for structural reasoning. There
appears to be some works [25, 26, 55] that focus on the fa-
cial hierarchies, but they only fine-tune the predicted results
for the backbone networks rather than actually model the
hierarchies. Geoffrey Hinton indicated that a general neu-
ral network can hardly represent viewpoint-invariant hier-
archies and proposed GLOM [15] to do so. Unfortunately,
GLOM [15] only presents a single idea about representa-
tion without describing any working network. Inspired by
GLOM, we thought over how a neural network with a fixed
architecture can model the viewpoint-invariant hierarchies
to handle occlusion. To achieve this, we propose a new neu-
ral network architecture called GlomFace, which is func-
tionally divided into two modules: the part-whole hierarchi-
cal module (PHM) and the whole-part hierarchical module
(WHM).

We first define the face hierarchies into different levels,
and further divide a face into the different facial parts at
each level. The part-whole hierarchical module (PHM) hi-
erarchically captures the part-whole spatial dependencies of
each facial part, as shown on the left of Figure 1. The shape-
indexed patches are fed into the PHM as the lowest-level fa-
cial part, and then, this module captures the short-range spa-
tial dependencies within each patch. Subsequently, adjacent
patches are combined into neighborhood parts. PHM then
enlarges the range of spatial dependencies to the neighbor-
hood level. The above operation is repeated until all patches
are combined into a whole. With hierarchical spatial depen-
dencies, PHM can suppress multi-scale occlusion informa-
tion. Using shape-indexed patches instead of the raw image
as input is done for two reasons, 1) providing a clear part-
whole hierarchy and 2) the low computational complexity
when capturing spatial dependencies in each part. When
PHM outputs a whole representation, the whole-part hierar-
chical module (WHM) starts to build hierarchical relations
among facial parts for structural reasoning. To achieve this,
WHM hierarchically disentangles the whole representation
into low-level part representations, as shown on the right
of Figure 1. In each representation disentangling, WHM
considers the coupling relations (part-part relationship) be-

Figure 2. Hourglass v.s. GlomFace on a Masked face. “BE” de-
notes boundary estimation, which imposes shape constraint [42,
46]. We can see that the boundary estimation will make the global
shape drift when real facial boundaries are lost. Note that three
models are fairly trained on 300W [34], not masked faces.

tween adjacent facial parts at the same level and the con-
strained relations (whole-part relationship) of a high-level
facial part over its internal low-level facial parts. When rep-
resentation disentangling is completed level by level, part-
part and whole-part relations are simultaneously built. With
hierarchical relations, WHM can achieve structure reason-
ing against the shape damage of facial landmarks. Finally,
the predicted landmarks are used to update the position of
all shape-indexed patches that will be fed into GlomFace
again to refine all spatial dependencies and relations. With
the viewpoint-invariant hierarchical architecture, the pro-
posed GlomFace can handle various occlusions (e.g. self-
occlusion and external occlusion) and achieve promising
performance even for extreme occlusion cases. Figure 2
shows an example compared with the mainstream Hour-
glass [32] backbone equipped with boundary estimation.
Experiments demonstrated that GlomFace is more robust to
occlusion and has a smaller number of FLOPS compared
with hourglass-based methods [32, 42, 46].

2. Related Work

Facial alignment aims to localize the key points for a
given face image. In [6, 39, 49, 54], facial landmark local-
ization was implemented in a coarse-to-fine manner, which
iteratively refines the initial landmarks to the final results.
With CNNs applied in this task, studies such as [17, 31, 38]
achieved competitive performance by extracting discrimi-
native features from pixels. With the large pose issues taken
into consideration, 3D face pose has been introduced to ad-
dress the large-pose issue, which fits a 3D morphable model
(3DMM) to a 2D image [1, 4, 16, 20, 27]. However, meth-
ods that apply 3DMM cannot handle occlusion because it is
extremely difficult to reconstruct a 3D face under occlusion.

To address the occlusion problem, RCPR [5] reduces ex-
posure to outliers by detecting occlusions explicitly to ex-
tract robust shape-indexed features. PCD-CNN [22] used a
Dendritic CNN to develop a cascade local prediction model,
which ignores the mutual constraints between different fa-
cial components. Some methods stack hourglass networks
and combine related tasks to handle occlusion faces. LU-
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Figure 3. Illustration of GlomFace for 68 landmark prediction. The input is a shape-indexed patch set surrounding the predicted landmarks
of the previous iteration. Following the part-whole hierarchies shown in Figure 4, PHM combines patch features into higher-level facial
parts based on their indexes and captures the spatial dependencies across patches within each part. It outputs a whole representation
with hierarchical dependencies. WHM then hierarchically parses the whole representation into the offset vectors of local landmarks by
representation disentangling. This operation builds the hierarchical relations among facial parts following the whole-part hierarchies shown
in Figure 4. Here, “

⊕
” and “

⊙
” denote residual connection and skip concatenation operations, respectively. In fact, skip concatenation

is performed between each i level representation and its internal i-1 level representations. Due to limited space, we only show a skip
concatenation in each representation disentangling. More details can be found in the following sections and supplementary materials.

VLi [23] jointly predicts landmark locations, associated un-
certainties among these predicted locations, and landmark
visibility. It models multi-tasks as mixed random variables
and estimates them using a four-stage stacked hourglass net-
work (HG). Look at boundary (LAB) [46] imposes global
shape constraint over all landmarks by introducing bound-
ary estimation, in which stacked hourglass is used to es-
timate boundary heatmaps that are computationally com-
plex. PropNet [18], AWing [42] and ADNet [19] follow
LAB to stacks massive parameters for estimating bound-
ary heatmaps. Compared to LAB [46], their number of
FLOPS are greater. All these methods based on boundary
estimation require high computational costs. Although LU-
VLi [23] proposed a new occlusion dataset MERL-RAV, the
dataset cannot provide a complete facial structure because
the self-occluded landmarks have no labels. Furthermore,
increasing training data does not really provide neural net-
works the structural reasoning. Therefore, the occlusion
problem is still a great challenge.

3. Methods
3.1. Overall Architecture

Figure 3 presents an overview of the proposed Glom-
Face. Given a face image F and the initial landmarks
L0, we crop N shape-indexed patches surrounding these

landmarks in specified index order. These patches are fed
into GlomFace, which iteratively refine these landmarks by
modeling the viewpoint-invariant hierarchies. Here, the ini-
tial landmarks of each iteration step are the prediction of the
previous iteration. The initial landmarks are coordinate val-
ues of a mean shape from the current training set for the first
iteration. Let Lt denote the predicted landmarks at iteration
step t, which is refined incrementally based on the results
of the previous iteration:

Lt = Lt−1 +△lt, (1)

where △lt is an offset vector of all landmarks at the t-th
iteration, which is predicted using GlomFace:

△lt = GlomFace(ρ(F |Lt−1)), (2)

where ρ(·) denotes a patch-extracting operation, which
crops the shape-indexed patches surrounding Lt−1.

After performing all iteration steps, we minimize the fol-
lowing loss function to update GlomFace’s parameters:

Loss =

T∑
t=1

∥∥L̄−
(
Lt−1 +△lt

)∥∥2
2
, (3)

where T and L̄ denote the maximum iteration step and the
ground-truth landmarks. Following MDM [38], this L2 loss
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Figure 4. Viewpoint-invariant hierarchies with five levels. Patches
and landmarks share a fixed index order. Each block represents
a facial part. Part combining and representation disentangling are
performed according to the part-whole hierarchies and the whole-
part hierarchies, respectively.

function simply computes the point-to-point Euclidean er-
ror. It can be replaced to improve further the performance
of GlomFace by recent works such as Wing loss [10].

Specifically, GlomFace is functionally divided into two
modules: the part-whole hierarchical module (PHM) and
the whole-part hierarchical module (WHM). All patches are
first sent into the PHM, and then it captures the short-range
spatial dependencies within each patch. These patch-level
dependencies can suppress the small-scale occlusion infor-
mation. As the hierarchies get higher, PHM gradually en-
larges the range of the spatial dependencies by part com-
bining and thus handles the larger-scale occlusion. The part
combining merges the low-level facial parts into the high-
level parts by following the part-whole hierarchies until all
patches are combined into a whole.

When PHM outputs a whole representation with part-
whole hierarchical dependencies, the whole-part hierarchi-
cal module (WHM) starts to build the whole-part hierarchi-
cal relations by representation disentangling according to
the whole-part hierarchies. To achieve this, WHM hierar-
chically disentangles the representation of high-level facial
parts into the representations of its internal lower-level fa-
cial parts. In this operation, whole-part hierarchical rela-
tions are built between face parts at the same level and be-
tween high and low-level face parts. WHM finally disentan-
gles each neighborhood-level representation into the offset
of a specified local shape. The predicted offsets update the
landmarks and the position of shape-indexed patches.

The part combining and representation disentangling fol-
low the viewpoint-invariant hierarchies with five levels,
from low to high, including patch/landmark, neighborhood,
region, group and whole, shown in Figure 4.

3.2. Part-whole Hierarchical Module (PHM)

The part-whole hierarchical module (PHM) starts from
three convolutional layers, followed by a max-pooling oper-
ation behind each layer. In general, the self-attention mech-
anism is the common way to capture spatial dependencies
of a feature map. We find that suitable receptive fields (7∗7,
5∗5 and 3∗3) in these three convolutional layers can achieve
almost the same performance as self-attention due to the

1 × 1 × 11 × 1 × 11 × 1 × 1

𝑌 × 𝐻 ×𝑊 × 𝐶

𝑌 × 𝐻 ×𝑊 × 𝐶
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𝑌𝐻𝑊 × 𝑌𝐻𝑊

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
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𝐙

𝐗

𝑌𝐻𝑊 × 𝐶

1 × 1 × 1

𝑌 × 𝐻 ×𝑊 × 𝐶

Figure 5. A non-local block. “X” is a feature map set with a shape
of Y ×H×W ×C, where Y denotes the number of feature maps
with a size of “H × W × C” (height, width and channel). “

⊗
”

denotes the matrix multiplication. The blue boxes denote 1×1×1
convolutions.

small size of each patch (40 ∗ 40 ∗ 3). As CNNs reduce the
size of patches, the computational complexity of subsequent
hierarchical dependencies is significantly reduced.

After extracting patch-level part features using CNNs,
PHM performs a part combining to produce the feature
maps of higher-level facial parts by following the part-
whole hierarchies shown in Figure 4. The PHM then en-
larges the scope of the spatial dependencies to the range of
current facial parts. Since each facial part contains more
than one patch feature, the common self-attention mech-
anisms cannot capture the dependencies across patches.
Therefore, we use a non-local operation [3] to perform the
capturing of spatial dependencies across patches. It com-
putes the response at a position as a weighted sum of the
features at all positions. Following [44], we build a non-
local block to do so, shown in Figure 5. Different from [44]
focusing temporal dependencies across frames, we exploit
this block to capture spatial dependencies across patches.
Finally, a whole representation is obtained, which repre-
sents the part-whole hierarchical dependencies.

3.3. Whole-part Hierarchical Module (WHM)

There is strong psychological evidence that people can
parse an object into parts at different levels and model the
viewpoint-invariant spatial relationship between a part and
a whole as the coordinate transformation [14]. This evi-
dence would appear to explain why people excel at struc-
tural reasoning (e.g. playing jigsaw puzzles). Inspired by
existing studies [14,15], the whole-part hierarchical module
(WHM) learns how to understand the whole-part hierarchi-
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Figure 6. Successive disentangling operations. Here, yi+1
o denotes

the representation of a facial part o at the i+1 level, which is dis-
entangled into yi

m and yi
r . Subsequently, yi

m is disentangled into
yi−1
q and yi−1

k . For simplicity, we omit operations of disentan-
gling yi−1

k , yi
r and yi+1

o .

cal relations of facial parts. With the top-down hierarchi-
cal architecture, WHM hierarchically parses the representa-
tion of each high-level facial part to the representations of
its internal low-level parts by representation disentangling,
level by level, following the whole-part hierarchies shown
in Figure 4. The representation disentangling is similar to
picking out the best fit for each part from all pieces when
people are playing a puzzle. In this operation, the represen-
tations of adjacent parts that are all subordinate to the same
higher-level part are paired into a relation pair or triple for
building the coupling relationship. Meanwhile, this higher-
level part representation imposes the constrained relation
over this pair or triple. Taking i level facial part m as an
example, let yi

m denote its representation. We suppose it
has a adjacent part representation yi

r. Where (m, r) is a i
level pair that is subordinate to i+1 level part o with feature
representation yi+1

o . If m contains two i-1 level parts, the
representation disentangling is shown in Figure 6 and can
be expressed as follows:

yi−1
q = MLPsπ

(
(yi

m,yi
r)|yi+1

o

)
, (4)

yi−1
k = MLPsφ

(
(yi

m,yi
r)|yi+1

o

)
, (5)

where facial parts q and k are subordinate to part m,
yi−1
q and yi−1

k denote the representations of parts q and k.

MLPsπ and MLPsφ disentangles yi
m into yi−1

q and yi−1
k ,

respectively. With building hierarchical relations, WHM in-
jects the structural reasoning into neural networks. Note
that we use its historical information for the whole repre-
sentation to build the self-relation by leveraging a recurrent
neural network (RNN). Although the extraction of facial
features from local patches can reduce data dimensional-
ity, some facial information may be missed. Memorizing
previous information can meaningfully supplement facial
information for subsequent iterations. Moreover, in the cas-
caded regression framework, every iteration should inter-
act rather than be performed independently. Using an RNN
to memorize facial information across all iterations allows
joint optimization of all iteration components during end-
to-end training. This helps our model to achieve smooth
offset predictions and stability during training, as shown by
MDM [38].

This self-relation significantly reduces the data dimen-
sionality of the whole representation without losing impor-
tant information and thus saves computational costs. Fi-
nally, WHM disentangles each neighborhood-level repre-
sentation to the offset vector of a specified local shape
whose landmarks are indexed in the current neighborhood.
We concatenate all vectors to the offset of a global shape
with N landmarks and use it to update the landmarks and
patches for the next iteration.

4. Experiments

4.1. Datasets and Metrics

General datasets. The evaluation datasets for this set-
ting are typically 300W [34] and WFLW [46]:

300W [34]. Following the widely used evaluation set-
ting [38, 46, 51], the training set contains 3148 images. The
test sets consist of LFPW and HELEN test sets as the Com-
mon set, the IBUG set as the Challenging set, and the union
of them as the Full set.

WFLW [46]. This dataset is a new facial dataset based
on WIDER Face [48], which was proposed by LAB [46]. It
contains 10, 000 images (7, 500 for training and 2, 500 for
testing) with 98 landmarks.

Occlusion datasets. This evaluation setting includes
three occlusion datasets:

COFW29 [5]. The Caltech Occluded Face in the Wild
(COFW29) dataset [5] consists of 1345 training face images
and 507 test face images collected from the Internet, all of
which are annotated with 29 landmarks.

COFW68 [12]. To evaluate the cross-data robustness, we
train Glomface on 300W dataset (68 landmarks) and test on
COFW68 re-annotated with 68 landmarks by [12]. There-
fore, this dataset is used only for test and not training.

Masked 300W [51]. This dataset contains masked faces
(average occlusion of over 50%), which is synthesized by

11116



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Normalized Point-to-Point Error

CED for Challengingset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

e
s
t 
Im

a
g
e
s
 (

%
)

MDM

HGs

FHR

RDN

LAB

SAAT

GlomFace

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Normalized Point-to-Point Error

CED for Commonset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
s
t 
Im

a
g
e
s
 (

%
)

MDM

HGs

FHR

RDN

LAB

SAAT

GlomFace

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Normalized Point-to-Point Error

CED for Fullset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
s
t 
Im

a
g
e
s
 (

%
)

MDM

HGs

FHR

RDN

LAB

SAAT

GlomFace

Figure 7. The CED curves of our proposed method compared to state-of-the-art methods on three subsets of 300W.

SAAT [51] based on 300W [34]. Note that this dataset is
used only for test and not training.

Evaluation Metrics. We employ the Normalized Er-
ror (NME), cumulative error distribution (CED) curves and
failure rate (FR) as evaluation metrics. Some state-of-the-
art methods [10, 23, 38, 41] use different normalizing terms
to compute the NME, we follow their normalizing terms to
conduct our experiments for comparison with these meth-
ods. Here, NMEocular, NMEpupil and NMEbbx set normal-
izing terms as inter-ocular distance, the inter-pupil distance
and the geometric mean of the bounding box, respectively.

4.2. Implementation Details

We use the ground-truth bounding boxes to crop the face
image into a size of 224 ∗ 224 and each pact into a size of
40 ∗ 40. Following the existing methods [10,38,42,46], we
augment training data by handcrafted transformation (rota-
tion, flipping, scaling, random blocking,etc.). Our model
has trained with about 50, 000 steps in an end-to-end man-
ner on four NVIDIA GTX 1080 Ti cards. We set an initial
learning rate of 0.0002, a decay factor of 0.97, a batch size
of 64 and 4 iteration steps. More implementation details
and parameters of network architecture can be found in our
code and supplementary materials.

4.3. Evaluation on General Datasets

Results of evaluation on 300W. To fairly compare ex-
isting methods, we categorized all methods, based on their
prediction manner, into two categories: heatmap-based
models and regressor-based models. The former outputs
the heatmaps of landmarks always using stacked networks,
such as hourglass [32] or Unet-like network. The latter di-
rectly predicts the coordinate values of landmarks. More-
over, following Awing [42], we replace CNNs and L2 loss,
using the CoordConv layer [29] and Wing loss [10], to im-
prove our model termed GlomFace∗. We show compari-
son results of the proposed GlomFace with state-of-the-art
methods in Table 1. Experiments show that our GlomFace
achieves the best performance compared with all regressor-

Methods Challenging Common Full Backbone
Heatmap-based

HGs [32](2016) 7.23 3.72 4.41 Designed
FAN [4](2017) 5.52 3.08 3.56 HGs [32]
SAN [7] (2018) 6.60 3.34 3.98 CMP [45]
LAB [46](2018) 5.19 2.98 3.49 HGs [32]
FHR [37] (2018) 6.28 3.02 3.66 HGs [32]

AWing [42] (2019) 4.52 2.72 3.07 HGs [32]
AS+SAN [33] (2019) 6.49 3.21 3.86 CMP [45]
LUVLi [23] (2020) 5.16 2.76 3.23 HGs [32]
3FabRec [2] (2020) 5.74 3.36 3.82 ResNet [13]

SRT [8] (2020) 5.61 2.80 3.39 HGs [32]
SDL [25] (2020) 4.77 2.62 3.04 HRnet [36]
HIH [24] (2021) 5.00 2.93 3.33 HGs [32]

HGs+SAAT [51] (2021) 5.03 2.82 3.25 HGs [32]
ADnet [19] (2021) 4.58 2.53 2.93 HGs [32]

Regressor-based
MDM [38](2016) 7.56 4.36 4.99 Designed
TSR [31] (2017) 7.56 4.36 4.99 Designed
RDN [28] (2018) 7.04 3.31 4.23 MDM [38]
Wing [10] (2018) 5.23 2.93 3.38 Designed
ODN [53] (2019) 6.67 3.56 4.17 ResNet [13]
SDFL [26] (2021) 4.93 2.88 3.28 ResNet [13]
GlomFace (Ours) 4.87 2.79 3.20 Designed
GlomFce∗(Ours) 4.79 2.72 3.13 Designed

Table 1. NMEocular comparison to state-of-the-art methods on
300W. ”Designed’‘ means that the method is designed with a new
backbone network. [Key: Top-1, Top-2]

based models. There is two heatmap-based method (Aw-
ing [43] and ADnet [19]) that is significantly stronger than
the proposed GlomFace on the challenge set. However,
GlomFace surpasses them by a large margin on the oc-
clusion dataset COFW29 (see Table 3). We further ob-
serve that almost all approaches to achieve promising per-
formance work incrementally based on the existing back-
bones [13, 32]. However, this backbone does not achieve
structural reasoning to combat occlusion. In the subse-
quent comparisons on the occlusion data, GlomFace shows
a greater advantage. We can see that GlomFace∗ performs
comparably to the best heatmap-based model [43]. This
shows that GlomFace is extensible and can be used as a
strong baseline.

To further evaluate the performance of GlomFace on
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Datasets Full Pose Occlusion
Metrics NME FR NME FR NME FR

LAB [46] 5.27 7.56 10.24 28.83 6.79 13.72
SRT [8] 5.13 7.07 - - - -

3FabRec [2] 5.62 8.28 10.23 34.35 6.92 15.08
SAAT [51] 5.11 5.63 - - - -
LUVLi [23] 4.37 3.12 - - - -
Awing [42] 4.36 2.84 7.38 13.50 5.19 5.98
SDL [25] 4.21 3.04 7.36 15.95 4.98 5.29

GlomFace (Ours) 4.81 3.77 8.17 17.48 5.14 6.73
PropNet* [18] 4.05 2.96 6.92 12.58 4.58 5.16
ADNet* [19] 3.98 2.00 6.56 9.20 4.36 4.48

Table 2. Comparison to state-of-the-art methods on WFLW. Note
that PropNet* and ADNet* employ focal wing loss [10] by using
the attribute labels provided by WFLW [46]. [Key: Top-1, Top-2 ]

300W, Figure 7 shows the CED curves compared with state-
of-the-art open-source methods whose mean error values
are presented in Table 1. As shown in Figure 7, GlomFace
significantly surpasses the other methods.

Results of evaluation on WFLW. We followed
LAB [46] and used the inter-ocular normalization to nor-
malize errors. We did not compare with some state-of-the-
art methods such as PropNet [18] and ADNet [19] because
they employ focal wing loss [10] by using the attribute la-
bels provided by WFLW [46]. Moreover, we chosen the
pose subset and the occlusion subset for further compari-
son, since both subsets contain self-occlusion and external
occlusion. NME and failure rate (a threshold value of 0.1)
are reported in Table 2. Although Awing [42] and SDL [25]
outperform ours on the full and large pose sets, GlomFace
is competitive on the occlusion set.

4.4. Evaluation on Occlusion Data

In this evaluation, COFW68 and Masked 300W were
used to conduct cross-data experiments due to having no
training data.

Results of evaluation on COFW29. For COFW29
dataset, we used the inter-pupil distance to normalize the
point-to-point error by following [5]. Table 3 indicate that
the proposed method outperforms all state-of-the-art meth-
ods by a large margin in term of NME. It even surpasses
Awing [42] that is the best on 300W. This also proves that
GlomFace is more robust on occluded faces than most state-
of-the-art methods.

Results of evaluation on COFW68. In Table 4, we
report the comparison results with existing state-of-the-art
methods on COFW68 [12]. The results indicate that the
proposed GlomFace outperforms all state-of-the-art meth-
ods by a large margin. Compared with the state-of-the-
art SAAT [51], our method achieves decreases in NME of
8.68%. The failure rate of our model is only 0.79% which is
far less all existing methods. This lowest failure rate clearly
shows that GlomFace achieves excellent performance un-

Method NMEpupil FR8% FR10%

PCD-CNN [22](2018) 5.77 - 3.73
Wing [10] (2018) 5.44 - 3.75
3DDE [41] (2019) 5.11 6.50 -
AWing [42] (2019) 4.94 5.52 0.99
MNN [40] (2020) 5.04 - -
ADNet [19] (2021) 4.68 - 0.59

GlomFac (Ours) 4.37 4.53 1.56

Table 3. Comparison of averaged errors and failure rates on
COFW29 dataset. [Key: Top-1, Top-2].

Method NMEocular FR10%

TCDCN [50] (2016) 8.05 6.31
MDM [38](2016) 6.12 5.13

FAN [4](2017) 5.85 3.94
LAB [46] (2018) 4.62 2.17
ODN [53] (2019) 5.87 2.84
SDL [25] (2020) 4.22 0.39
SRN [52] (2021) 4.67 1.97
ODN [53] (2019) 5.87 2.84
SAAT [51](2021) 4.61 1.58
GlomFac (Ours) 4.21 0.79

NMEbbx

LUVLi [23] 2.75 -
GlomFac (Ours) 2.09 0.39

Table 4. Comparison of averaged errors and failure rates on
COFW68 dataset. GlomFace achieves the best performance on
this occlusion dataset. [Key: Top-1, Top-2].

Methods Challenging Common Full
CFSS [54] 19.98 11.73 13.35
SBR [37] 13.28 8.72 9.6

MDM [38] 11.67 7.66 8.44
HGs [32] 13.52 8.17 9.22

MDM [38] 11.67 7.66 8.44
FHR [37] 11.28 7.02 7.85
FAN [4] 10.81 7.36 8.02

LAB [46] 9.59 6.07 6.76
SRN [52] 9.28 5.78 6.46

SAAT [51] 11.36 5.42 6.58
GlomFace (Ours) 8.81 5.29 5.98

Table 5. NME comparison on Masked 300W. Note that Masked
300W is only used for cross-dataset evaluation, not training. [Key:
Top-1, Top-2].

der occlusion. This cross-dataset evaluation indicates that
GlomFace has outstanding robustness against occlusion and
generalization in occluded environments.

Results of evaluation on Masked 300W. Table 5 shows
the comparison results with existing methods on Masked
300W (average occlusion of over 50%). Following [51],
this Masked 300W is used only for cross-dataset evalua-
tion in the test phase and is not used during the training
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Figure 8. Qualitative results of the proposed GlomFace compared
with the Hourglass [32] backbone and LAB [46] with boundary
estimation on Masked 300W (average occlusion of over 50%). All
methods are trained only on the general 300W [34].

stage. Compared with the state-of-the-art SAAT [51], our
method achieves decreases in the error of 22.44%, 6.08%
and 11.55% on the Masked 300W Challenging, Common,
and Full sets, respectively. These results clearly show that
our method achieves the best performance on extreme oc-
cluded faces.

We further investigated the occlusion robustness of the
proposed GlomFace under extreme occlusion. Figure 8
shows qualitative results of the proposed GlomFace com-
pared with the mainstream Hourglass [32] backbones and
boundary estimation model LAB [46] and on severely oc-
cluded faces [51] (average occlusion of over 50%). All
models are trained only on 300W [34], not any addi-
tional training data. These results indicate that GlomFace
has powerful structural reasoning capabilities to efficiently
combat extreme occlusions.

Analysis. Most state-of-the-art methods improve the
occlusion robustness by integrating additional prediction
tasks into existing backbone networks. LUVLI [23] in-
troduces visibility and uncertainty estimation into stacked
hourglass [32]. LAB [46], AWing [42], ADNet [19] and
PropNet [18] exploit boundary estimation to impose the
shape constraint to stacked hourglass [32]. Their compu-
tational complexity is much greater than that of our Glom-
Face due to the boundary estimation. SDFL [26] and
SDLSDL [25] integrates graph convolution layer into exist-
ing backbones to handle the occlusion problem. These SO-
TAs are all based on pre-existing backbone networks such
as HGs, HRnet and ResNet, and thus are incremental works.
Unlike these methods mentioned above, GlomFace injects
the structure reasoning into the hierarchical architecture, it
features a new backbone network with potential for further
improvement.

4.5. Self Evaluations

Note that more ablation studies were shown in the sup-
plementary material duo to the page limit.

Computational efficiency. We compared GlomFace

Methods FLOPS Sub-nets
LAB [46] 18.85G ✓

AWing [42] 26.79G ✓
PropNet [18] 42.83G ✓

GlomFace (t = 4, i = 5) 13.48G ×
GlomFace (t = 1, i = 5) 3.37G ×

Table 6. Comparison of computational complexity. Here, “t” and
“i” denote the iteration step and the number of facial part levels.

with three state-of-the-arts [18,42,46] in the term of compu-
tational cost (FLOPS) for predicting 68 landmarks. These
three methods are all hourglass-based and integrate bound-
ary estimation by stacking sub-networks. As shown in Ta-
ble 6, GlomFace has a smaller number of FLOPS than these
methods. The results demonstrate that our architecture is
more efficient compared to boundary estimation.

Limitations. Although GlomFace achieves a promising
performance, it has two limitations. The first is that the pro-
posed GlomFace cannot be ported to other prediction tasks,
since its network architecture is designed exactly accord-
ing to the facial hierarchies. Second, GlomFace relies on
the indexes of dense landmarks to define facial hierarchies,
and it will lose the advantage of the facial hierarchies when
predicting sparse landmarks (e.g. 5 landmarks).

5. Conclusion

In this paper, we have proposed a new network archi-
tecture, GlomFace, which significantly improves the occlu-
sion robustness of face alignment. Experimental results
demonstrated that GlomFace achieves competitive perfor-
mance compared with state-of-the-art methods, especially
on occluded faces. The advantages of GlomFace are sum-
marized as follows: (1) structural reasoning; (2) better oc-
clusion robustness than existing methods; (3) smaller num-
ber of FLOPS than hourglass-based models. GlomFace’s
shortcomings mainly regard poor performance in terms of
portability and sparse landmark prediction. Future work fo-
cuses on more lightweight GlomFace and extending spatial
dependencies into the temporal domain to handle dynamic
occlusion in facial landmark tracking.
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