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Figure 1. Visualizations of 3DMM and audio-driven face reenactment of our proposed method and NerFACE [11] and DFRF [41]. The
leftmost column is the ground truth image. For each method, the left plot is the rendered image with the same view of the ground truth
image, and the two right plots are novel view syntheses. By utilizing the high-quality 3D-aware generative prior, our method significantly
boosts the performance of face reenactment and novel view synthesis. We highlight some areas with red rectangles for better comparisons.

Abstract

High-fidelity facial avatar reconstruction from a monoc-
ular video is a significant research problem in computer
graphics and computer vision. Recently, Neural Radiance
Field (NeRF) has shown impressive novel view rendering
results and has been considered for facial avatar recon-
struction. However, the complex facial dynamics and miss-
ing 3D information in monocular videos raise significant
challenges for faithful facial reconstruction. In this work,
we propose a new method for NeRF-based facial avatar re-
construction that utilizes 3D-aware generative prior. Dif-
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ferent from existing works that depend on a conditional de-
formation field for dynamic modeling, we propose to learn
a personalized generative prior, which is formulated as a
local and low dimensional subspace in the latent space of
3D-GAN. We propose an efficient method to construct the
personalized generative prior based on a small set of fa-
cial images of a given individual. After learning, it allows
for photo-realistic rendering with novel views, and the face
reenactment can be realized by performing navigation in
the latent space. Our proposed method is applicable for
different driven signals, including RGB images, 3DMM co-
efficients, and audio. Compared with existing works, we
obtain superior novel view synthesis results and faithfully
face reenactment performance. The code is available here
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the final published version of the proceedings is available on IEEE Xplore.
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https://github.com/bbaaii/HFA-GP.

1. Introduction
Reconstructing high-fidelity controllable 3D faces from

a monocular video is significant in computer graphics and
computer vision and has great potential in digital human,
video conferencing, and AR/VR applications. Yet it is very
challenging due to the complex facial dynamics and missing
3D information in monocular videos.

Recently, Neural Radiance Field (NeRF) [30] has shown
impressive quality for novel view synthesis. The key idea
of NeRF is to encode color and density as a function of spa-
tial location and viewing direction by a neural network and
adopt volume rendering techniques for novel view synthe-
sis. Its photo-realistic rendering ability has sparked great
interest in facial avatar reconstruction. Deformable neural
radiance fields have been proposed to handle the non-rigidly
deforming faces captured in monocular videos. For exam-
ple, the works of [34, 35] proposed to learn a conditional
deformation field to capture the non-rigidly deformation of
each frame. After training, they can provide novel view syn-
thesis for the training frames. However, they don’t support
facial editing and cannot be used for face reenactment.

The controllability of facial avatars is indispensable for
many downstream applications, such as talking head syn-
thesis. The core idea of existing works is to learn a dy-
namic neural radiance field conditioned on specific driven
signals. For example, 3D morphable face model (3DMM)
[3] is introduced as guidance in NeRF-based facial avatar
reconstruction [2, 11, 13]. The work of [11] learns a dy-
namic NeRF that is directly conditioned on the pose and ex-
pression coefficients estimated by 3DMM. In RigNeRF [2],
the deformation field is a combination of a pre-calculated
3DMM deformation field prior and a learned residual condi-
tioned on the pose and expression coefficients. After mod-
eling, one can use 3DMM coefficients for face reenactment.
In addition to the explicit 3DMM coefficients, audio-driven
dynamic NeRF has also been studied [17, 41]. Recently,
AD-NeRF [17] has been proposed to optimize a dynamic
neural radiance field by augmenting the input with audio
features. DFRF [41] further considers the few-shot audio-
driven talking head synthesis scenario. These works di-
rectly learn a conditional deformation field and scene repre-
sentation in the continuous 5D space. However, recovering
3D information from monocular videos is an ill-posed prob-
lem. It is very challenging to obtain a high-fidelity facial
avatar.

To alleviate the aforementioned challenges, we propose
to adopt 3D generative prior. Recently, 3D-aware generative
adversarial networks (3D-GAN) [5, 6, 16, 33, 43] are pro-
posed for unsupervised generation of 3D scenes. By lever-
aging the state-of-the-art 2D CNN generator [22] and neural

volume rendering, the work of [5] can generate high-quality
multi-view-consistent images. The latent space of 3D-GAN
constitutes a rich 3D-aware generative prior, which moti-
vates us to explore latent space inversion and navigation
for 3D facial avatar reconstruction from monocular videos.
However, 3D-GAN is usually trained on the dataset with a
large number of identities, such as FFHQ [21], resulting in a
generic generative prior. It is inefficient for personalized fa-
cial reconstruction and reenactment, which requires faithful
maintenance of personalized characteristics.

In this work, we propose to learn a personalized 3D-
aware generative prior to reconstruct multi-view-consistent
facial images of that individual faithfully. Considering that
facial variations share common characteristics, we learn a
local and low-dimensional personalized subspace in the la-
tent space of 3D-GAN. Specifically, we assign a group of
learnable basis vectors for the individual. Each frame is
sent to an encoder to regress a weight coefficient, which is
used to form a linear combination of the basis. The resulting
latent code is sent to a 3D-aware generator for multi-view-
consistent rendering. We show that both the personalized
basis and encoder can be well modeled given a small set
of personalized facial images. After training, one can di-
rectly project the testing frames with different facial expres-
sions onto the learned personalized latent space to obtain a
high-quality 3D consistent reconstruction. It is worth not-
ing that the input modality is not limited to RGB frames.
We demonstrate with a simple modification. The encoder
can be trained with different signals, such as 3DMM ex-
pression coefficients or audio features, enabling 3DMM or
audio-driven face reenactment. To verify its effectiveness,
we conduct experiments with different input modalities, in-
cluding monocular RGB videos, 3DMM coefficients, and
audio. The comparison to state-of-the-art methods demon-
strates our superior 3D consistent reconstruction and faith-
fully face reenactment performance.

Our main contributions are four-fold: 1) we propose to
utilize 3D-aware generative prior for facial avatar recon-
struction; 2) we propose an efficient method to learn a lo-
cal and low-dimensional subspace to maintain personalized
characteristics faithfully; 3) we develop 3DMM and audio-
driven face reenactment by latent space navigation; 4) we
conduct complementary experimental studies and obtain su-
perior facial reconstruction and reenactment performance.

2. Related Work
We introduce recent works that are closely related to our

method, including neural volume rendering, controllable
face generation, and generative 3D-aware neural networks.

Neural scene representation and rendering. Recently,
Neural Radiance Field (NeRF) [7, 8, 11, 12, 26–30, 36, 38,
44, 49, 51] obtains impressive performance for novel view
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synthesis of complex scenes. Instead of explicitly model-
ing the geometry and appearance, NeRF represents a scene
using a neural network (e.g., MLP) to encode color and den-
sity as a function of a continuous 5D coordinate (including
spatial location and viewing direction). It then uses classic
volume rendering techniques for novel view synthesis. The
volume rendering is differentiable, and the neural represen-
tation can be optimized given a set of images of a scene.

The photo-realistic 3D consistent rendering ability of
NeRF has sparked great interest in facial avatar reconstruc-
tion. However, the standard formulation in [30] is proposed
for static scene representation. And it requires multi-view
input images for faithful reconstruction. To handle the non-
rigid dynamics in facial images captured by a monocular
camera, the work of [34] proposed to learn a continuous de-
formation field, which learns a per-frame latent code and
maps each observation coordinate into a canonical template
canonical coordinate space. Furthermore, HyperNeRF [35]
proposed to learn a higher-dimensional deformation field to
better model the topology variations. After learning, they
can be used for novel view synthesis. However, they don’t
support facial editing.

Controllable face generation. Controllable face genera-
tion is a key building block for many applications in com-
puter graphics and computer vision. The explicit 3D Mor-
phable Face Model (3DMM) [3, 4, 25] uses linear sub-
space to control pose, expression, and appearance indepen-
dently. It provides fine-grained control over poses and ex-
pressions. However, it only models the face region and
lacks personalized attributes, including hair, eyes, and ac-
cessories such as glasses. It suffers from artifacts when
used for photo-realistic rendering. Apart from the explicit
3D-based models, there have been several works that di-
rectly animate images in 2D space for face reenactment
[19, 24, 31, 37, 39, 42, 45–48, 50, 53]. They are usually re-
alized by learning a warping field from driven information
(e.g., image or audio) or training an encoder-decoder-based
image translation network. These methods, however, have
to learn 3D deformation from 2D input. They couldn’t pro-
vide free-view synthesis and suffered from artifacts, espe-
cially for large poses or expressions.

Recently, some works have been proposed for control-
lable NeRF-based facial avatar reconstruction. They are
realized by optimizing a conditional deformation field and
scene representation based on 3DMM coefficients or au-
dio signals. For example, the work of [11] first transforms
the camera space point into canonical space by the esti-
mated pose parameters and then regresses its color and den-
sity conditioned on the 3DMM expression coefficients. In
RigNeRF [2], the deformation field is realized as a combi-
nation of an explicit 3DMM deformation field and a pre-
dicted residual. The deformed point, as well as the 3DMM

expression and pose coefficients, are sent to an MLP to pre-
dict the color and density. To enable semantic control over
facial expression, the work of [13] learns a series of neural
radiance fields as the basis and associates them with expres-
sion coefficients extracted by mesh-based face models. As
for the audio-driven facial avatar, AD-NeRF [17] augments
the 5D input with an audio feature for neural scene repre-
sentation. DFRF [41] proposed an audio-driven few-shot
talking head synthesis method. It learns a dynamic NeRF
condition on both audio features and 2D appearance im-
ages. These methods, however, directly construct a dynamic
facial neural radiance field from a monocular video. Con-
sidering the non-rigidly facial dynamics and missing 3D in-
formation in monocular videos, it is challenging to obtain
high-fidelity multi-view-consistent results. Instead of di-
rectly learning the dynamic radiance field, we propose to
utilize the rich generative prior of 3D-GAN and learn facial
avatars by latent space inversion and navigation.

3D-aware Generative Neural Networks. Generative ad-
versarial networks have achieved great success in image
generation. While most existing works focus on 2D im-
ages [14, 20–22, 32], recently 3D-aware generation has at-
tracted more and more attention [5,6,16,33,43,55]. The rep-
resentative method, EG3D [5], significantly improves the
quality of 3D-aware generation. EG3D inherits the high-
fidelity 2D image generation ability of StyleGAN [22] and
the multi-view-consistent geometry of neural volume ren-
dering. It is shown that after training on FFHQ [21], a real
world large-scale face dataset, EG3D obtains state-of-the-
art 3D face synthesis. And its latent space constitutes a
generative prior for multi-view-consistent images and 3D
geometry. Inspired by these, we propose to learn a person-
alized 3D generative prior to reconstruct the specific char-
acteristic of a given individual faithfully.

3. Proposed Method
3.1. Preliminary of 3D-GAN

Our work builds on the multi-view-consistent image
synthesis ability of 3D-GAN. The state-of-the-art method,
EG3D [5], proposes an expressive hybrid explicit-implicit
network based on a 2D CNN generator and neural ren-
dering. For a 3D-aware generation, each random sampled
latent code is first sent to a pose-conditioned StyleGAN2
generator to learn a tri-plane 3D representation. It then
learns a neural radiance field based on it and generates a
low-dimensional raw image by volume rendering. Finally,
a super resolution module is adopted to generate the high-
resolution result. After being trained on FFHQ [21], EG3D
can be used for the unsupervised generation of multi-view-
consistent facial images. Its latent space constitutes a gen-
erative prior for facial images with consistent 3D geometry.
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Figure 2. Overall framework of our proposed method. We assign a learnable personalized basis with k vectors as B = [b1, · · · ,bk] ∈
Rk×d in the W+ space. The input information (RGB frame, 3DMM expression coefficients, or audio features) is projected into the low-
dimensional subspace SB by an encoder f as w = f(x) ·B. w is then sent to 3D-GAN generator for free view synthesis.

A closer look at EG3D latent space. EG3D [5] is an
unconditioned generation network and doesn’t provide any
controls over identity or expression. For generation w.r.t. to
a specific facial image, one can invert the input image back
into the latent space. Given the inverted latent code, novel
view synthesis can be realized by changing the camera pose
during generation. However, recovering the 3D geometry
from a single image is an ill-posed problem. Directly in-
verting facial images to the generic latent space of EG3D
cannot faithfully reconstruct the specific characteristics of
that individual, an example is given in Figure 3. In addi-
tion, it doesn’t support face reenactment.

3.2. Learning A Personalized Generative Prior

We aim to reconstruct a 3D-aware animatable facial
avatar based on a monocular video. To take advantage of
the rich generative prior of 3D-GAN as well as maintain the
personalized characteristics, we propose to learn a person-
alized generative prior. Our overall framework is given in
Figure 2.

Specifically, we define the personalized generative prior
as a local, low-dimensional, and smooth subspace in the la-
tent space. The low-dimensional property is expected as the
facial images of a specific identity share common proper-
ties.

We consider W+ space of 3D-GAN and assign a
learnable personalized basis with k vectors as B =
[b1, · · · ,bk] ∈ Rk×d in the W+ space. The subspace that
spanned by B is defined by

SB =
{
w|w =

∑k
i=1 αibi,α ∈ R1×k

}
, (1)

where α represents the coefficient w.r.t. basis vectors.
Rather than directly inversing each facial image x into the

high-dimensional W+ space, we project x into the low-
dimensional subspace SB, by learning an encoder f :
x → R1×k to regress the coefficient α of x. Finally,
w = f(x) · B is sent to 3D-GAN generator for free view
synthesis, as x̂ = G(f(x),B,p), where G is the 3D-GAN
generator and p is the camera pose used for rendering.

3.3. Training Objective

Given a monocular face video X = {Xt}Tt=1 ∈
RT×H×W×3 of an individual with T frames, each frame
of which contains different expressions and poses. The en-
coder f and the basis B are jointly optimized for a faithful
reconstruction of X . Let X̂t = G(f(Xt),B,pt) and pt

is the camera pose extracted from Xt, we calculate the L2

loss and LPIPS loss [52] between Xt and Xt,

L =
∑T

t=1 L2(X
t, X̂t) + λlpipsLlpips(X

t, X̂t). (2)

During training, we further constraint the basis vectors to
be orthogonal to each other. The orthogonal constraint can
largely boost the disentanglement of the basis. We provide
an visualization of the basis in Figure 6. For the genera-
tor G, we adopt the pretrain model [5] that was learned on
FFHQ. Similar to PTI [40], we slightly modify the gener-
ator to maintain the personalized characteristics better. We
use a two-stage training strategy: 1) freezing the parameters
of the generator and updating the encoder f and the basis
B, and 2) turning on the gradient of the generator to adapt
it to the personalized subspace.

Generalize to testing frames. The local and low-
dimensional personalized subspace provides a good gener-
alization to facial variations beyond the training frames. Af-
ter training, the encoder f can be directly applied to testing
frames with different facial expressions to generate high-
fidelity facial avatar reconstruction.
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3.4. Face Reenactment with Various Signals

In the above section, we learn an encoder to project each
facial image into the personalized latent space, to provide
faithful 3D-aware reconstruction. Indeed, the input signal
is not limited to facial images. Here, we provide two real-
izations with 3DMM coefficients and audio signals as input
information, respectively. After training, they can be used
for 3DMM or audio driven 3D-aware face reenactment.

3DMM-driven face reenactment: we extract 3DMM
expression coefficient β ∈ R76 from each image, form-
ing training pairs of {(Xt,βt)}Tt=1. The coefficient α
is learned by α = fe(β). Audio-driven face reenact-
ment: following [17], we use DeepSpeech [1] to extract
a 29-dimensional feature for each 20ms audio clip. To
eliminate the noisy signals from raw input, we concatenate
the features of sixteen neighboring audio clips, resulting in
δ ∈ R16×29 for the audio feature of the current frame. We
then project δ into the latent space by α = fa(δ).

The realization of fe and fa are given in the supplemen-
tary materials. We follow the training process in Sec.3.3
for the learning of fe, fa and their corresponding basis. We
compare to existing 3DMM and audio-driven face reenact-
ment in Sec.4.3 and Sec.4.4.

4. Experiments
Our method performs 3D facial reconstruction with a

monocular video sequence, and the modeled face can be
driven by various input signals. In this section, we first in-
troduce the experimental settings. Then, we perform the
reconstruction with RGB images, 3DMM coefficients, and
audio signals as inputs, respectively. We also compared our
proposed method with several baseline models both qualita-
tively and quantitatively. Finally, we performed several ab-
lation studies to analyze the key elements of our approach.

4.1. Implementation Details

Data preprocessing. The training video needs to be pro-
cessed before face modeling. For each frame of the video,
we use an off-the-shelf pose estimator [10] to estimate its
corresponding camera intrinsic and extrinsic matrices as the
input to the EG3D generator. The flattened 4 × 4 camera
extrinsic matrix and flattened 3 × 3 camera intrinsic ma-
trix are concatenated into a 25-dimensional vector as the
camera input to the EG3D generator. Then, we extract the
appropriately-sized crops from each frame and resize each
cropped image to the resolution of 512× 512.

Training details. For each video, we train the network
for 200k iterations to obtain a personalized face model. The
parameters of the generator are not optimized in the first 50k
rounds. We train our model on a single Nvidia Telsa V100
GPU. We use the Adam optimizer [23] to train the network,
and the learning rate is set to 3e−4, β1 and β2 set to 0.9 and

Figure 3. Visualizations of facial reconstruction. The leftmost
column is the input image. For PTI and ours, we plot rendered
images with the input camera view (the big plot on the left side)
and two novel views (the two small images on the right side).

Table 1. Quantitative evaluation of our method and PTI for 3D-
aware face reconstruction.

Methods
Metrics

PSNR ↑ SSIM↑ LPIPS↓
PTI [40] 32.62 0.959 0.037

Ours RGB 34.70 0.979 0.024

0.999, respectively. The batch size is 2 and λlpips = 5. The
number of basis vectors in our method is set to k = 50.

4.2. Results of RGB-based Face Reconstruction

We first conduct experiments with RGB frames as input.
We adopt the three monocular videos used in NerFACE [11]
for evaluation. For each video, we extract the first 2 min-
utes (∼ 6000 frames) for training and the left 20 seconds (∼
1000 frames) for testing. After training, we directly send
each testing frame into the learned encoder to obtain its la-
tent code, which is then sent to the generator for novel view
synthesis. To better verify the face reconstruction perfor-
mance, we also present the performance of PTI [40], which
is an optimization-based GAN inversion method. For each
testing frame, PTI optimizes both the latent code and the
EG3D generator for a faithful reconstruction.

To measure their quality, we conduct a quantitative
evaluation using several common metrics, including Peak
Signal-to-Noise Ratio (PSNR), Structure Similarity Index
(SSIM), and the Learned Perceptual Image Patch Similarity
(LPIPS) [52]. As we don’t have novel view ground truth
images, we calculate these metrics under the same views of
the testing frames.

The numerical results are given in Table 1. Compared
to PTI, we obtain superior performance under all three met-
rics. In Figure 3, we show some rendered images with the
camera views of testing frames and two randomly picked
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Figure 4. Visualizations of 3DMM-driven face reenactment under the ground truth camera views. While the compared methods suffer
from severe identity changes and distortions, our method obtains faithfully face reenactment performance.

novel views. Our method can better maintain personalized
characteristics, such as the mouth area. Since PTI inverts
each frame individually, only the visible view can be fit-
ted for each frame, leading to severe artifacts under the
new view synthesis and poor ID preservation. In contrast,
our method obtains superior multi-view-consistent results.
These results demonstrate that the learned personalized gen-
erative prior enables faithful face reconstruction.

4.3. Results of 3DMM-driven Face Reenactment

We then evaluate the performance of 3DMM-driven face
reenactment. We compare to the 3D-aware methods, Neural
Head Avatar (NHA) [15], IMAvatar [54], HeadNeRF [18]
and NerFACE [11]. We also provide the results of FOMM
[42], a 2D-based face animation method. Note that FOMM
doesn’t support novel view synthesis. As in the previous
section, we adopt the three monocular videos used in Ner-
FACE. We extract the 3DMM expression coefficients from
each frame for training and testing.

The average results in terms of PSNR, SSIM, and LPIPS
are listed in Table 2. The 3D-aware methods NerFACE,
NHA, IMAvatar, and ours obtain better performance than
FOMM. With the help of the high-quality prior of the gen-
erative model, our method significantly boosts the perfor-
mance of 3DMM-driven face reenactment.

We also show a qualitative comparison in Figure 4,
where all results are rendered under the same view of the
ground truth image. It can be seen that the results of FOMM
have obvious artifacts, and the identity of the animated face
is altered a lot from the ground truth. The results of Ner-
FACE and IMAvatar are too smooth, and the details of the

Table 2. Quantitative evaluation of our method in comparison to
3DMM-driven face reenactment.

Methods
Metrics

PSNR ↑ SSIM↑ LPIPS↓
FOMM [42] 27.75 0.919 0.059

NerFACE [11] 29.76 0.931 0.053
NHA [15] 31.52 0.954 0.039

IMAvatar [54] 32.03 0.957 0.040
HeadNeRF [18] 25.75 0.874 0.113

Ours 3DMM 34.38 0.972 0.027

facial textures are not well reconstructed. NHA cannot
faithfully reconstruct facial characteristics, including eye-
glasses and mouth areas. In comparison, our method can
better maintain facial characteristics and generate faithful
face reenactment. In Figure 1, we present some novel view
results of NerFACE and ours. The results of NerFACE are
blurred and distorted. It fails to generate high-quality ren-
derings under novel views, while our method obtains multi-
view-consistent images faithfully.

4.4. Results of Audio-driven Face Reenactment

Following the practice of [17], we perform audio-
driven experiments on three public videos collected from
YouTube. The position of the camera is fixed and the reso-
lution of the videos is 512×512. Each video is divided into
two segments, the training set and the testing set, with no
overlap between them. We extract their audio features for
training and testing.

We compare our method with two audio-driven NeRF
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Figure 5. Visualizations of audio-driven face reenactment under the ground-truth camera views. The mouth areas are zoomed-in for better
viewing. We obtain more faithful rendering, especially for the shape and appearance in the mouth areas.

Figure 6. Visualizations of the basis vectors learned with and without the orthogonal constraint. The orthogonal constraint can largely
boost the disentanglement of the basis vectors.

Table 3. Quantitative evaluation of our method in comparison to
audio-driven face reenactment.

Methods
Metrics

PSNR ↑ SSIM↑ LPIPS↓ SyncNet↑
Ground Truth - - - 7.653

AD-NeRF [17] 29.69 0.934 0.057 1.238
DFRF [41] 30.23 0.939 0.042 4.142
Ours Audio 32.57 0.957 0.035 4.866

methods: AD-NeRF [17] and DFRF [41]. DFRF is a few-
shot method. To make a fair comparison to it, we use a
short 20 seconds video clip for training for all methods.
In addition to the image quality metrics of PSNR, SSIM

and LPIPS, SyncNet [9] is further used to measure audio-
visual synchronization. The average metrics of the three
videos are given in Table 3. In the audio-driven scenario,
our method also outperforms the previous methods with a
significant margin for all four evaluation metrics. Besides,
we provide some rendered images in Figure 5. We highlight
the mouth areas that are most significant to audio-driven
face reenactment. Compared to AD-NeRF and DFRF, we
obtain much better mouth shapes and teeth. We also pro-
vide some novel view results of DFRF and ours in Figure 1.
Under novel views, the distortion of DFRF is even worse.
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Figure 7. Ablation study on the number of basis vectors. The mouth areas are zoomed-in for better viewing. As the number of basis vectors
increases, facial details, such as teeth and wrinkles, can be better maintained.

4.5. Ablation Studies

The key to our approach is to learn a basis to represent
the personalized generative prior. We conduct ablation stud-
ies based on RGB-based face reconstruction to analyze the
properties of the basis vectors.

Visualization of the basis vectors. We require the set of
basis vectors to be orthogonal to each other during training.
In Figure 6 we make a visualization of the learned basis. We
also show the visualization results for a basis learned with-
out the orthogonal constraints. It can be seen that the basis
vectors are coupled together when there is no orthogonal
constraint. With the orthogonal constraint, the basis vectors
are disentangled and show better semantic meanings. The
quantitative comparison results are shown in Table 4, which
demonstrates that the reconstruction quality is much better
with the orthogonal constraint.

Number of the basis vectors. We further explore the
effect of the number of basis vectors. We vary the num-
ber of basis vectors by 5, 10, 20, and 50. The quantitative
comparisons in terms of PSNR, SSIM, and LPIPS are given
in Table 4. And Figure 7 shows some rendered images un-
der the different values of k. We highlight the mouth areas
for better visualization. As the number of basis vectors in-
creases, the model is more capable of representing facial
details and obtains better rendered quality.

Transferability of the basis. We learn different basis
and encoders for each input modality. We further explore
the transferability of the basis by learning a shared basis
among input modalities. Experiments show that our basis
can be shared between different modes without affecting the
results.

5. Conclusions
In this work, we propose to utilize 3D-aware generative

prior for facial avatar reconstruction and reenactment from

Table 4. Quantitative comparison of the ablation study on the or-
thogonal constraint and the number of basis vectors.

Schemes
Metrics

PSNR ↑ SSIM↑ LPIPS↓
k = 50 (w/o ortho) 33.36 0.962 0.037

k = 5 (w ortho) 28.64 0.927 0.055
k = 10 (w ortho) 30.83 0.946 0.042
k = 20 (w ortho) 33.98 0.965 0.033
k = 50 (w ortho) 34.70 0.979 0.024

monocular videos. We propose an efficient method to learn
a local and low-dimensional subspace in the latent space of
3D-GAN, for better maintenance of personalized character-
istics. The learned personalized generative prior provides
a good constraint for 3D-aware generation, which is help-
ful for modeling the complex facial dynamics and missing
3D information in monocular videos. We conduct extensive
experiments, including RGB-based face reconstruction and
3DMM and audio-driven face reenactment. Compared to
existing works, we obtain superior performance both quan-
titatively and qualitatively.

Limitations. There are still some limitations. Firstly,
the monocular video needs to contain a variety of facial ex-
pressions. Otherwise, the reconstructed results tend to be
biased towards mild expressions. Secondly, our method is
based on pre-trained generative networks that currently do
not decouple lighting, so it also performs poorly under some
extreme lighting conditions. Relevant experimental results
can be found in the supplementary materials.
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