Re-Basin via Implicit Sinkhorn Differentiation

Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric Granger, Marco Pedersoli; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 20237-20246

Abstract


The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces and some promising properties like mode connectivity. However, finding the permutation that minimizes some objectives is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature under several conditions for both optimal transport and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with the state-of-art. The source code is provided at https://github.com/fagp/sinkhorn-rebasin.

Related Material


[pdf] [supp]
[bibtex]
@InProceedings{Pena_2023_CVPR, author = {Pe\~na, Fidel A. Guerrero and Medeiros, Heitor Rapela and Dubail, Thomas and Aminbeidokhti, Masih and Granger, Eric and Pedersoli, Marco}, title = {Re-Basin via Implicit Sinkhorn Differentiation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {20237-20246} }