-
[pdf]
[arXiv]
[bibtex]@InProceedings{Ryoo_2023_CVPR, author = {Ryoo, Michael S. and Gopalakrishnan, Keerthana and Kahatapitiya, Kumara and Xiao, Ted and Rao, Kanishka and Stone, Austin and Lu, Yao and Ibarz, Julian and Arnab, Anurag}, title = {Token Turing Machines}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {19070-19081} }
Token Turing Machines
Abstract
We propose Token Turing Machines (TTM), a sequential, autoregressive Transformer model with memory for real-world sequential visual understanding. Our model is inspired by the seminal Neural Turing Machine, and has an external memory consisting of a set of tokens which summarise the previous history (i.e., frames). This memory is efficiently addressed, read and written using a Transformer as the processing unit/controller at each step. The model's memory module ensures that a new observation will only be processed with the contents of the memory (and not the entire history), meaning that it can efficiently process long sequences with a bounded computational cost at each step. We show that TTM outperforms other alternatives, such as other Transformer models designed for long sequences and recurrent neural networks, on two real-world sequential visual understanding tasks: online temporal activity detection from videos and vision-based robot action policy learning. Code is publicly available at: https://github.com/google-research/scenic/tree/main/scenic/projects/token_turing.
Related Material