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Abstract

Training Generative adversarial networks (GANs) stably
is a challenging task. The generator in GANs transform
noise vectors, typically Gaussian distributed, into realistic
data such as images. In this paper, we propose a novel ap-
proach for training GANs with images as inputs, but without
enforcing any pairwise constraints. The intuition is that
images are more structured than noise, which the generator
can leverage to learn a more robust transformation. The
process can be made efficient by identifying closely related
datasets, or a “friendly neighborhood” of the target distribu-
tion, inspiring the moniker, Spider GAN. To define friendly
neighborhoods leveraging proximity between datasets, we
propose a new measure called the signed inception distance
(SID), inspired by the polyharmonic kernel. We show that
the Spider GAN formulation results in faster convergence,
as the generator can discover correspondence even between
seemingly unrelated datasets, for instance, between Tiny-
ImageNet and CelebA faces. Further, we demonstrate cas-
cading Spider GAN, where the output distribution from a
pre-trained GAN generator is used as the input to the subse-
quent network. Effectively, transporting one distribution to
another in a cascaded fashion until the target is learnt – a
new flavor of transfer learning. We demonstrate the efficacy
of the Spider approach on DCGAN, conditional GAN, PG-
GAN, StyleGAN2 and StyleGAN3. The proposed approach
achieves state-of-the-art Fréchet inception distance (FID)
values, with one-fifth of the training iterations, in compari-
son to their baseline counterparts on high-resolution small
datasets such as MetFaces, Ukiyo-E Faces and AFHQ-Cats.

1. Introduction

Generative adversarial networks (GANs) [1] are designed
to model the underlying distribution of a target dataset (with
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underlying distribution pd) through a min-max optimiza-
tion between the generator G and the discriminator D net-
works. The generator transforms an input z ∼ pz , typically
Gaussian or uniform distributed, into a generated sample
G(z) ∼ pg . The discriminator is trained to classify samples
drawn from pg or pd as real or fake. The optimal generator
is the one that outputs images that confuse the discriminator.
Inputs to the GAN generator: The input distribution plays
a definitive role in the quality of GAN output. Low-
dimensional latent vectors have been shown to help dis-
entangle the representations and control features of the tar-
get being learnt [2, 3]. Prior work on optimizing the latent
distribution in GANs has been motivated by the need to
improve the quality of interpolated images. Several works
have considered replacing the Gaussian prior with Gaussian
mixtures, Gamma, non-parametric distributions, etc [4–9].
Alternatively, the GAN generator can be trained with the
latent-space distribution of the target dataset, as learnt by
variational autoencoders [10,11]. However, such approaches
are not in conformity with the low-dimensional manifold
structure of real data. Khayatkhoei et al. [12] attributed the
poor quality of the interpolates to the disjoint structure of
data distribution in high-dimensions, which motivates the
need for an informed choice of the input distribution.
GANs and image-to-image translation: GANs that accept
images as input fall under the umbrella of image translation.
Here, the task is to modify particular features of an im-
age, either within domain (style transfer) or across domains
(domain adaptation). Examples for in-domain translation
include changing aspects of face images, such as the ex-
pression, gender, accessories, etc. [13–15], or modifying the
illumination or seasonal characteristics of natural scenes [16].
On the other hand, domain adaptation tasks aim at transform-
ing the image from one style to another. Common applica-
tions include simulation to real-world translation [17–20], or
translating images across styles of artwork [21–23]. While
the supervised Pix2Pix framework [22] originally proposed
training GANs with pairs of images drawn from the source
and target domains, semi-supervised and unsupervised ex-
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(a) Classical GANs (b) Spider GAN

Figure 1. ( Color online) A comparison of design philosophies of the standard GANs and Spider GAN. (a) A prototypical GAN transforms
high-dimensional Gaussian data, which is concentrated at the surface of hyperspheres in n-D, into an image distribution comprising a
union of low-dimensional manifolds embedded in a higher-dimensional space. (b) The Spider GAN generator aims to learn a simpler
transformation between two closely related data manifolds in an unconstrained manner, thereby accelerating convergence.

tensions [23–28] tackle the problem in an unpaired setting,
and introduce modifications such as cycle-consistenty or the
addition of regularization functionals to the GAN loss to
maintain a measure of consistency between images. Exist-
ing domain-adaptation GANs [29, 30] enforce cross-domain
consistency to retain visual similarity. Ultimately, these ap-
proaches rely on enforcing some form of coupling between
the source and the target via feature-space mapping.

2. The Proposed Approach: Spider GAN
We propose the Spider GAN formulation motivated by

the low-dimensional disconnected manifold structure of
data [12, 31–33]. Spider GANs lie at the cross-roads be-
tween classical GANs and image-translation GANs. As
opposed to optimizing the latent parametric prior, we hy-
pothesize that providing the generator with closely related
image source datasets, (dubbed the friendly neighborhood,
leading to the moniker Spider GAN) will result in superior
convergence of the GAN. Unlike image translation tasks, the
Spider GAN generator is agnostic to individual input-image
features, and is allowed to discover implicit structure in the
mapping from the source distribution to the target. Figure 1
depicts the design philosophy of Spider GAN juxtaposed
with the classical GAN training approach.

The choice of the input dataset affects the generator’s abil-
ity to learn a stable and accurate mapping. Intuitively, if the
GAN has to be trained to learn the distribution of street view
house numbers (SVHN) [34], the MNIST [35] dataset proves
to be a better initialization of the input space than standard
densities such as the uniform or Gaussian. It is a well known
result that, for a given mean and variance, the Gaussian has
maximum entropy, while for a given support (say, [−1, 1]
when training with re-normalized images), the uniform distri-
bution has maximum entropy [36]. However, image datasets
are highly structured, and possess lower entropy [37]. There-
fore, one could interpret the generative modeling of images
using GANs as effectively one of entropy minimization [13].

We argue that choosing a low entropy input distribution that
is structurally closer to the target would lead to a more ef-
ficient generator transformation, thereby accelerating the
training process. Existing image-translation approaches aim
to maintain semantic information, for example, translating
a specific instance of the digit ‘2’ in the MNIST dataset to
the SVHN style. However, the Spider GAN formulation
neither enforces nor requires such constraints. Rather, it
allows for an implicit structure in the source dataset to be
used to learn the target efficiently. It is entirely possible for
the Trouser class in Fashion-MNIST [38] to map to the digit
‘1’ in MNIST due to structural similarity. Thus, the scope of
Spider GAN is much wider than image translation.

2.1. Our Contributions

In Section 3, we discuss the central focus in Spider GANs:
defining what constitutes a friendly neighborhood. Prelimi-
nary experiments suggest that, while the well known Fréchet
inception distance (FID) [39] and kernel inception distance
(KID) [40] are able to capture visual similarity, they are un-
able to quantify the diversity of samples in the underlying
manifold. We therefore propose a novel distance measure to
evaluate the input to GANs, one that is motivated by elec-
trostatic potential fields and charge neutralization between
the (positively charged) target data samples and (negatively
charged) generator samples [41,42], named signed inception
distance (SID) (Section 3.1). An implementation of SID
atop the Clean-FID [43] backbone is available at https:
//github.com/DarthSid95/clean-sid. We iden-
tify friendly neighborhoods for multiple classes of standard
image datasets such as MNIST, Fashion MNIST, SVHN,
CIFAR-10 [44], Tiny-ImageNet [45], LSUN-Churches [46],
CelebA [47], and Ukiyo-E Faces [48]. We present exper-
imental validation on training the Spider variant of DC-
GAN [49] (Section 4) and show that it results in up to
30% improvement in terms of FID, KID and cumulative
SID of the converged models. The Spider framework is
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lightweight and can be extended to any GAN architec-
ture, which we demonstrate via class-conditional learning
with the Spider variant of auxiliary classifier GANs (AC-
GANs) [50] (Section 4). The source code for Spider GANs
built atop the DCGAN architecture are available at https:
//github.com/DarthSid95/SpiderDCGAN. We
also present a novel approach to transfer learning using Spi-
der GANs by feeding the output distribution of a pre-trained
generator to the input of the subsequent stage (Section 5).
Considering progressively growing GAN (PGGAN) [51]
and StyleGAN [52–54] architectures, we show that the cor-
responding Spider variants achieve competitive FID scores
in one-fifth of the training iterations on FFHQ [14] and
AFHQ-Cats [30], while achieving state-of-the-art FID on
high-resolution small-sized datasets such as Ukiyo-E Faces
and MetFaces [53] (Section 5.1). The source code for
implementing Spider StyleGANs is available at https:
//github.com/DarthSid95/SpiderStyleGAN.

2.2. Related Works

The choice of the input distribution in GANs determines
the quality of images generated by feeding the generator
interpolated points, which in turn is determined by the
probability of the interpolated points lying on the manifold.
High-dimensional Gaussian random vectors are concentrated
on the surface of a hypersphere (Gaussian annulus theo-
rem [55]), akin to a soap bubble, resulting in interpolated
points that are less likely to lie on the manifold. Alternatives
such as the Gamma [6] or Cauchy [7] prior result in superior
performance over interpolated points, while Singh et al. [9]
derive a non-parametric prior that minimized the divergence
between the input and the midpoint distributions.

A well known result in high-dimensional data analysis is
that structured datasets are embedded in a low-dimensional
manifold with an intrinsic dimensionality (nD) significantly
lower than the ambient dimensionality n [37]. For instance,
in MNIST, n = 784, while nD ≈ 12 [56]. Feng et al.[57]
showed that the mismatch between nD of the generator input
and its output adversely affects performance. Although in
practice, estimating nD may not always be possible [12, 56,
58], these results justify picking input distributions that are
structurally similar to the target. In instance-conditioned
GANs [59], the target data is modeled as clusters on the data
manifold to improve learning.

The philosophy of cascading Spider GAN generators runs
in parallel to input optimization in transfer learning with
GANs, such as Mine GAN [60] where mining networks
are implemented that transform the input distribution of the
GAN nonlinearly to learn the target samples better. Kerras
et al. [53] showed that transfer learning improves the perfor-
mance of GANs on small datasets, and observed empirically
that transferring weights from models trained on visually
diverse data lead to better performance of the target model.

3. Where is the Friendly Neighborhood?

We now consider various distance measures between
datasets that can be used to identify the friendly neighbor-
hood/source dataset in Spider GANs. While the most di-
rect approach is to compare the intrinsic dimensions of the
manifolds, such approaches are either computationally in-
tensive [61], or do not scale with sample size [56, 58]. We
observed that the friendly neighbors detected by such ap-
proach did not correlate well experimentally, and therefore,
defer discussions on such methods to Appendix A.

Based on the approach advocated by Wang et al. [62]
to identify pre-trained GAN networks for transfer learning,
we initially considered FID and KID to identify friendly
neighbors. We use the FID to measure the distance between
the source (generator input) and the target data distributions.
A source that has a lower FID is closer to the target and
will serve as a better input to the generator. The first four
columns of Table 1 present FID scores between the standard
datasets we consider in this paper. The first, second and
third friendly neighbors (color coded) of a target dataset
are the source datasets with the lowest three FIDs. As ob-
served from Table 1, a limitation is that the FID of a dataset
with itself is not always zero, which is counterintuitive for
a distance measure. In cases such as CIFAR-10 or Tiny-
ImageNet, this is indicative of the variability in the dataset,
and in Ukiyo-E Faces, this is due to limited availability of
data samples, which has been shown to negatively affect FID
estimation [40, 63]. FID satisfies reciprocity, i.e., it iden-
tifies datasets as being mutually close to each other, such
as CIFAR-10 and Tiny-ImageNet. However, preliminary
experiments on training Spider GAN using FID to identify
friendly neighbors showed that the relative diversity between
datasets is not captured. Given a source, learning a less
diverse target distribution is easier (cf. Section 4 and Ap-
pendix D.2). These issues are similar to the observations
made by Kerras et al. [53] in the context of weight transfer.
This can be understood via an example — fitting a multi-
modal target Gaussian having 10 modes would be easier with
a 20-component source distribution than a 5-component one.

3.1. The Signed Inception Distance (SID)

Given the limitations of FID discussed above, we pro-
pose a novel signed distance for measuring the proximity
between two distributions. The distance is “signed” in the
sense that it can also take negative values. Further, it is
not symmetric. The distance is also practical to compute
because it is expressed in terms of the samples drawn from
the distributions. The proposed distance draws inspiration
from the improved precision-recall scores of GANs [64]
and the potential-field interpretation in Coulomb GANs [41]
and Poly-LSGAN [42]. Consider batches of samples drawn
from distributions µp and µq, given by Dp = {c̃i}Np

i=1 and
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Table 1. A comparison of FID and CSIDm between popular training datasets for m = bn
2
c. The rows represent the source and the columns

correspond to the target. The first, second and third friendly neighbors of the target are the sources with the three lowest FID, or lowest
positive CSID values, respectively. CSID is superior to FID, as it assigns negative values to sources that are less diverse than the target.
MNIST and Fashion-MNIST are shown in gray to denote scenarios where grayscale images are not valid sources for the color-image targets.

Source
Target FID (Source , Target) CSIDm(Source ‖Target)

MNIST CIFAR-10 TinyImageNet Ukiyo-E MNIST CIFAR-10 TinyImageNet Ukiyo-E

MNIST 1.2491 258.246 264.250 398.280 0.1863 29.298 9.436 201.550
F-MNIST 176.813 188.367 197.057 387.049 162.962 19.051 -2.5571 191.010

SVHN 236.707 168.615 189.133 372.444 212.473 34.534 21.668 214.507
CIFAR-10 259.045 5.0724 64.3941 303.694 221.337 -0.1487 -7.109 198.991

TinyImageNet 264.309 64.0312 6.4854 257.078 230.916 12.892 0.6743 197.447
CelebA 360.773 303.490 250.735 301.108 204.794 23.685 8.829 184.170
Ukiyo-E 396.791 300.511 254.102 5.9137 250.226 39.793 18.727 0.5494
Church 350.708 294.982 254.991 267.638 212.452 -4.655 -23.115 198.750

Dq = {cj}Nq

j=1, respectively. Given a test vector x ∈ Rn,
consider the Coulomb GAN discriminator [41]:

f(x) =
1

Np

Np∑
i=1

c̃i∼µp

Φ(x, c̃i)−
1

Nq

Nq∑
j=1

cj∼µq

Φ(x, cj), (1)

where Φ is the polyharmonic kernel [42, 65]:

Φ(x,y)=κm,n

{
‖x−y‖2m−n, if 2m−n<0

or n is odd,

‖x−y‖2m−n ln(‖x−y‖), if 2m−n≥0
and n is even,

,

and κm,n is a positive constant, given the order m and di-
mensionality n. The higher-order generalization gives us
more flexibility and numerical stability in computation. We
use m ≈ bn2 c as a stable choice, while ablation studies on
choosing m are given in Appendix B.4

From the perspective of electrostatics, for µp = pg and
µq = pd, f(x) in Equation (1) treats the target data as nega-
tive charges, and generator samples as positive charges. The
quality of µp in approximating/matching µq is measurable
by computing the effect of the net charge present in any cho-
sen volume around the target µq on a test charge x. Consider
a hypercube Cq,r of side length r, centered around µq with
test charges {x`}Mx

`=1, x` ∈ Cq,r. To analyze the average
behavior of target and generated samples in Cq,r, we draw
x` uniformly within Cq,r. We consider Np = Nq = N for
simplicity. We now define the signed distance of µp from µq
as the negative of f(x), summed over a uniform sampling
of points over Cq,r, i.e. SDm,r(µp‖µq) is given by:

1

NMx

Mx∑
`=1

x̃`∈Cq,r

(
N∑
j=1

cj∼µq

Φ(x`, cj)−
N∑
i=1

c̃i∼µp

Φ(x`, c̃i)

)
. (2)

Similar to the improved precision and recall (IPR) met-
rics, SDm,r(µp‖µq) is asymmetrical, i.e., SDm,r(µp‖µq) 6=
SDm,r(µq‖µp). When SDm,r(µp‖µq) < 0, on the average,

samples from µq are relative more spread out than those
drawn from µp with respect to Cq,r, and vice versa. When
µp = µq , we have SDm,r(µp‖µq) ≈ 0. Illustrations of these
three scenarios are provided in Appendix B.3.

In practice, similar to the standard GAN metrics, the
computation of SD can be made practical and efficient on
higher-resolution images by evaluating the measure on the
feature-space of the images learnt by the pre-trained Incep-
tionV3 [66] network mapping ψ(c). This results in the
signed inception distance SIDm,r(µp‖µq) = given by:

1

NMx

Mx∑
`=1

x`∈C′q,r

(
N∑
j=1

cj∼µq

Φ (x`, ψ(cj))−
N∑
i=1

c̃i∼µp

Φ(x`, ψ(c̃i))

)
, (3)

where C′q,r denotes the hypercube of side r centered on the
transformed distribution ψ(µq). To begin with, we find
σq = max{diag(Σq)}, where in turn, Σq is the covariance
matrix of the samples in Dq. We define the hypercube C′q,r
as having side r = σq along each dimension and centered
around the mean of µq. To compare two datasets, we plot
SIDm,r(µp‖µq) as a function of r ∈ [σq, 100σq] varying r
in steps of 0.5. SID comparison figures for a few representa-
tive target datasets are given in Figure 2. We observe that,
when two datasets are closely related, SID is close to zero
even for small r. Datasets with lower diversity than the target
have a negative SID, and vice versa. In order to quantify
SID as a single number (akin to FID and KID) we consider
SID, accumulated over all radii r (the cumulative SID or
CSID, for short) given by: CSIDm =

∑
r SIDm,r. The last

four columns of Table 1 presents CSID for m = bn2 c for the
various datasets considered. We observe that CSID is highly
correlated with FID when the source is more diverse than the
target, while it is able to single out sources that lack diversity,
which FID cannot. These results quantitatively verify the
empirical closeness observed when transfer-learning across
datasets [53]. Additional experiments and ablation studies
on SID are given in Appendices A and B.
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Figure 2. ( Color online) SIDm,r as a function of the hyper-cube length r. We observe that Fashion-MNIST is the closest to MNIST, while
Tiny-ImageNet and SVHN are closest to CIFAR-10. Fashion-MNIST and CelebA are friendly neighbors of Tiny-ImageNet.

Picking the Friendliest Neighbor: While the various ap-
proaches to compare datasets generally suggest different
friendly neighbors, we observe that the overall trend is con-
sistent across the measures. For example, Tiny-ImageNet
and CelebA are consistently friendly neighbors to multiple
datasets. We show in Sections 4 and 5 that choosing these
datasets as the input indeed improves the GAN training al-
gorithm. Both the proposed SID, and baseline FID/KID
measures are relative in that they can only measure close-
ness between provided candidate datasets. Incorporating
domain-awareness aids in the selection of appropriate input
datasets between which SID can be compared. For example,
all metrics identify Fashion-MNIST as a friendly neighbor
when compared against color-image targets, although, as ex-
pected, the performance is sub-par in practice (cf. Section 4).
One would therefore discard MNSIT and Fashion-MNIST
when identifying friendly neighbors of color-image datasets.
Although SID is superior to FID and KID in identifying less
diverse source datasets, no single approach can always find
the best dataset yet in all real-world scenarios. A pragmatic
strategy is to compute various similarity measures between
the target and visually/structurally similar datasets, and iden-
tify the closest one by voting.

4. Experimental Validation
To demonstrate the Spider GAN philosophy, we train Spi-

der DCGAN on MNIST, CIFAR-10, and 256×256 Ukiyo-E
Faces datasets using the input datasets mentioned in Sec-
tion 3. While encoder-decoder architectures akin to image-
to-image translation GANs could also be employed, their
performance does not scale with image dimensionality. De-
tailed ablation experiments are provided in Appendix D.1.
The second aspect is the limited stochasticity of the input
dataset, when its cardinality is lower than that of the tar-
get. In these scenarios, the generator would attempt to learn
one-to-many mappings between images, thereby not mod-
eling the target entirely. For Spider DCGAN variants, the
source data is resized to 16× 16, vectorized, and provided
as input. Based on preliminary experimentation (cf. Ap-

pendix D.2.1), to improve the input dataset diversity, we
consider a Gaussian mixture centered around the samples
of the source dataset formed by adding zero-mean Gaussian
noise with variance σ ≈ 0.25 to each source image. An
alternative solution, based on pre-trained generators is pre-
sented in Section 5. We consider the Wasserstein GAN [67]
loss with a one-sided gradient penalty [68]. The training
parameters are described in Appendix C. In addition to FID
and KID, we compare the GAN variants in terms of the
cumulative SID (CSIDm) for m = bn2 c to demonstrate the
viability of evaluating GANs with the proposed SID metric.

Results: We demonstrate the ability of Spider GAN to
leverage the structure present in the source dataset. From
the input-output pairs given in Figure 3, we observe that,
although trained in an unconstrained manner, the gener-
ator learns structurally motivated mappings. In the case
when learning MNIST images with Fashion-MNIST as in-
put, the generator has learnt to cluster similar classes, such
as Trousers and the 1 class, or the Shoes class and digit
2, which serendipitously are also visually similar. Even in
scenarios where such pairwise similarity is not present, as
in the case of generating Ukiyo-E Faces from CelebA or
CIFAR-10, Spider GAN leverages implicit/latent structure
to accelerate the generator convergence. Figure 4 presents
FID as a function of iterations for each learning task for a
few select target datasets. Spider GAN variants with friendly
neighborhood inputs outperform the baseline models with
parametric noise inputs, while also converging faster (up to
an order in the case of MNIST). Table 2 presents the FID
of the best-case models. In choosing a friendly neighbor,
a poorly related dataset results in worse performance than
the baselines, while a closely related input results in FID im-
provements of about 30%. The poor performance of Fashion
MNIST as a friendly neighbor to CIFAR-10 and Ukiyo-E
faces datasets corroborate the observations made in Section 3.
We observe that CSIDm is generally in agreement with the
performance indicated by FID/KID, making it a viable al-
ternative in evaluating GANs. Experiments on remaining
source-target combinations are provided in Appendix D.2.
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(c) CIFAR-10 to Ukiyo-E Faces (d) CelebA to Ukiyo-E Faces
Figure 3. ( Color online) Figures depicting the implicit structure learnt by Spider GAN when transforming the source to the target. The
network learns both visual, and implicit correspondences across datasets. For example, the Trouser class in Fashion-MNIST maps to the digit
1 in MNIST, while the implicit structure is leveraged by the generator in transforming either CIFAR-10 or CelebA to Ukiyo-E Faces. A poor
choice of the input distribution, for instance selecting Fashion-MNIST as the friendly neighbor of CIFAR-10, results in suboptimal learning.

(a) MNIST (b) CIFAR-10 (c) Ukiyo-E
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Figure 4. ( Color online) FID versus iterations for training baseline and Spider GAN with the first, second and third friendly neighbors
(color coded) identified by CSID (cf. Table 1). Using the friendliest neighbor results in the best (lowest) FID scores.On MNIST, Spider
GAN variants saturate to a lower FID in an order of iterations faster than the baselines.

Table 2. Comparison of FID, KID and the proposed CSIDm (with m = bn
2
c) for the Spider DCGAN and baseline variants on MNIST,

CIFAR-10, and Ukiyo-E Faces datasets. The first (†), second (‡) and third (?) friendly neighbors (cf. CSID; Table 1) of the target are marked
for cross-referencing against the first, second and third best FID/KID/CSIDm scores. Spider DCGAN, with friendly neighborhood input
datasets outperform the baseline parametric and non-parametric priors, while a bad choice for the input results in a poorer performance.

Input Distribution
MNIST CIFAR10 Ukiyo-E Faces

FID KID CSIDm FID KID CSIDm FID KID CSIDm

B
as

el
in

es

Gaussian [49] (R100) 21.49 0.0139 21.31 71.84 0.0619 19.90 62.26 0.0535 23.10
Gamma [6] (R100) 21.15 0.0133 19.44 72.66 0.0483 19.87 70.02 0.0495 30.59

Non-Parametric [9] (R100) 20.94 0.0137 20.78 74.90 0.0530 19.45 65.36 0.0421 25.40
Gaussian (RH×W×C) 42.44 0.0354 32.20 73.00 0.0504 21.99 70.96 0.0501 35.30

Sp
id

er
D

C
G

A
N

MNIST – – – 71.70 0.0535 21.83 68.87 0.0438 33.13
Fashion MNIST † 16.80 † 0.0103 † 12.44 77.86 0.0550 28.85 72.431 0.0455 36.21

SVHN 27.17 0.0205 17.23 ? 64.30 ? 0.0451 ?18.44 70.13 0.0482 25.06
CIFAR-10 29.22 0.0220 24.96 – – – 70.55 0.0530 24.12

TinyImageNet 32.66 0.0244 36.90 † 58.82 † 0.0305 † 14.02 ‡ 61.91 ‡ 0.0463 ‡ 21.07
CelebA ‡ 20.55 ‡ 0.0144 ‡ 15.74 ‡ 60.09 ‡ 0.0434 ‡ 17.68 † 54.09 † 0.0408 † 20.12
Ukiyo-E 18.72 0.0122 19.35 67.80 0.0463 19.90 – – –

LSUN-Churches ? 30.67 ? 0.0228 ? 30.61 61.46 0.0365 19.82 ? 66.26 ? 0.0496 ? 25.21
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Extension to Class-conditional Learning: As a proof of
concept, we developed the Spider counterpart to the auxil-
iary classifier GAN (ACGAN) [50], entitled Spider ACGAN.
Here, the discriminator predicts the class label of the in-
put in addition to the real versus fake classification. We
consider two variants of the generator, one without class
information, and the other with the class label provided as
a fully-connected embedding to the input layer. While Spi-
der ACGAN without generator embeddings is superior to
the baseline Spider GAN in learning class-level consistency,
mixing between the classes is not eliminated entirely. How-
ever, with the inclusion of class embeddings in the generator,
the disentanglement of classes can be achieved in Spider
ACGAN. Additional details are provided in Appendix D.3.
Extensions of Spider GAN to larger class-conditional GAN
models such as BigGAN [69], and scenarios involving mis-
match between the number of classes in the input and output
datasets, are promising directions for future research.

5. Cascading Spider GANs
The DCGAN architecture employed in Section 4 does

not scale well for generating high-resolution images. While
training with image datasets has proven to improve the gen-
erated image quality, the improvement is accompanied by
an additional memory requirement. While inference with
standard GANs requires inputs drawn purely from random
number generators, Spider DCGAN would require storing
an additional dataset as input. To overcome this limitation,
we propose a novel cascading approach, where the output
distribution of a publicly available pre-trained generator is
used as the input distribution to subsequent Spider GAN
stages. The benefits are four-fold: First, the memory re-
quirement is significantly lower (by an order or two), as
only the weights of an input-stage generator network are
required to be stored. Second, the issue of limited stochastic-
ity in the input distribution is overcome, as infinitely many
unique input samples can be drawn. Third, the network can
be cascaded across architectures and styles, i.e., one could
employ a BigGAN input stage (trained on CIFAR-10, for
example) to train a Spider StyleGAN network on ImageNet,
or vice versa. Essentially, no pre-trained GAN gets left be-
hind. Lastly, the cascaded Spider GANs can be coupled with
existing transfer learning approaches to further improve the
generator performance on small datasets [53].

5.1. Spider Variants of PGGAN and StyleGAN

We consider training the Spider variants of Style-
GAN2 [52] and progressively growing GAN (PGGAN) [51]
on small datasets, specifically the 1024-MetFaces and 1024-
Ukiyo-E Faces datasets, and high-resolution FFHQ. We con-
sider input from pre-trained GAN generators trained on the
following two distributions (a) Tiny-ImageNet, based on
CSIDm, that suggest that it is a friendly neighbor to the

targets; and (b) AFHQ-Dogs, which possesses structural
similarity to the face datasets. The experimental setup is
provided in Appendix D.4, while evaluation metrics are de-
scribed in Appendix C.2. To maintain consistency with the
reported scores for state-of-the-art baselines models, we re-
port only FID/KID here, and defer comparisons on CSIDm

to Appendix D.5. To isolate and assess the performance im-
provements introduced by the Spider GAN framework, we
do not incorporate any augmentation or weight transfer [53].
Table 3 shows the FID values obtained by the baselines and
their Spider variants. Spider PGGAN performs on par with
the baseline StyleGAN2 in terms of FID. Spider StyleGAN2
achieves state-of-the-art FID on both Ukiyo-E and MetFaces.

To incorporate transfer learning techniques, we consider
(a) learning FFHQ considering StyleGAN with adaptive
discriminator augmentation (ADA) [53]; and (b) learning
AFHQ-Cats considering both ADA and weight transfer [53].
Spider StyleGAN2-ADA achieves FID scores on par with
the state of the art, outperforming improved sampling tech-
niques such as Polarity-StyleGAN2 [71] and MaGNET-
StyleGAN2 [72]. While StyleGAN-XL achieves marginally
superior FID, it does so at the cost of a three-fold increase
in network complexity [70]. The FID and KID scores, and
training configurations are described in Tables 4-5. Spider
StyleGAN2-ADA and Spider StyleGAN3 achieve competi-
tive FID scores with a mere one-fifth of the training iterations.
The Spider StyleGAN3 model with weight transfer achieves
a state-of-the-art FID of 3.07 on AFHQ-Cats, in a fourth of
the training iterations as StyleGAN3 with weight transfer.
Additional results are provided in Appendix D.5.

5.2. Understanding the Spider GAN Generator

The idea of learning an optimal transformation between
a pair of distributions has been explored in the context
of optimal transport in Schrödinger bridge diffusion mod-
els [73–76]. The closer the two distributions are, the easier it
is to learn a transport map between them. Spider GANs lever-
age underlying similarity, not necessarily visual, between
datasets to improve generator learning. Similar discrepancies
between visual features and those learnt by networks have
been observed in ImageNet [77] object classification [78].
To shed more light on this intuition, consider a scenario
where both the input and target datasets in Spider DCGAN
are the same, with or without random noise perturbation. As
expected, the generator learns an identity mapping, repro-
ducing the input image at the output (cf. Appendix D.2.5).
Input Dataset Bias: Owing to the unpaired nature of train-
ing, Spider GANs do not enforce image-level structure to
learn pairwise transformations. Therefore, the diversity of
the source dataset (such as racial or gender diversity) does
not affect the diversity in the learnt distribution. Experiments
on Spider DCGAN with varying levels of class-imbalance
in the input dataset validate this claim (cf. Appendix D.2.3).
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Table 3. A comparison of the FID and KID values achieved by the PGGAN
and StyleGAN2 baselines and their Spider variants, when trained on small
datasets. A ? indicates scores computed on publicly available pre-trained
models using the Clean-FID library [43]. Spider StyleGAN2 achieves state-
of-the-art FID and KID scores, while Spider PGGAN achieves performance
comparable with the baseline StyleGAN methods.

Architecture Input
Ukiyo-E Faces MetFaces
FID KID FID KID

PGGAN [51] Gaussian 69.03 0.0762 85.74 0.0123
Spider PGGAN Ours) TinyImageNet 57.63 0.0161 45.32 0.0063

StyleGAN2? [52] Gaussian 56.74 0.0159 65.74 0.0350
StyleGAN2-ADA? [53] Gaussian 26.74 0.0109 18.75 0.0023

Spider StyleGAN2 (Ours) TinyImageNet 20.44 0.0059 15.60 0.0026
Spider StyleGAN2 (Ours) AFHQ-Dogs 32.59 0.0269 29.82 0.0019

Table 4. A comparison of StyleGAN2-ADA and Style-
GAN3 variants in terms of FID, on learning FFHQ. A †
indicates a reported score. Spider StyleGAN2-ADA per-
forms on par with the state-of-the-art StyleGAN-XL (three
fold higher network complexity) [70], and outperforms
variants with customized sampling techniques [71, 72].

Architecture Input FID

StyleGAN-XL [70] Gaussian 2.02†
Polarity-StyleGAN2 [71] Gaussian 2.57†

MaGNET-StyleGAN2 [72] Gaussian 2.66†

StyleGAN2-ADA [53] Gaussian 2.70†

Spider StyleGAN2-ADA (Ours) TinyImageNet 2.45
Spider StyleGAN2-ADA (Ours) AFHQ-Dogs 3.07

StyleGAN3-T [54] Gaussian 2.79†

Spider StyleGAN3-T (Ours) TinyImageNet 2.86

Table 5. A comparison of the FID and KID values achieved by the StyleGAN baselines and their Spider variants, when trained on the the
AFHQ-Cats dataset, considering various training configurations. A ? indicates a score reported in the Clean-FID library [43]. † Karras
et al. only report FID on the combined AFHQv2 dataset consisting of images from the Dogs, Cats, and Wild-Animals classes. Spider
StyleGAN2-ADA and Spider StyleGAN3 achieve FID and KID scores competitive with the baselines in a mere one-fifth of the training
iterations, while Spider StyleGAN3 with weight transfer achieves state-of-the-art FID on AFHQ in one-fourth of the training iterations.

Architecture Weight Transfer Input Distribution Training steps FID KID (×10−3)

StyleGAN2-ADA [53] – Gaussian 25000 5.13? 1.54?

StyleGAN3-T [54] – Gaussian 25000 4.04† –
Spider StyleGAN3-T (Ours) – AFHQ-Dogs 5000 6.29 1.64

StyleGAN2-ADA [53] FFHQ Gaussian 5000 3.55 0.35
Spider StyleGAN2-ADA (Ours) FFHQ Tiny-ImageNet 1000 3.91 1.23

StyleGAN2-ADA [53] AFHQ-Dogs Gaussian 5000 3.47? 0.37?

Spider StyleGAN2-ADA (Ours) AFHQ-Dogs Tiny-ImageNet 1500 3.07 0.29
Spider StyleGAN3-T (Ours) AFHQ-Dogs Tiny-ImageNet 1000 3.86 1.01

Input-space Interpolation: Lastly, to understand the repre-
sentations learnt by Spider GANs, we consider input-space
interpolation. Unlike classical GANs, where the input noise
vectors are the only source of control, in cascaded Spider
GANs, interpolation can be carried out at two levels. Inter-
polating linearly between the noise inputs to the pre-trained
GAN result in a set of interpolations of the intermediate
image. Transforming these images through the Spider Style-
GAN generator results in greater diversity in the output
images, with sharper transitions between images. This is
expected as interpolating on the Gaussian manifold is known
to result in discontinuities in the generated images [6, 7].
Alternatively, for fine-grained tuning, linear interpolations
of the intermediate input images can be carried out, resulting
in smoother transitions in the output images. Images demon-
strating this behavior are provided in Appendix D.5.1. Quali-
tative experiments on input-space interpolation in Spider DC-
GAN and additional images are provided in Appendix D.2.2.
These results indicate that stacking multiple Spider GAN
stages yields varying levels of fineness in controlling features
in the generated images.

6. Conclusions
We introduced the Spider GAN formulation, where we

provide the GAN generator with an input dataset of samples
from a closely related neighborhood of the target. Unlike
image-translation GANs, there are no pairwise or cycle-
consistency requirements in Spider GAN, and the trained
generator learns a transformation from the underlying latent
data distribution to the target data. While the best input
dataset is a problem-specific design choice, we proposed
approaches to identify promising friendly neighbors. We
proposed a novel signed inception distance, which measures
the relative diversity between two datasets. Experimental
validation showed that Spider GANs, trained with closely
related datasets, outperform baseline GANs with parametric
input distributions, achieving state-of-the-art FID on Ukiyo-
E Faces, MetFaces, FFHQ and AFHQ-Cats.

While we focused on adaptive augmentation and weight
transfer, incorporating other transfer learning approaches [29,
60, 79] is a promising direction for future research. One
could also explore extensions to vector quantized GANs [80,
81] or high-resolution class-conditional GANs [69, 82].
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