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Abstract

Test-time adaptation (TTA) is the problem of updating
a pre-trained source model at inference time given test in-
put(s) from a different target domain. Most existing TTA
approaches assume the setting in which the target domain
is stationary, ie., all the test inputs come from a single
target domain. However, in many practical settings, the
test input distribution might exhibit a lifelong/continual
shift over time. Moreover, existing TTA approaches also
lack the ability to provide reliable uncertainty estimates,
which is crucial when distribution shifts occur between the
source and target domain. To address these issues, we
present PETAL (Probabilistic lifElong Test-time Adapta-
tion with seLf-training prior), which solves lifelong TTA us-
ing a probabilistic approach, and naturally results in (1) a
student-teacher framework, where the teacher model is an
exponential moving average of the student model, and (2)
regularizing the model updates at inference time using the
source model as a regularizer. To prevent model drift in
the lifelong/continual TTA setting, we also propose a data-
driven parameter restoration technique which contributes
to reducing the error accumulation and maintaining the
knowledge of recent domains by restoring only the irrele-
vant parameters. In terms of predictive error rate as well as
uncertainty based metrics such as Brier score and negative
log-likelihood, our method achieves better results than the
current state-of-the-art for online lifelong test-time adap-
tation across various benchmarks, such as CIFAR-10C,
CIFAR-100C, ImageNetC, and ImageNet3DCC datasets.
The source code for our approach is accessible at ht tps :
//github.com/dhanajitb/petal.

1. Introduction

Deep learning models exhibit excellent performance in
settings where the model is evaluated on data from the same
distribution as the training data. However, the performance
of such models degrades drastically when the distribution of
the test inputs at inference time is different from the distri-
bution of the train data (source) [11, 16,36]. Thus, there is
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a need to robustify the network to handle such scenarios. A
particularly challenging setting is when we do not have any
labeled target domain data to finetune the source model, and
unsupervised adaptation must happen at test time when the
unlabeled test inputs arrive. This problem is known as test-
time adaptation (TTA) [28, 35, 38]. Moreover, due to the
difficulty of training a single model to be robust to all po-
tential distribution changes at test time, standard fine-tuning
is infeasible, and TTA becomes necessary. Another chal-
lenge in TTA is that the source domain training data may
no longer be available due to privacy/storage requirements,
and we only have access to the source pre-trained model.

Current approaches addressing the problem of TTA
[28, 35, 38, 41] are based on techniques like self-training
based pseudo-labeling or entropy minimization in order to
enhance performance under distribution shift during test-
ing. One crucial challenge faced by existing TTA methods
is that real-world machine learning systems work in non-
stationary and continually changing environments. Even
though the self-training based approaches perform well
when test inputs are from a different domain but all still
ii.d., it has been found that the performance is unstable
when target test inputs come from a continually changing
environment [32]. Thus, it becomes necessary to perform
test-time adaptation in a continual manner.

Such a setting is challenging because the continual adap-
tation of the model in the long term makes it more diffi-
cult to preserve knowledge about the source domain. Con-
tinually changing test distribution causes pseudo-labels to
become noisier and miscalibrated [10] over time, leading
to error accumulation [3] which is more likely to occur if
early predictions are incorrect. When adapting to new test
input, the model tends to forget source domain knowledge,
triggering catastrophic forgetting [27, 31, 33]. Moreover,
existing TTA methods do not account for model/predictive
uncertainty, which can result in miscalibrated predictions.

Recently, [41] proposed CoTTA, an approach to address
the continual/lifelong TTA setting using a stochastic pa-
rameter reset mechanism to prevent forgetting. Their reset
mechanism however is based on randomly choosing a sub-
set of weights to reset and is not data-driven. Moreover,
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Figure 1. Left: Problem setup of online lifelong TTA. During adaptation on test input, the source domain data is no longer available, and
only the model pre-trained on the source domain is provided. Test inputs from different domains arrive continually, and the model has no
knowledge about change in the domain. Right: Our proposed probabilistic framework for online lifelong TTA. We obtain a source domain
pre-trained model from the posterior density learned using training data from the source domain. The posterior density is used to initialize
the student model. A test sample is provided as input to the student model. Using multiple augmentations of a test sample, we obtain
augmentation averaged prediction from the teacher model. The loss term consists of log posterior and cross-entropy terms utilizing student
and teacher model predictions. We utilize backpropagation to update student model and exponential moving average for teacher model.

their method does not take into account model/predictive
uncertainty and is therefore susceptible to overconfident and
miscalibrated predictions.

To improve upon these challenges of continual/lifelong
TTA, we propose a principled, probabilistic framework for
lifelong TTA. Our framework (shown in Fig. 1 (Right))
constructs a posterior distribution over the source model
weights and a data-dependent prior which results in a self-
training based cross-entropy loss, with a regularizer term in
the learning objective. This regularizer arises from terms
corresponding to the posterior, which incorporates knowl-
edge of source (training) domain data.

Moreover, our framework also offers a probabilistic per-
spective and justification to the recently proposed CoTTA
[41] approach, which arises as a special case of our proba-
bilistic framework. In particular, only considering the data-
driven prior in our approach without the regularizer term,
corresponds to the student-teacher based cross-entropy loss
used in CoTTA. Further, to improve upon the stochastic
restore used by [41], we present a data-driven parameter
restoration based on Fisher Information Matrix (FIM). In
terms of improving accuracy and enhancing calibration dur-
ing distribution shift, our approach surpasses existing ap-
proaches in various benchmarks.

Main Contributions

1. From a probabilistic perspective, we arrive at the
student-teacher training framework in our proposed
Probabilistic lifElong Test-time Adaptation with seLf-
training prior (PETAL) approach. Inspired from the

self-training framework [19,42], the teacher model is
the exponential moving average of the student model,
as depicted in Fig. 1 (Right).

2. The student-teacher cross-entropy loss with a regular-
izer term corresponding to posterior of source domain
data naturally emerges in the probabilistic formulation.

3. We propose a data-driven parameter restoration based
on Fisher Information Matrix (FIM) to handle error ac-
cumulation and catastrophic forgetting.

2. Problem Setup and Background

In this section, we define the notation used, the problem
setup of lifelong/continual TTA, and the basic probabilistic
framework on which our approach is based.

2.1. Problem Setup

Let x denote the inputs sampled i.i.d from a generative
model having parameters v, and p(y|x, #), having parame-
ters 6, be the conditional distribution from which the corre-
sponding labels are sampled. We denote the prior distribu-
tions of 6 and ¢ using p(#) and p(v)), respectively.

A typical test-time adaptation setting is as follows: We
have a model with parameters 6 trained on the source train-
ing data X = {x,,, 9, })_,. The aim is to adapt 6 and per-
form well on the test inputs ¢ = {x% }<  from an unla-
beled target domain d. In case of multiple target domains,
the adaptation happens for each target domain separately:
90 — Hd.
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In lifelong/continual test-time adaptation, unlabeled test
inputs from D different target domains {4? : d =
1,---, D} arrive continually, and, thus, the model can uti-
lize only the data available for the current target domain.
Note that there is no information available to the learner
about the change in domain. At step ¢, for a test input x,,,
we make predictions using p(ymm, |Xm,0:) as well as adapt
the parameters for future steps, i.e., ; — 6;41. Note that
there is a continual domain shift in the data distribution of
X.,. Moreover, the model evaluation is performed based on
predictions obtained online. Fig. 1 (Left) depicts the online
lifelong TTA problem setup.

2.2. The Underlying Probabilistic Framework

In this section, we review standard probabilistic discrim-
inative models for supervised learning and semi-supervised
learning (SSL), which incorporates unlabeled data via a
partly data-dependent prior. Then we discuss a formulation
of self-training based Bayesian SSL with partly data-driven
cross-entropy prior. Further, we describe a modification to
this Bayesian SSL formulation to handle the situation when
the distribution of unlabeled inputs is different from the la-
beled inputs (covariate shift).

In Section 3, we describe how this Bayesian SSL formu-
lation can be further extended for our problem, i.e., the life-
long/continual TTA setting where we learn a source model
using only labeled data, and then the model has to predict
labels of unlabeled test inputs coming from target domains
with different distributions.

Bayesian Supervised Learning
The Bayesian setup for supervised learning typically as-

sumes that we are given labeled data D = {x,,,yn}Y 1,
and we estimate 6 using its posterior distribution
N
p(01D) < p(60) [ ] p(ynlxn, 0). (1
n=1

Given a novel test input x 41, we make predictions us-
ing posterior predictive distribution obtained by marginal-
izing over the posterior distribution p(yni1|Xn41) =
J p(yn1|xn+1,0)p(0]D)do.

Bayesian Semi-Supervised Learning
Here, we are provided with unlabeled data along with some
labeled data. We denote the unlabeled data points as U =
{xm}M_,. To circumvent the inability to use unlabeled
data while inferring €, one needs to make assumptions about
the dependency between distributions of inputs and labels.
To this end, [9] proposed a prior that is partly
data-dependent via the inputs x: p(0)v) x
p(0) exp(—AHg  (y|x)), where p(f) is the prior in
Eq. 1, and H is the conditional entropy of the class label.
Here, partly data-dependent prior refers to a prior defined
using only the input x treated as given, not the label y

which is treated as a random variable.

Bayesian Semi-Supervised Learning with Self-Training
The self-training framework [19,42] has demonstrated sig-
nificant success in semi-supervised learning. Our proposed
framework is also based on self-training wherein we use
an exponential moving average of the parameters 6 of the
student model p(y|x, 8) (which is initialized with the source
pre-trained model parameters 6), and refer to the averaged
model as the teacher model (0'): 6; | = 70; + (1 —7)0 41,
where 7 is the smoothing factor. For brevity, we will omit
the time step index ¢ from here onwards.

In the semi-supervised setting, the teacher model can be
utilized to obtain augmentation-averaged pseudo-labels 3’
corresponding to an unlabeled input x. To prevent error
accumulation, augmentation is only used when the domain
difference is substantial. Defining §' = p(y|x,0'); ¥’ =
= Zf; (Y| (x), 0'), the pseudo-label is defined as

, {y if C(p(ylx, 60) = 7)
Yy =17, .
y', otherwise.

(@)

Here, K is number of times augmentation is applied, «;()
is augmentation function, C() gives the confidence of the
prediction, and 7 is threshold for selecting confident pre-
dictions. The prediction confidence of current input using
source domain pre-trained model 8y gives us an estimate of
the domain difference between source and target domain.

Using these pseudo labels, we formulate the following
partly data-driven cross-entropy prior

p(01Y) o< p(8) exp(=AHy, (3, y|x))
= p(0) exp(AExrp(x ),y ~p(ylx,01) 108 (Y], O)]).-

Here, y = p(y|x, 6) is the prediction of the student model
and H*® is the conditional cross-entropy of labels condi-
tioned on the inputs. This cross-entropy term leverages the
knowledge from the teacher model as it is incorporated into
the partly data-driven prior.

3)

Bayesian Semi-Supervised Learning with Unlabeled
Data Distribution Shift
The above semi-supervised learning formulation assumes
that the unlabeled inputs come from the same distribution
as the labeled inputs. To handle the situation when the
unlabeled inputs come from a different distribution, we in-
troduce additional generative parameters v while using the
same conditional model p(y|x, #) parameters 6 for both dis-
tributions. Unlabeled inputs X which come from a different
distribution, are assumed to be sampled from the generative
model with parameters 1.

Incorporating the additional generative parameters ) in
Eq. 3, the prior becomes

P01, ) o< p(8) exp(—AH, (v, y[x))
exp(—AHY 5 (v, y[%)). @)
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The conditional entropies present in Eq. 4 require expec-
tations over the distributions of the (labeled and unlabeled)
inputs.

Replacing p(x|¢) and p(X|+)) with the empirical distri-
butions of x and X, we get

2\>/

p(O,¥) o p(f eXp<

N
Z (Y Yn |%n, ))

i al er / =
exp | —77 Yrn> Ym [Zms0) | . (D)

m=1

Using Eq. 5 as the prior in Eq. 1 and taking logarithm
on both sides (ignoring additive normalization constants),
the new posterior distribution of the network parameters be-
comes: log p(8|D,U) = logp( )+ZnN 1 log p(yn|xn, 0)—
N Zn B (s ynlxn) — 31 Zm B (Y Y [Rim).-

Since the labeled data is already used in the likelihood
term, in the prior we ignore the cross-entropy term for the
labeled data by setting A = 0. Thus, the log-posterior den-
sity is simplified to

N
= logp(0)+ > 10g p(yn|Xn, 0)

n=1
5\ M
_M Z er(y;ﬁbaym|)—(m)~ (6)

m=1

3. Probabilistic Test-Time Adaptation

log p(0|D,U)

Our formulation for TTA is similar to the formulation
we described above for the problem of Bayesian semi-
supervised learning with unlabeled data distribution shift,
with a key difference. In contrast to Bayesian SSL in which
labeled and unlabeled data are available during training, in
test-time adaptation, we need to predict labels of the test
inputs from a different domain, but we only have access to
the source model weights without the source domain train-
ing data. In our probabilistic approach, we assume that the
source model is given in form of the approximate posterior
distribution ¢(#) over the weights of the source model

q(0) = p(0|D). ©)

At test-time, we use ¢(0) to represent the source do-
main knowledge. Substituting Eq. 1 for the posterior of the
source domain data, we take the logarithm in Eq. 7 and sim-
plify further to get the following

N
+ ) 10gp(yalxn,0).  (8)

n=1

log q(0) = log p(0)

For our TTA setting, substituting this approximate pos-
terior above in Eq. 6, the log-posterior density with both

labeled (source) and unlabeled (test inputs) data becomes
5\ M
= log q(6) = 7 > H (4}, ymIR).

log p(0|D,U)

Since posterior inference for deep neural networks is
challenging, we leverage the Gaussian posterior approxi-
mation based on the SWAG-diagonal [26] method. It uses
the SGD iterates to construct the mean and (diagonal) co-
variance matrix of the Gaussian posterior approximation
and requires minimal changes to the training mechanism on
source domain training data.

3.1. Parameter Restoration

Stochastic Restoration

In lifelong TTA, in order to reduce the error accumulation
over the long term in self-training and handle catastrophic
forgetting, [41] proposed stochastic restoration of weights
by additionally updating the parameters. Let 67 denote the
flattened parameter 6 of the student model, and D be the
dimension of #/. After the gradient update at time step ¢,
stochastic restore further updates the parameters:

m ~ Bernoulli(p), (10)
m) G0/, ;. (11)

Here, © is element-wise multiplication, and p is stochastic
restore probability. m is mask to determine which parame-
ters within Htf 1 to restore to original source weight 95 .

0, =mo o) +(1-

Fisher Information Based Restoration

To improve upon stochastic restoration, we propose a data-
driven parameter restoration. Fisher Information Matrix
(FIM) is widely used as a metric of parameter importance
for a given data [15]. Thus, we use FIM, F', of the stu-
dent model parameterized by 6 as a measure of the im-
portance of the parameters. For a given time step ¢

with unlabeled test inputs batch B = {X m}fffi‘ Z\gllfl’
consider the following diagonal approximation of FIM

F = Diag ((VoL)(VeL)"), where, L = logq(f) —

1)|B -
il fojt\gll H*(y,,, Ym|Xm). Here, y,, and y,, are the
teacher and student model predictions, respectively. Note
that F has the same dimension as #. Thus, upon using FIM

based restore, the parameter restoration in Eq. 10 becomes

1, ifF, <7
m, = ,
P 0, otherwise. b

Here, v = quantile(F, ¢) is the threshold value which is the
d-quantile of F'. Thus, the elements in m corresponding to
FIM value less than v would be 1, implying that the cor-
responding parameters would be restored to original source
weight 9;0). The algorithm for PETAL is given in Algo-
rithm 1. Fig. 1 (Right) provides an overview of our ap-
proach PETAL.

=1,---,P. (12)
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Algorithm 1 Proposed Approach PETAL

Algorithm 2 Adapt

Input: Training dataset X' = {x,,, ¥, }\_;;

Test domain data ¢ = {x% }M2  d=1,--- . D
Output: Prediction )¢
Training:
I: Compute ¢(0) ~ p(6]X)

Continual Adaptation:
2: Initialize time step ¢ = 0, prediction set yi=10
3: Initialize student model 6y = maxg log ¢(0)
4: Initialize teacher model 6], = 6,
5: ford=1,--- ,Ddo
6: for each batch B € /? do
7 01, 0cv1, By = Adapt(0;, 0+, 00, B, q(0), 1)
8 yd — yd U By
9 t=t+1
10: end for
11: end for

4. Related Work
4.1. Unsupervised Domain Adaptation

The goal of unsupervised domain adaptation (UDA)
[6,24,30,40] is to enhance the performance of the learn-
ing model when there is a change in distribution between
the training data domain and the test data domain. UDA ap-
proaches often assume that the source and (unlabeled) target
domain data are accessible simultaneously. Most existing
methods address UDA by ensuring that the feature distribu-
tions [6,24,37] or the input spaces [12,44] of the source and
the target domains are brought closer.

4.2. Test-Time Adaptation

Some works also refer to TTA as source-free domain
adaptation. Recent works explore source-free domain [18,

,23] setting in which training data is unavailable and only
unlabeled data is available during adaptation. Test entropy
minimization (TENT) [38] starts from a source pre-trained
model and updates only the batch-norm (BN) parameters by
minimizing entropy in test predictions. [34] address TTA by
updating the source domain BN statistics using test input
statistics. Continual Test-Time Adaptation (CoTTA) [41]
addresses online lifelong TTA by employing weight aver-
aging and augmentation averaging, and random parameter
restoration back to source pre-trained model parameters. [8]
adapts to continually changing target domains by utilizing a
normalization layer to handle the out-of-distribution exam-
ples and balanced reservoir sampling to store the simulated
ii.d. data in the memory. It would be an interesting fu-
ture work to extend PETAL for the temporally correlated
test stream setting proposed by [8]. EATA [29] is another
related work that looks at preventing forgetting in the con-
text of TTA; however, EATA mainly focuses on preventing

Input: 0}, 6,6y, 5, q(0),t
Require: Number of augmentations K; learning rate 1;
Threshold for confident predictions 7;
Confidence function C; Cross-entropy weight \;
Quantile of FIM §; Augmentation function «;
Smoothing factor 7
Olltpllt: 92_,'_1, 0t+17 By
1: Initialize: H =0, B, =0
2: for each test input X € 5 do
3: Teacher model prediction: §' = p(y|x, ¢’)
4 Augmented Average: ' = + iKzl (Y|, (%), 6)
5 Augment based on domain gap:

,_ )y, it Clp(ylx, o) = 7)
y =<7 )
y', otherwise.
6: Using student model, predict: y = p(y|x, 0)
7: Update: H = H + H*(y/, y|X)
8 B, =B, U{y'}
9: end for B
10: Compute: £ = (log q(0) — ﬁ’ﬂ)
11: Adapt student model: 0,1 = 0; +nVoL
12: Update teacher model: 0; ,, = m6; + (1 — 7)0; 41
13: Compute FIM: F = Diag ((VoL£)(VoL)")
14: Compute mask m for resetting:
~ = quantile(F', J)

1, if F, <
mp = = q/ap:LaP
0, otherwise.

15: Reset updated student model back to source model:

9t+1 :m®90+(1—m)®0t+1

the forgetting of the source task model and is not designed
to handle forgetting in a lifelong TTA setting. Our work
PETAL is a principled probabilistic approach for lifelong
test-time adaptation that uses an approximate posterior dur-
ing test-time adaptation obtained from source domain data.
PETAL also offers a probabilistic perspective and justifica-
tion to CoTTA which arises a special case of PETAL.

Bayesian Adaptation for Covariate Shift (BACS) [46]
proposes a Bayesian perspective for TENT, which naturally
gives rise to the entropy term along with a regularizer that
captures knowledge from posterior density obtained from
training data. However, BACS only addresses standard TTA
setting, and regularized entropy minimization lacks the abil-
ity to handle error accumulation and catastrophic forgetting
encountered in lifelong TTA.
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Time t

5 2 2 s g 5 © 2

s s 5 3 $ § 5 5 3 % g £ 5 o &
Method ég, 5 §Q -;'-70 3 g S g & S g & g _&? 8 Mean
Source 7233 6571 7292 4694 5432 3475 42.02 2507 4130 26.01 9.30  46.69 2659 5845  30.30 43.51
BN Adapt 28.08 26.12 3627 1282 3528 14.17 1213 1728 1739 1526  8.39 12.63  23.76  19.66  27.30 20.44
Pseudo-label 26.70 22.10 3200 1380 3220 1530 12.70 17.30 17.30 1650 10.10 13.40 2240 18.90 25.90 19.80
TENT-online™ 2480 2352 3304 1193 3183 13.71 10.77 1590 16.19 13.67 17.86 1205 2198 1729 24.18 18.58
TENT-continual | 24.80 20.60 28.60 1440 31.10 1650 14.10 19.10 18.60 18.60 12.20 20.30 25.70 20.80 24.90 20.70
CoTTA 2392 2140 2595 11.82 2728 1256 1048 1531 1424 13.16  7.69 11.00 1858 13.83 17.17 | 16.29 (0.02)
PETAL (S-Res) 2344 2120 2550 11.80 27.22 12.54 1045 15.14 1431 12.89 7.61 10.72 1842 13.83 17.37 16.16 (0.02)
PETAL (FIM) 2342 21.13 2568 11.71 2724 1219 1034 1476 1391 1265 7.39 1049 18.09 1336 16.81 | 15.95 (0.04)

Table 1. Experimental results for CIFAR10-to-CIFAR10C online lifelong test-time adaptation task. The numbers denote the classification

error (%) obtained with the highest corruption of severity level 5. TENT-online uses domain information, denoted using +.

4.3. Continual Learning

The objective of Continual Learning (CL) is to learn
from a sequential series of tasks, enabling the model to re-
tain previously acquired knowledge while learning a new
task, preventing catastrophic forgetting [27,31,33]. Elastic
weight consolidation (EWC) [15] is a regularization-based
technique that penalizes parameter changes having a signif-
icant impact on prediction. [22] proposed learning without
forgetting (LwF), which preserves knowledge of previous
tasks using knowledge distillation. Gradient episodic mem-
ory (GEM) [25] maintains a limited number of samples to
retrain while constraining fresh task updates from interfer-
ing with prior task knowledge. [1,39] address the continual
semi-supervised learning problem where continually arriv-
ing tasks consist of labeled and unlabeled data.

5. Experiments

We thoroughly evaluate PETAL and compare it to
other state-of-the-art approaches on image classification
lifelong test-time adaptation benchmark tasks: CIFAR10-
to-CIFAR10C, CIFAR100-to-CIFAR100C, ImageNet-to-
ImageNetC, and ImageNet-to-Imagenet3DCC.

5.1. Benchmark Datasets

[11] developed CIFAR10C, CIFARI100C, and Ima-
genetC datasets to serve as benchmarks for the robustness
of classification models. In each dataset, there are 15 differ-
ent types of corruption and five different levels of severity.
These corruptions are applied to test images of original CI-
FAR10 and CIFAR100 [17] datasets and validation images
of original ImageNet [5] dataset. Further, we experiment
with Imagenet 3D Common Corruptions (Imagenet3DCC)
dataset, recently proposed by [14], which utilizes the geom-
etry of the scene in transformations, leading to more realis-
tic corruptions. Imagenet3DCC dataset consists of 12 dif-
ferent types of corruptions, each with five levels of severity.
Refer to Appendix for details.

In online lifelong TTA, we begin with a network trained
on CIFAR10, CIFAR100, and ImageNet clean training set

for the respective experiments. At the time of testing, the
model gets corrupted images online.

Following CoTTA, we continually adjust the source pre-
trained model to each corruption type as they sequentially
arrive, as opposed to conventional TTA in which the pre-
trained model is separately adapted to each corruption type.
We evaluate the model using online predictions obtained
immediately as the data is encountered. We follow the on-
line lifelong test-time adaptation setting for all the experi-
ments. For ImageNet-to-ImageNetC experiments, we eval-
uate using 10 different sequences of corruptions.

5.2. Model Architectures and Hyperparameters

Following TENT [38] and CoTTA [41], we adopt
pre-trained WideResNet-28 [45] model for CIFARI10-
to-CIFAR10C, pre-trained ResNeXt-29 [43] model for
CIFAR100-to-CIFAR100C, and standard pre-trained
ResNet-50 model for both ImageNet-to-ImagenetC and
ImageNet-to-Imagenet3DCC experiments from Robust-
Bench [4].

We utilize SWAG-D [26] to approximate the posterior
density from the source domain training data. SWAG-D ap-
proximates the posterior using a Gaussian distribution with
diagonal covariance from the SGD trajectory. Before adapt-
ing the model, we initialize it with the maximum a posteri-
ori (MAP) of the approximate posterior that corresponds to
the solution obtained by Stochastic Weight Averaging [13].
This is effectively the source domain pre-trained model.

We update all the trainable parameters in all experiments.
We use K = 32 number of augmentations. We adopt the
same augmentation confidence threshold described in [41].
For FIM based parameter restoration, we set the quantile
value § = 0.03. We refer the readers to the Appendix for
more details on the hyperparameters.

5.3. Baselines and Compared Approaches

To evaluate the efficacy of PETAL, we compare the
PETAL with CoTTA and five other methods in online life-
long test-time adaptation. Source denotes the baseline pre-
trained model that has not been adapted to test inputs. In BN
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Time t
~§ -~ $ ~ ) § <4 > 5 5 3 §
Method g £ 5 S g I S S & g g g ol & Mean
s ¥ £ & = £ % < S g § 5 5§ 0S

Source 73.00 68.01 3937 2932 5411 3081 2876 3949 4581 5030 29.53 5510 3723 7469 41.25 46.45
BN Adapt 42.14 40.66 4273 27.64 4182 29.72 2787 3488 3503 4150 2652 3031 3566 3294 41.16 35.37
Pseudo-label 38.10 36.10 40.70 3320 4590 3830 3640 44.00 4560 52.80 4520 53,50 60.10 58.10 64.50 46.20
TENT-continual | 37.20 35.80 41.70 3790 51.20 4830 4850 5840 63.70 71.10 7040 8230 88.00 88.50 90.40 60.90
CoTTA 40.09 37.67 3977 2691 37.82 28.04 2626 3293 31.72 4048 2472 2698 3233 28.08 33.46 | 32.48(0.02)
PETAL (S-Res) 38.37 3643 38.69 2587 37.06 27.34 2555 32,10 31.02 3889 2438 2638 31.79 27.38 3298 | 31.62(0.04)
PETAL (FIM) 38.26 3639 38.59 2588 36.75 27.25 2540 32,02 30.83 3873 2437 2642 31.51 2693 32.54 | 31.46 (0.04)

Table 2. Experimental results for CIFAR100-to-CIFAR100C online lifelong test-time adaptation task. The numbers denote the classifica-
tion error rate (%) obtained with the highest corruption of severity level 5.

Adapt [21,34], the network parameters are kept frozen, and
only Batch Normalization statistics are adapted to produce
predictions for test inputs. Pseudo-label updates the Batch-
Norm trainable parameters with hard pseudo-labels [19].
TENT-online denotes the TENT [38] approach in this set-
ting, but it has access to extra information about the change
in the domain and, thus, resets itself to the original pre-
trained model upon encountering test inputs from the new
domain and adapts afresh. But this additional knowledge
is unavailable in real-life scenarios. TENT-continual has no
extra information about domain change. CoTTA [41] uses
weight averaging and augmentation averaging, along with
randomly restoring parameters to the original pre-trained
model. However, it lacks explicit uncertainty modeling and
data-driven parameter restoration.

5.4. Evaluation Metrics

We evaluate our model using the error rate in predictions.
To evaluate the uncertainty estimation, we use negative log-
likelihood (NLL) and Brier score [2]. Both NLL and Brier
are proper scoring rules [7], and they are minimized if and
only if the predicted distribution becomes identical to the
actual distribution. In Table 1, 2 and 4, the number within
brackets is the standard deviation over 5 runs. Refer to the
Appendix for more details on evaluation metrics.

Table 3. CIFAR10-to-CIFAR10C results for gradually changing
severity level before changing corruption types. The numbers are
averaged over all 15 corruption types. The number after £ is
the standard deviation over 10 random corruption sequences. Our
method surpasses all baselines in the depicted settings.

Mot Method | ¢ rce | BN Adapt | TENT CoTTA PETAL (FIM)
Error (%) 2394 1354 | 29.46 | 1040 £022 | 10.11%0.23
Brier 0408 | 0222 | 0.575 | 0.159+0.003 | 0.158 = 0.004

5.5. CIFAR10-to-CIFAR10C Results

In Table 1, we observe that directly using the pre-trained
model (Source) leads to poor performance with an average
error rate of 43.51%, suggesting the necessity of adapta-
tion. Adapting the Batch Normalization (BN) statistics im-
proves the average error rate to 20.44%. Using hard pseudo-

labels and updating only the BN parameters further im-
proves the performance to 19.8%. TENT-online reduces the
error rate to 18.58% using extra information about domain
change, but access to such information is mostly unavail-
able in real-world scenarios. As expected, the error rate of
TENT-continual increases to 20.7% without access to do-
main change information. Further, CoOTTA improves the
average error rate to 16.29%. Our proposed approach con-
sistently outperforms other approaches for most individual
corruption types, reducing the average error rate to 15.95%.
Moreover, our proposed approach demonstrates no perfor-
mance degradation in the long term.

To investigate the contribution of FIM based parameter
restore, we show the results of our approach with stochastic
restore in place of FIM based restore, denoted using S-Res.
We observe that FIM based restore performs better than S-
Res for most of the corruption types, highlighting the effec-
tiveness of FIM based restore. Further, the improved per-
formance of PETAL (S-Res) and PETAL (FIM) over var-
ious baselines, including CoTTA which is specifically de-
signed for continual TTA, demonstrates the effectiveness
of our probabilistic framework where the source model’s
posterior induces a regularizer and the data-driven resetting
helps make an informed selection of weights to reset/keep.
Moreover, the contribution of the regularizer term (induced
by the source model’s posterior) is evident from the supe-
rior performance of PETAL over CoTTA, since CoTTA is a
special case of PETAL without the regularizer term.

Gradually changing corruptions: Following [41], we
evaluate PETAL in the setting where the severity of cor-
ruption changes gradually before the change in corruption
type. When the corruption type changes, the severity level
is lowest, and thus, domain shift is gradual. In addition, dis-
tribution shifts within each corruption type are also gradual.
Refer to the Appendix for details.

We report the average error and average Brier score over
10 randomly shuffled orders of corruptions. We can observe
in Table 3 that our approach PETAL performs better than
other approaches in terms of error and Brier score.
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Table 4. CIFAR100-to-CIFAR100C results with the most severe
level of corruption, 5, averaged over all corruption types. Our
method surpasses all baselines in terms of NLL and Brier uncer-
tainty estimation measures.

— Method | g rce | BN Adapt | TENT CoTTA PETAL (FIM)
Metric

NLL 24945 | 13937 | 73789 | 1.2767 (0.0006) | 1.2206 (0.0011)

Brier 0.6704 | 04744 | 1.1015 | 0.4430 (0.0003) | 0.4317 (0.0003)

5.6. CIFAR100-to-CIFAR100C Results

To illustrate the efficacy of the proposed approach, we
conduct an evaluation on the more challenging CIFAR100-
to-CIFAR100C task. In Table 2, we compare the results
with Source, BN Adapt, Pseudo-label, and TENT-continual
approaches. We observe that TENT-continual performs bet-
ter initially, but as new domains arrive continually, the per-
formance degrades drastically in the long term. With an av-
erage error rate of 31.46%, our proposed approach PETAL
(FIM) consistently outperforms the other approaches.

To measure the ability of uncertainty estimation of our
approach, we compare with the other approaches in Table 4
in terms of NLL and Brier score. We obtain both NLL and
Brier score for corruption with a severity level of 5 and aver-
age over all corruption types. Our approach performs better
than all other approaches in terms of average NLL and aver-
age Brier, demonstrating the ability of our approach to im-
prove the uncertainty estimation. Moreover, the FIM based
restore outperforms stochastic restore for most corruption
types, illustrating the utility of data-driven resetting.

® Source A BN Stats Adapt TENT
® CoTTA * PETAL (FIM)

o o0
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Figure 2. ImageNet-to-ImageNetC results averaged over 10 dif-
ferent corruption orders with level 5 corruption severity.

5.7. ImageNet-to-ImageNetC Results

In Table 5, we investigate the performance of our pro-
posed approach for ImageNet-to-ImageNetC task with 10

different sequences of corruption. We obtain the perfor-
mance scores by averaging over all corruption types and all
corruption orders. In terms of average error, average NLL,
and average Brier, our approach performs better than the
other approaches. In Fig. 2, we compare the performance
by averaging over 10 different corruption orders in terms of
error rate and Brier score. For most corruption types, our
approach performs better than other existing approaches.

Table 5. ImageNet-to-ImageNetC results averaged over all corrup-
tion types and over 10 diverse corruption orders (highest corrup-
tion severity level 5).

Method

Metric Source | BN Adapt | TENT | CoTTA | PETAL (FIM)
Error (%) 82.35 72.07 66.52 63.18 62.71
NLL 5.0701 3.9956 3.6076 3.3425 3.3252
Brier 0.9459 0.8345 0.8205 0.7681 0.7663

5.8. ImageNet-to-ImageNet3DCC Results

For ImageNet-to-ImageNet3DCC dataset, we experi-
ment with 10 different random sequences of corruptions.
We provide the results in Table 6 by averaging over 10 ran-
dom sequences of corruptions and 12 corruption types at
severity level 5. PETAL consistently outperforms all other
approaches in terms of error rate, NLL, and Brier score.

Table 6. ImageNet-to-ImageNet3DCC results averaged over all
corruption types and over 10 diverse corruption orders (highest
corruption severity level 5).

Method

Metric Source | BN Adapt TENT CoTTA | PETAL (FIM)
Error (%) 69.21 67.32 95.93 59.91 59.61
NLL 5.0701 3.9956 3.6076 3.3425 3.3252
Brier 3.9664 3.7163 19.0408 3.2636 3.2560

6. Conclusion

We proposed a probabilistic framework for lifelong TTA
using a partly data-driven prior. Addressing the problem
via the probabilistic perspective naturally gives rise to the
student-teacher framework along with a regularizer that
captures the source domain knowledge. In lifelong TTA,
we have demonstrated that our principled use of an approxi-
mate training posterior surpasses prior heuristic approaches.
Our proposed approach also provides more reliable uncer-
tainty estimates demonstrated with better NLL and Brier
score. Further, we developed a Fisher information matrix
based parameter restoration, which is driven by the data to
improve upon existing stochastic restore. In terms of er-
ror rate, NLL and Brier score, PETAL yields state-of-the-
art results across CIFAR10-to-CIFAR10C, CIFAR100-to-
CIFARI100C, ImageNet-to-ImageNetC, and ImageNet-to-
ImageNet3DCC benchmark tasks.
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