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Abstract

Vision-language modeling has enabled open-vocabulary
tasks where predictions can be queried using any text
prompt in a zero-shot manner. Existing open-vocabulary
tasks focus on object classes, whereas research on object
attributes is limited due to the lack of a reliable attribute-
focused evaluation benchmark. This paper introduces the
Open-Vocabulary Attribute Detection (OVAD) task and the
corresponding OVAD benchmark. The objective of the
novel task and benchmark is to probe object-level attribute
information learned by vision-language models. To this
end, we created a clean and densely annotated test set cov-
ering 117 attribute classes on the 80 object classes of MS
COCO. It includes positive and negative annotations, which
enables open-vocabulary evaluation. Overall, the bench-
mark consists of 1.4 million annotations. For reference,
we provide a first baseline method for open-vocabulary at-
tribute detection. Moreover, we demonstrate the bench-
mark’s value by studying the attribute detection perfor-
mance of several foundation models.

1. Introduction
One of the main goals of computer vision is to develop

models capable of localizing and recognizing an open set of
visual concepts in an image. This has been the main direc-
tion for the recently proposed Open-Vocabulary Detection
(OVD) task [50] for object detection, where the goal is to
detect a flexible set of object classes that are only defined
at test time via a text query. Classical supervised object de-
tection methods are bound to predict objects from a fixed
set of pre-defined classes, and extending them to a very
large number of classes is limited by the annotation effort.
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Figure 1. Example from the presented open vocabulary attribute
detection benchmark. The objective is to detect all objects and
visual attributes of each object in the image. Objects and attributes
are only specified at test time via text prompts.

OVD methods overcome this constraint by utilizing vision-
language modeling to learn about novel objects using the
weak supervision of image-text pairs.

OVD methods for object detection have made fast
progress and have even surpassed supervised baselines for
rare (tail) classes [16]. Best OVD methods [16, 35, 53, 54]
train with extra weak supervision using image classification
datasets, which are focused on retrieving object informa-
tion. However, it is unclear on how well OVD methods
generalize information beyond the object class. This pa-
per focuses on object-level attribute information, such as
the object’s state, size, and color.

Attributes play a significant role in an object’s identity.
A small change of an attribute in a description can mod-
ify our understanding of an object’s appearance and percep-
tion. Imagine driving in a forest where you encounter a bear
like the one in Figure 1. Even if you do not distinguish or
know the type of bear, recognizing that it is made of wood is
enough to realize that it is fake and harmless. A model capa-
ble of detecting object attributes enables a richer reasoning
ability via combining objects and attributes. It allows the
model to potentially extrapolate to novel object classes.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we introduce the Open-Vocabulary At-
tribute Detection (OVAD) task. Its objective is to detect and
recognize an open set of objects in an image together with
an open set of attributes for every object. Both sets are de-
fined by text queries during inference without knowledge of
the tested classes during training. The OVAD task is a two-
stage task. The first stage, referred to as open-vocabulary
object detection [50], seeks to detect all objects in the im-
age, including novel objects for which no bounding box or
class annotation is available during training. The second
stage seeks to determine all attributes present for each de-
tected object. None of the attributes is annotated; therefore,
all attributes are novel.

Testing the OVAD task requires an evaluation bench-
mark with unambiguous and dense attribute annotations to
identify misses as well as false positive predictions. Current
datasets [32, 33] for predicting attributes in-the-wild come
with many missing or erroneous annotations, as discussed in
more detail in Section 3.2. Thus, in this paper, we introduce
the OVAD benchmark, an evaluation benchmark for open-
vocabulary attribute detection. It is based on images of the
MS COCO [29] dataset and only contains visually identifi-
able attributes. On average, the proposed benchmark has 98
attribute annotations per object instance, with 7.2 objects
per image, for a total of 1.4 million attribute annotations,
making it the most densely annotated object-level attribute
dataset. It has a large coverage with 80 object categories
and 117 attribute categories. It also provides negative at-
tribute annotations, which enables quantifying false posi-
tive predictions. The benchmark is devoid of various label-
ing errors since it is manually annotated and quality-tested
for annotation consistency. Our OVAD benchmark also ex-
tends the OVD benchmark [50] by including all 80 COCO
object classes. This extension increases the novel set of ob-
jects from 17 to 32 classes. Together with the benchmark,
we provide a first baseline method that learns the OVAD
task to a reasonable degree. It learns the task from image-
caption pairs by using all components of the caption, not
only nouns. We also compare the performance of several
off-the-shelf OVD models to get an insight of how much
attribute information is implicitly comprised in nouns (e.g.,
puppy implies a young dog).

Moreover, we demonstrate the value of the benchmark
by evaluating object-level attribute information learned
by several open-source vision-language models, some-
times also referred to as foundation models, including
CLIP [34], Open CLIP [20], BLIP [26], ALBEF [27], and
X-VLM [51]. Such models learn from the weak supervi-
sion of image-text pairs, which is assumed to be available
particularly via web content. The results show the extent to
which the present success of foundation models on object
classes generalizes to attributes.

Contributions (1) We introduce the Open-Vocabulary

Attribute Detection (OVAD) task, where the objective is
to detect all objects and predict their associated attributes.
These objects and attributes belong to an open set of classes
and can be queried using textual input. (2) We propose the
OVAD benchmark: a clean and densely annotated evalua-
tion dataset for open-vocabulary attribute detection, which
can be used to evaluate open-vocabulary methods as well
as foundation models. (3) We provide an attribute-focused
baseline method for the OVAD task, which outperforms the
existing open-vocabulary models that only aim for the ob-
ject classes. (4) We test the performance of several open-
source foundation models on visual attribute detection.

2. Related Work

Attribute prediction Several works have pursued the at-
tribute prediction task to learn fine-grained information at
different levels. Initial works focused on describing parts of
the objects as attributes [13, 14]. In contrast to this parton-
omy identification, which can be regarded as a form of ob-
ject detection (part detection), we focus on visual attributes
represented by adjectives in human language. Other bench-
marks for learning fine-grained semantics [21, 48] focus
on tasks within narrow class domains, such as shoes [48],
clothes [3,18], birds [45], and animals [46]. Another line of
work [1,42,47] focuses on zero-shot object classification by
inferring the attributes of an object as an intermediate step
or relying on object-attribute compositionality [1, 8, 28] for
zero-shot attribute-object classification. This work aims to
evaluate the ability of vision-language models to detect and
discriminate object-level attributes in a zero-shot manner.

Attribute detection benchmarks Recent works predict at-
tributes in an open-domain setting, also known as “in-the-
wild” setting. A few benchmarks have been proposed in this
direction, along with some baseline methods. COCO At-
tributes [32] was the first such large-scale benchmark that
annotated visual attributes for the COCO dataset. How-
ever, this dataset is limited in scope, with annotations only
across 29 object categories. Visual Genome [25] offers a
much wider coverage of attribute categories with more than
68 k attribute categories, including synonyms, but it con-
tains very few attribute annotations for each object (0.74
attributes per instance). In Visual Genome, attribute annota-
tions are not dense or exhaustive for every object since they
were extracted from scene graph annotations which contain
free-written form descriptions. Its sparsity, noise, and lack
of negative annotations make it unsuitable for evaluating the
OVAD task. Other works have introduced visual question
answering datasets [2,25] with questions that require an un-
derstanding of vision, language, and common sense to re-
spond. Even though the answers to these questions overlap
with our objective (e.g. by asking about colors or materials),
the performance on attributes and nouns cannot be isolated
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(a) Incorrect (b) Missing (c) Ambiguous (d) Non-visual

Figure 2. Four major types of errors prominent in previous attribute benchmarks with examples and their improved version in the proposed
benchmark (last row). The top row shows a symbolic image with an example of how a briefcase and a trolley bag kept on a conveyor belt
can be incorrectly marked with different types of errors. The second row of images shows examples from previous attribute benchmarks
containing these errors. The last row shows examples from our proposed OVAD benchmark.

and analyzed using these datasets. VAW [33] proposed a
large-scale dataset covering a wider range of attribute and
object categories. They provide reliable positive and neg-
ative attribute labels for object instances and ensure that
a minimum of 50 instances exist for each object-attribute
pair. However, automated filtering techniques are used to
keep the annotation cost feasible, resulting in very sparse
annotations in terms of the number of instances per image
and attributes per instance. Open Images [24] is a dataset
consisting of 9 million images with image-level labels and
bounding boxes. It provides attribute annotations for 288
object categories; however, it is limited to only 15 attribute
categories that are not densely annotated for each object.
We find that these benchmarks are of limited use for the
precise evaluation and analysis of OVAD task. Therefore, in
this work, we propose a new evaluation benchmark for at-
tribute detection with clean and dense attribute annotations.

Open-vocabulary methods Zarenian et al. [50] introduced
the open-vocabulary object detection problem, where the
goal is to detect an open set of classes, some annotated
(base classes) during training and others only defined at test
time (novel classes). In this setting, the model learns in a
weakly-supervised manner using image-caption pairs along
with the annotations of base object classes. Various follow-
up works [6, 15, 16, 35, 54] have improved the performance
of open-vocabulary object detection. Bravo et al. [6] pro-

posed a localized image-caption matching technique. Gu et
al. [16] proposed an improved model using a pre-trained
open-vocabulary classification model [34], created a new
benchmark on LVIS [17], and showed some initial quali-
tative examples of fine-grained object detection. Recently,
Zhou et al. [54] trained the classifier module of the detector
by using extra class annotations. Other works [15, 35, 52]
used pseudo-bounding-box annotations of base and novel
classes to train their detector. In this work, we expand this
problem formulation to include attributes.

Vision-language models have changed the way of ap-
proaching semantic learning tasks in computer vision by
enabling the usage of large-scale free annotated data from
the web. These foundation models [11, 20, 22, 23, 26, 27,
34, 51] use cross-modal objectives to learn to align vi-
sual concepts to their language representation leading them
to achieve state-of-the-art performance on visual reason-
ing tasks. In this paper, we challenge five state-of-the-art
vision-language models on the fine-grained task of open-
vocabulary attribute detection.

3. Open-vocabulary Attribute Detection

3.1. The OVAD Task

Open-vocabulary attribute detection has a two-fold ob-
jective: (1) object detection and (2) discovery of attributes
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for all detected objects. Both object detection and attribute
detection are formulated as open-vocabulary tasks. The first
is known as open-vocabulary detection (OVD).

In previous work [50], OVD considers two disjoint sets
of object classes - base OB and novel ON classes. The
class labels and bounding boxes are given for the first set
OB during training, whereas the second set ON needs to
be derived automatically from image-caption pairs. Only at
test time the set ON is revealed. To be compatible with this
setting from the literature, we use the object detection part
of the OVAD task in the same way.

In contrast, for the second objective of OVAD task, none
of the attributes are known during training. Rather all
knowledge about attributes must be derived from image-
caption pairs or pretrained vision-language models. Only
at test time, the set of tested-visual attributes A is revealed.
Using knowledge about the tested set of attribute classes for
building the model violates the definition of the task.

Solving the task of OVAD requires the ability to detect
both OB and the unbounded ON set of object classes as
well as to determine whether attributes from A are present
or absent for every object.

We also provide the OVAD task in a box-oracle setting,
where the bounding box and object class annotations are
available for all objects during inference. Thus, we only
evaluate the second objective of the multi-label attribute de-
tection task. This setting evaluates the attribute detection
in isolation, independent of the mistakes made in the object
detection part.

3.2. The OVAD Benchmark

For evaluating OVAD, it is necessary to have a bench-
mark dataset that contains annotations of both objects O and
attributes A. First, we discuss the limitations of previous
datasets that provide both object and attribute annotations
and then show how we rectify them for our benchmark.

Types of errors We identify four major sources of annota-
tion errors in previous datasets, which make them unsuit-
able for the OVAD benchmark. The boundaries between
these error types are blurry. Figure 2 shows an example for
each error type followed by our corrected version to give an
intuition for each of them. We summarize them as follows:

• Type-A Incorrect: Objects with incorrect attribute anno-
tations. As shown in Figure 2(a), the cow is marked incor-
rectly with hiding, travelling, long, etc.

• Type-B Missing: Objects missing attribute annotations.
As shown in Figure 2(b), the jar has missing attributes
such as group, texture, and position.

• Type-C Ambiguous: Attributes that cannot be marked us-
ing the given image due to incomplete information. Fig-
ure 2(c) shows a bag on the conveyor belt marked as mov-

ing, and a computer marked as turned on, in the top and
middle row respectively. These attributes only become
valid when considering temporal information or a front
view of the computer.

• Type-D Non-visual: Attributes that cannot be marked us-
ing visual information. These attributes are often subjec-
tive such as certain emotions or states of mind and occur
due to poor selection of the attribute set. As shown in Fig-
ure 2(d), the person is annotated as celebrating and thirsty.

We aim to overcome the above-mentioned limitations
of previous datasets by selecting a good set of attribute
classes that can be accurately annotated for all object
categories and is visually non-ambiguous for most samples.
Our OVAD evaluation benchmark comprises 2000 images
randomly selected from the MS-COCO [29] val2017 set.
To ensure a densely annotated dataset with a large number
of object annotations in an image, we started our annotation
process with the COCO [29] object detection benchmark.
We added bounding boxes for missing objects, revised
inaccurate boxes, and removed incorrect object annota-
tions. As a result, we obtained 14,300 object instances
for the attribute annotation process. We manually labeled
each object instance with 117 attributes following strict
annotation guidelines to avoid above mentioned errors.
The OVAD benchmark dataset is designed as a test set to
evaluate models’ fine-grained open-vocabulary detection
capabilities. It is neither designed for classical supervised
training nor as a validation set, as both contradict the
open-vocabulary paradigm.

Selection of attributes We extracted adjectives from the
captions of the COCO Captions dataset [9] using a parts-
of-speech detector [4]. We selected the adjectives that oc-
curred at least ten times and grouped them by synonyms
using WordNet [5], Collins English Dictionary, and Ox-
ford English Dictionary. We retained the synonyms and
manually removed abstract, action-based, and non-visual
attributes, such as peaceful, walking, thirsty, etc., as shown
in Figure 2(c&d). We considered the 80 MS-COCO object
classes and removed attribute classes for which no positive
object-attribute example existed. After this process, our fi-
nal set consists of 117 unique attribute categories. We built
a taxonomy and identified 19 attribute types or superclasses
corresponding to color, pattern, material, maturity, cook-
ing state and 14 others. A detailed diagram of the attribute
taxonomy is included in the Supplementary A.1.

Annotation process The OVAD benchmark is fully anno-
tated by humans, as compared to other works [25, 32, 33].
This ensures accurate ground-truth labels. The annotation
was done using the open-source annotation platform “Com-
puter Vision Annotation Tool” (CVAT) [39]. The OVAD
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benchmark has all attributes marked either as positive, neg-
ative, or unknown. We use the attribute taxonomy and the
attribute types during the annotation process. Most of the
attributes are mutually exclusive within their attribute type,
e.g., pose can be either vertical or horizontal but not both
simultaneously. For every object, annotators were directed
to select one of the attributes for every attribute type as
positive or unknown. Given the exclusiveness property, all
non-selected attributes within the same attribute type were
marked as negatives or unknown, respectively. This pro-
duced dense annotations for every object and ensured that
the missing type errors were diminished (see Figure 2(b)).
Attributes marked as unknown are excluded during evalua-
tion. The unknown option either refers to an unknown at-
tribute for an instance or an in-between case, where a dis-
crete label can not be assigned clearly. This helps rectify
ambiguous type errors like in Figure 2(c). We manually ex-
cluded infeasible object-attribute combinations during an-
notation, such as smiling cup or open person, to avoid in-
correct type errors shown in Figure 2(a) and speed up the
annotation process. We include a detailed description of the
annotation process in the Supplementary B.

Statistics The OVAD benchmark is a medium-scale bench-
mark with a total of 1,401,484 attribute annotations over
2000 images. It considers 117 attribute categories that span
across 80 object categories with a total of 14,300 object in-
stances. There are 122,998 positive and 1,278,486 nega-
tive attribute annotations in total and 172,760 attribute in-
stances are marked as unknown. Table 1 shows a sum-
mary of the dataset statistics together with other attribute
datasets. Since OVAD is exclusively an evaluation bench-
mark, the number of images is not comparable to the other
datasets. The OVAD evaluation benchmark is densely an-
notated with 7.2 box annotations per image, compared to
3.6 instances per image in VAW. Our benchmark offers, on
average, 96.8 attribute annotations per box, with a total of
700.7 attribute annotations per image. This is much larger
than any other object-level attribute benchmark. The bench-
mark provides both positive and negative attribute annota-
tions grouped into 19 types of attributes.

Evaluation metric As discussed in Section 3.1, the OVAD
task can be evaluated under two settings: (1) open-
vocabulary detection and (2) box-oracle setting. In the
open-vocabulary detection setting, each ground-truth ob-
ject instance is matched with at most one object predic-
tion. To qualify as a positive match, the detection must
have an Intersection over Union (IoU [12]) ≥ 0.5 inde-
pendent of the ground-truth class. For every ground-truth
object, the prediction with maximum IoU overlap is consid-
ered as the matching predicted object. We evaluate attribute
performance by comparing the attribute scores and labels
of matching ground-truth and predicted objects. Following
Veit et al. [44], in the case that a ground-truth object has

Dataset OVAD (ours) VAW [33] COCO-A [32] VG [25]
Purpose Test Train+Test Train+Test Train+Test
# categories
Objects 80 2,260 29 33,877
Attributes 117 620 196 68,111
Negative Labels Yes Yes No No
# instances
Objects 14,300 260,895 188,426 3.8M
Attribute 1.4M 0.9M 3.4M 2.8M
Images 2,000 72,274 84,044 108,077
# instances per image
Objects 7.2 3.6 2.2 35

Attributes 700.7 12.83 41.08 26(+)61 (-)639 (+)5.4 (-)7.4
# instances per box

Attributes 96.8 3.56 18.33 0.74(+)8.3 (-)88.5 (+)1.51 (-)2.05

Table 1. Statistics of object-level attribute benchmarks. OVAD
is densely annotated as compared to other datasets. (+) and (-)
indicate positive and negative attribute labels respectively.

no matching prediction (IoU < 0.5 for all predictions), all
attributes are marked as absent. We calculate the average
precision (AP) [12] for every attribute category indepen-
dently and then average across categories (mAP) [12]. Ad-
ditionally, for completeness, we evaluate mAP at 0.5 IoU
for open-vocabulary object detection on the 80 class object
set; we call this set OVD-80. We use the Generalized evalu-
ation that considers the probability across all object classes
(base and novel). In the box-oracle setting, the attribute
mAP metric is directly evaluated for ground-truth bounding
boxes in an object-class-agnostic manner.

4. OVAD Baseline Method
In this section, we provide a baseline method for the

OVAD task. The objective is to learn a vision model that
detects objects and their corresponding attributes in an
open-vocabulary manner. Our OVAD-Baseline comprises
two models: a frozen language model G and an object
detector F based on Faster-RCNN [36], where we replace
the classification head with a linear layer that projects the
visual features to the language space produced by G. Fol-
lowing other works [16,35,53,54], we use CLIP [34] as the
language model. We define gw = G(w) as the embedding
representation of a text composed of one or more words
w, and fb = F (Ib) as the embedding representation of a
box-region b of an image I .

Visual-text matching Throughout the paper, we use image-
text pairs for learning the vision language alignment. These
pairs can correspond to images and captions, box-regions
and class labels, or in a more general setting, any box-region
and text. We use the cosine similarity

sw,b = σ(
gw · fb
|gw||fb|

· τ) (1)

7045



Figure 3. Training and inference setup for the OVAD-Baseline model. The method is a two-stage detector that matches image regions with
text embeddings of nouns, noun phrases, noun complements, and captions. At inference, the detector detects the base and novel objects
and their attributes by matching box-region embeddings with text embeddings of the object and attribute classes.

as matching score between a text w and a box-region b,
where τ is a temperature hyper-parameter and σ corre-
sponds to the sigmoid function.

Training objectives The detector F is trained with three
objectives: 1) learn to localize objects in an image, 2) se-
mantically match image representations with caption em-
beddings, and 3) train the classifier branch with proxy-
labels to predict the novel classes and attributes.

For the first objective, we train F with labels and bound-
ing box coordinates of the base classes OB . We use the
standard detection loss Ldet from Faster R-CNN (shown
in Figure 3) adapted for open-vocabulary. It comprises
three losses: a region proposal network loss Lrpn [36],
a class-agnostic l1 loss as box regression loss Lreg , and
a similarity-based classification loss Lcls using the binary
cross-entropy loss over the similarly score (1) between the
visual embedding of the object box and the text embedding
of the base classes.

For the second objective we use the image-text con-
trastive matching (ITC) loss

LITC = −(y log(sC,I) + (1− y) log(1− sC,I)), (2)

with sC,I being the similarity score (1) between the image
I and the caption C, and y ∈ {1, 0} depending on whether
I and C are a positive pair. We apply this loss to positive
and negative image-caption pairs.

For the third objective, we match concepts within cap-
tions with image regions. These concepts, referred to
as ‘parts-of-caption’ in this work, include nouns, noun
phrases, and noun complements. They act as proxy-labels
for objects and attributes. We obtain these parts-of-caption

using a part-of-speech tagging method from the open-
source software spaCy [19]. Nouns usually refer to object
classes; however, they often reveal some attribute informa-
tion, e.g., man/woman are nouns that reveal gender, cows
is a plural noun that reveals the quantity attribute. Noun
phrases are usually adjective-noun combinations, which
contain more explicit attribute information, such as red hel-
met, wooden table. We remove the nouns from the noun
phrases to obtain “noun complements”, which often con-
tain adjectives, and use these to match directly with im-
age regions. Since the location of these parts-of-caption
is unknown, we match proxy-labels with the biggest pre-
dicted bounding box features F (Ibmax

), similar to the us-
age of image labels in Detic’s [54] training. Along with
these positive pairs, we create negative proxy-labels using
arbitrary image-caption pairs and apply the binary cross en-
tropy loss (2). We refer to these losses as Ln and Lnp for
nouns and noun phrases/complements, respectively.

Inference During inference time, we consider a vocabulary
composed of all object classes, OB ∪ON , together with the
attribute classes A and use the language model G to get the
corresponding text-vector representations of every class, as
shown in Figure 3. We do not use any special text prompt
for this purpose but consider all synonyms for every class
(object/attribute) and average their text-vector representa-
tions. We obtain the final prediction for object and attribute
classes by taking the sigmoid of the similarity (1) between
the box-region representation F (Ib) and the class-text em-
bedding G(c). We compute the output separately for each
object and attribute class, predicting the class’ presence or
absence. See the supplementary for implementation details.
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Method OVAD Generalized OVD-80
All Head Medium Tail Novel (32) Base (48) All (80)

Chance 8.6 36.0 7.3 0.6 - - -
OV-Faster-RCNN 11.7 34.4 13.1 1.9 0.3 53.3 32.1

VL-PLM [52] 13.2 32.6 16.3 2.6 19.7 58.8 43.2
Detic [54] 13.3 44.4 13.4 2.3 20.0 49.2 37.5

Rasheed et al. [35] 14.6 33.5 18.7 2.8 32.5 56.6 46.9
LocOv [6] 14.9 42.8 17.2 2.2 22.5 52.5 40.5
OVR [50] 15.1 46.3 16.7 2.1 17.9 51.8 38.2

OVAD-Baseline 18.8±0.3 47.7±0.6 22.0±0.5 4.6±0.5 24.7±0.6 49.1±0.2 39.3±0.4

Table 2. mAP for Open-vocabulary Attribute Detection (OVAD)
and AP50 on Open-Vocabulary Detection (OVD-80).

box+cls captions nouns noun noun OVAD AP50 - OVD-80
OB phrases comp. mAP Novel (32)
✓ 11.7±0.1 0.3±0.3

✓ ✓ 15.0±0.2 19.2±0.1

✓ ✓ ✓ 16.2±0.3 23.2±0.8

✓ ✓ ✓ ✓ 15.9±0.1 23.7±0.5

✓ ✓ ✓ ✓ 18.8±0.3 24.7±0.6

Table 3. Text input ablation. OVAD and OVD-80 performance
on novel classes using different types of text granularity as proxy-
labels to train the model. box+cls: box and object-class labels for
base objects, noun phrases: phrases that have one noun and some
modifiers, noun compl.: noun phrases without the main noun.
Training with finer granularity of text supervision is favorable.

5. Experiments

5.1. Open-vocabulary Attribute Detection

Open-vocabulary baseline methods We compare our
OVAD-Baseline with previous off-the-shelf OVD models.
For all methods base class object annotations come from
MS COCO [29] 2017 training set and caption annotations
from COCO Captions [9] 2017 training set. Given that
OVD methods project the visual information to a language
space, we use the similarity (1) of the visual representation
of detected objects and the text embedding of every attribute
to produce the attribute predictions, similar to the inference
in Figure 3.

OV-Faster-RCNN is a Faster-RCNN adapted for open-
vocabulary. Similar to OVAD-Baseline, the classification
head of the detector is replaced with a linear layer to project
the visual representation to the language space from the
CLIP [34] text encoder. We train the detector network only
using the class names of the base object classes and their
box annotations. No caption was used for training.

OVR [50] and LocOv [6] train the object detector using
two stages. First, the detectors learn a mapping between
image regions and tokens in the caption via attention-based
image-caption matching. OVR uses image grid-based re-
gions for the matching, whereas LocOv introduces addi-
tional object proposal boxes. In the second stage, the mod-
els are fine-tuned using the base class annotations to learn
the object detection task. Both models use BERT [10] as
the text encoder.

Detic [54] and Rasheed et al. [35] train the detector using
image-level labels filtered from the captions. Labels corre-
spond to objects and are filtered using the class names of
both base and novel classes, which technically is closed-
vocabulary. Detic matches image-level labels, in text for-
mat, with the biggest box proposal. Rasheed et al. [35] first
produce pseudo-labels for box proposals, using the image-
level labels, to train the classification head of the detector.
Similarly, VL-PLM [52] uses CLIP scores and from a class-
agnostic object proposals to get pseudo-labels and train the
OVD. All three models use CLIP [34] as the text encoder.

Results on the OVAD benchmark Table 2 presents re-
sults on the proposed OVAD benchmark for the six open-
vocabulary detection methods. It shows results for attribute
detection (OVAD) and object detection (OVD-80). Given
that the attribute frequency has a long-tailed distribution
and following previous works [17, 33], we report sepa-
rate performances on attributes in the ‘head’, ‘medium’, and
‘tail’ of this distribution. These sets contain 16, 55, and 46
classes, respectively (see the supplementary for details).

All methods yield results above the chance level, even
though the OVD methods were not designed to recognize at-
tributes but only objects. Our OVAD-Baseline method out-
performs these OVD methods. Methods that match image-
regions with text-parts, either by using part-of-caption as
in OVAD-Baseline or text tokens, as in OVR and LocOV,
achieve better attribute mAP than those methods that use a
single representation of the text for matching the image. In-
terestingly, methods that perform well on object detection
are not necessarily better on the overall OVAD.

OVAD-Baseline ablation Table 3 breaks down the contri-
butions of the parts-of-captions as proxy-labels to the per-
formance of OVAD-Baseline. We find that using parts-of-
caption as labels helps the model segregate the caption in-
formation, improving both the object and attribute detection
performance. Training the model using noun complements
makes the attribute supervision more explicit and makes the
best use of the compositionality of the language structure.

5.2. Foundation Models Applied to Attributes

To demonstrate the value of an attribute evaluation
benchmark, we tested the zero-shot performance of five pre-
trained vision-language models on attributes. To focus on
attributes, we use the box-oracle setting. We crop the ob-
jects using their ground-truth bounding boxes and evalu-
ate the attribute detection for each object instance indepen-
dently. Our selection of models was based on the availabil-
ity of code and model weights. Moreover, we selected mod-
els that process the text and the image independently, such
that the matching score can be computed using the cosine
similarity between the two representations.

All methods in Table 4 contain two transformer mod-
els that process image and text independently and use the
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Method Training OVAD-Box
Data All Head Medium Tail

Chance - 8.6 36.0 7.3 0.6
CLIP RN50 [34] 400M (9) 15.8 42.5 17.5 4.2

CLIP VIT-B16 [34] 400M (9) 16.6 43.9 18.6 4.4
Open CLIP RN50 [20] 12M (7b) 11.8 41.0 11.7 1.4

Open CLIP ViT-B16 [20] 400M (8b) 16.0 45.4 17.4 3.8
Open CLIP ViT-B32 [20] 2B (8c) 17.0 44.3 18.4 5.5

ALBEF [27] 4M (1a,3,4,7a) 15.6 43.1 17.3 3.7
ALBEF [27] 14M (1a,3,4,7) 15.3 43.7 17.1 3.0
ALBEF [27] 14M (1a,3,4,7) + ft(2) 21.0 44.2 23.9 9.4
BLIP [26] 14M (1a,3,4,7) 17.0 46.6 18.3 5.0
BLIP [26] 129M (1a,3,4,7,8a) 18.2 44.4 20.7 5.7
BLIP [26] 129M (1a,3,4,7,8a) + ft(1a) 24.3 51.0 28.5 9.7

X-VLM [51] 4M (1∗,3∗,4,7a) 25.9 50.3 32.0 9.8
X-VLM [51] 16M (1∗,3∗,4,5∗,6∗,7) + ft(2) 26.2 48.7 31.2 12.1
X-VLM [51] 16M (1∗,4∗,4,5∗,6∗,7) 28.1 49.7 34.2 12.9

OVAD-Baseline-Box 0.11M (1a,1b∗base) 21.4±0.4 48.0±0.5 26.9±0.6 5.2±0.5

Table 4. Open-vocabulary Attribute Detection results (mAP) for foundation models
in the box-oracle setup (OVAD-Box). ∗ The model uses the localization information
in the annotations of this dataset. + ft: final fine-tuning pass on the captions of this
dataset. Table 5 details the training datasets.

(#) Dataset #Images #Captions #Objects #Regions
(1a) COCO Captions [9] 0.12M 0.57M - -
(1b) COCO Objects [29] 0.12M - 0.86M -
(2) RefCOCO+ [49] 0.019M - - 0.14M
(3) VG [25] 0.10M - 2.5M 5.4M
(4) SBU Captions [31] 1M 1M - -
(5) OpenImages [24] 1.7M 0.67M 4.4M 3.3M
(6) Objects365 [40] 1.8M - 29M -

(7a) CC-3M [41] 2.95M 2.95M - -
(7b) CC-12M [7] 11.1M 11.1M - -
(8a) LAION [38] 115M 115M - -
(8b) LAION [38] 400M 400M - -
(8c) LAION [37] 2B 2B - -
(9) CLIP 400M [34] 400M 400M - -

Table 5. Training set legend and statistics

image-text contrastive learning (ITC) loss to learn from
image-text pairs. ALBEF [27], BLIP [26], and X-VLM [51]
additionally include a cross-attention model and use the
image-text matching (ITM) loss. ALBEF and X-VLM use
the masked language modeling (MLM) objective [10] to
predict masked tokens from the caption in a bidirectional
manner. BLIP uses the language modeling (LM) objec-
tive [30] to generate the caption conditioned on the image
in an autoregressive manner. All three methods use a com-
bination of clean and noisy data for training. ALBEF learns
from noisy data by generating pseudo-targets via an online
ensemble model [43]. BLIP instead filters noisy data and
generates new captions to learn the multimodal matching.
X-VLM uses localized region-text pairs to learn the vision-
language alignment at multiple granularities.

Results and discussion Table 4 shows the results of foun-
dation models on zero-shot attribute detection. Three inter-
esting behaviors become evident.

a) Attribute detection is a challenge for foundation mod-
els. Compared to zero-shot image classification, where
foundation models report very good accuracy [20,26,27,34,
51], the absolute performance on attributes is surprisingly
low. For reference, we trained a supervised attribute de-
tector via cross-validation on our evaluation dataset, which
achieved 48.16±0.52 mAP despite using a small training
dataset; see Supplementary C. Based on the results, foun-
dation models seem to be biased toward object classes and
do not pick up fine-grained aspects such as attributes.

b) Not only the quantity but also the quality of training
data is important. When scaling from 400M to 2B image-
text pairs, OpenCLIP improves by 6.25% for All attribute
performance. BLIP improves by 7.06% when scaling it
from 14M to 129M, and quadrupling the data improves X-
VLM by 8.46%. However, the models only reach a good

performance once they are further trained on curated data
using only ITC and ITM objectives. For instance, ALBEF
and BLIP improve their All attribute performance this way
by 37.25% and 33.52%, respectively.

c) Localized image region-text matching helps vision-
language alignment. X-VLM and OVAD-Baseline-Box use
a localized image region-text matching objective compared
to the other methods. X-VLM clearly outperforms all other
methods, but it reduces its performance by 6.76% when
fine-tuning for image-caption retrieval. OVAD-Baseline-
Box outperforms foundation models trained on more than
3000 times larger noisy datasets (CLIP and OpenCLIP),
and more than 1000 times larger datasets which include the
same clean subset (Table 5(1a)) (ALBEF and BLIP in their
pretrained version). In Table 3 OVAD-Baseline shows an
increase in performance when using parts-of-caption for ex-
plicit visual-text matching during training. We believe that
the success of both methods comes from the localized align-
ment between visual and text context, which is partially lost
when specializing for image-caption retrieval.

6. Conclusion

We studied the ability of vision-language models to rec-
ognize attributes. To this end, we proposed the novel
open-vocabulary attribute detection (OVAD) task and intro-
duced the OVAD benchmark, a clean and densely annotated
object-level attribute dataset for evaluating OVAD task. We
provided a baseline method that exploits fine-grained in-
formation contained in captions, which outperforms OVD
models for the OVAD task. Finally, we tested the perfor-
mance of publicly available foundation models on attribute
recognition. We found that the performance of these mod-
els on attributes stays clearly behind their performance on
objects revealing a direction for further research.
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