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Abstract

Recent trends in semi-supervised learning have signifi-
cantly boosted the performance of 3D semi-supervised med-
ical image segmentation. Compared with 2D images, 3D
medical volumes involve information from different direc-
tions, e.g., transverse, sagittal, and coronal planes, so as
to naturally provide complementary views. These com-
plementary views and the intrinsic similarity among ad-
jacent 3D slices inspire us to develop a novel annotation
way and its corresponding semi-supervised model for effec-
tive segmentation. Specifically, we firstly propose the or-
thogonal annotation by only labeling two orthogonal slices
in a labeled volume, which significantly relieves the bur-
den of annotation. Then, we perform registration to ob-
tain the initial pseudo labels for sparsely labeled volumes.
Subsequently, by introducing unlabeled volumes, we pro-
pose a dual-network paradigm named Dense-Sparse Co-
training (DeSCO) that exploits dense pseudo labels in early
stage and sparse labels in later stage and meanwhile forces
consistent output of two networks. Experimental results
on three benchmark datasets validated our effectiveness in
performance and efficiency in annotation. For example,
with only 10 annotated slices, our method reaches a Dice
up to 86.93% on KiTS19 dataset. Our code and models
are available at https://github.com/HengCai-
NJU/DeSCO.

1. Introduction
Medical image segmentation is one of the most critical

vision tasks in medical image analysis field. Thanks to the
development of deep learning-based methods [8,11,28,32],
segmentation performance has now been substantially im-
proved. However, the current promising performance is at
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Figure 1. The upper figure illustrates our annotation method,
each volume with annotations is labeled with only two orthogonal
slices. The lower figure shows the comparison between the effi-
ciency and effectiveness of our orthogonal annotation and other
manners, including conventional dense annotation and previous
sparse annotation which labels slices in one plane. All trained on
LA [42] dataset with supervised setting. For sparse annotation and
our orthogonal annotation, we train the models only on labeled
voxels through partial cross-entropy and partial Dice loss.

the cost of large-scale manually precisely labeled dataset,
which is prohibitively expensive and laborious to achieve.
What’s worse, different radiologists might provide different
annotations even for a same image. Therefore, exploring
ways to alleviate the requirement of quantity or quality of
manual annotation is highly demanded. Mainstream meth-
ods typically follow two paradigms: 1) degrade annotation
quality, i.e., weakly-supervised segmentation, and 2) reduce
annotation quantity, i.e., semi-supervised segmentation.

Weakly-supervised segmentation methods usually utilize
weak annotations, e.g., image-level label [16, 17], scrib-
ble [20, 21], point [3] or partial slices [5, 18]. Unfor-
tunately, most of them are either difficult to distinguish
some fuzzy boundaries or with additional large computa-
tional burden [15]. What’s more, weakly-supervised setting
usually requires coarse annotation for every single image.
This is still a heavy burden for radiologists. Besides, most
current methods originally developed for 2D segmentation
could not directly utilize 3D volumetric information [9].

Different from these weakly-supervised methods, semi-
supervised methods train segmentation models with a small
amount of manually labeled data and a large amount of
unlabeled data, which have achieved remarkable perfor-
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mance with an impressive deduction on demand for anno-
tation [6, 19]. Despite their success, we notice most current
semi-supervised segmentation methods still require full 3D
annotation for each labeled volume. In fact, segmentation
targets in adjacent slices of 3D volume are highly similar
in both appearance and location, leading it redundant to la-
bel every slice. Although the sparse annotation is discussed
in recent work [18], we notice these conventional methods
still neglect the complementary views between different di-
rections in 3D volume.

It is known that 3D medical volumes naturally contains
different directions (e.g., transverse, coronal planes) which
provide complementary information from different views.
And recent trends in semi-supervised learning [7, 40] have
revealed that learning from complementary view is indeed
beneficial. Thus, we wonder whether a novel annotation
method coupled with its corresponding model could be in-
vestigated by introducing this complementary relation into
3D semi-supervised medical image segmentation.

In this paper, for labeled volume, we innovatively inves-
tigate a novel sparse annotation way—orthogonal annota-
tion, i.e., only to label two slices in its orthogonal direction
(e.g., transverse and coronal direction in Figure 1). We be-
lieve our annotation way has two merits: 1) it could largely
force the model to learn from complementary views with
two diversely initialized labeled slices, 2) it helps greatly re-
duce the label costs with fully utilizing the inter-slice simi-
larity. Following very recent work [18], we name the setting
as Barely-supervised Segmentation.

To incorporate our orthogonal annotation, the most in-
tuitive thought about training strategy of a segmentation
model is that only the voxels on the labeled slices contribute
to the training. However, directly learning from this sparse
annotation is unstable and the training is apt to collapse
(shown in Sec. 4). Thus, we apply registration to spread
supervision signals from slice to volume, where the result
of label propagation can serve as the dense pseudo label
for training. By performing registration, we obtain two sets
of pseudo labels for volumes from orthogonal directions.
Yet, the obtained pseudo labels are not promising enough
to directly train a segmentation model using current exist-
ing semi-supervised methods, which is mainly due to the
accumulation of error in the registration process.

Therefore, to leverage 1) the volumes with inaccurate
pseudo labels and 2) the rest unlabeled volumes, we propose
a simple yet effective end-to-end framework namely Dense-
Sparse Co-training (DeSCO), which consists two segmen-
tation models of a same structure. At the beginning of
training, the models mainly learn from dense pseudo labels
with a learning preference on voxels with more confident
pseudo labels, i.e., voxels near to registration source slice,
and exploit unlabeled volumes through cross-supervision.
After the models have been improved through training, we

gradually get rid of pseudo label until the supervised loss
solely comes from sparse annotation. Meanwhile, the role
of cross-supervision is gradually emphasized correspond-
ingly. Because in the process of reaching consensus through
cross-supervision, the mistake introduced by previous train-
ing on inaccurate pseudo labels could be revised. Overall,
our contributions are three folds:

• A new annotation way that only labels two orthogonal
slices for a labeled 3D volume, which greatly reduces
the annotation burden.

• A novel barely-supervised 3D medical image segmen-
tation framework to steadily utilize our high-efficient
sparse annotation with coupled segmentation method.

• A dense-sparse co-training paradigm to learn from
dense pseudo label and sparse label while leveraging
unlabeled volumes to reduce noise by reaching con-
sensus through cross-supervision.

Extensive experiments on three public datasets validate
that our barely-supervised method is close to or even bet-
ter than its upper bound, i.e., semi-supervised methods with
fully annotated labeled volumes. For example, on KiTS19,
compared to Mean Teacher [36] that uses 320 labeled slices
with a Dice of 84.98%, we only uses 10 labeled slices yet
obtains a Dice of 86.93%.

2. Related Work
Semi-supervised Learning. Semi-supervised learning

methods leverage a few labeled data and abundant unlabeled
data to reduce the dependency on laborious annotation, and
show their effectiveness on various tasks [22, 27, 45]. For
example, Π-model [33] minimized the inconsistency be-
tween the outputs of differently disturbed inputs in order
to improve the consistency of the model. Temporal Ensem-
bling [33] and Mean Teacher [36] improved Π-model by
leveraging the average of historic outputs to produce pseudo
labels of higher quality. FixMatch [35] and FlexMatch [44]
selected pseudo labels of higher quality with threshold.
Some methods explored uncertainty by using novel con-
sistency regularization, e.g., UPS [31] and NP-Match [38].
The consistency regularization way used in these methods
has greatly inspired current mainstream semi-supervised
medical image segmentation methods.

Semi-supervised Medical Image Segmentation. To
free radiologists from the burden of heavy annotation, many
deep learning-based semi-supervised methods have been
proposed for medical image segmentation in recent years.

Consistency regularization is a popular method to lever-
age unlabeled data. Li et al. [19] made a consistency con-
straint between the outputs of original images and trans-
formed images. Similarly, Bortsova et al. [6] proposed a
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Figure 2. Overview of the proposed DeSCO paradigm. For a volume with orthogonal annotation, Mreg propagates the orthogonal
annotation into the whole volume in two directions, and the results serve as pseudo labels to supervise segmentation model Mseg·a and
Mseg·b, respectively. For an unlabeled volume, Mseg·a and Mseg·b supervise each other with their outputs. Weight map guides Lsup and
whiter areas mean higher weight.

method that learns to predict consistently under different
transformations. Xie et al. [41] enforced the consistency of
images in feature space. Different from previous work, Luo
et al. [24] imposed the consistency constraint at task level.
Shi et al. [34] incorporated consistency regularization and
entropy minimization by treating certain/uncertain region
with different training strategies. Besides, Co-training is an-
other widely-used framework for semi-supervised medical
image segmentation. Zhou et al. [46] applied multi-planar
fusion to generate more accurate 3D pseudo label to train a
co-training model. Xia et al. [40] introduced multi-view co-
training into semi-supervised medical image segmentation
and domain adaptation. And some works [2, 43] improv-
ing the quality of pseudo labels also showed great effective-
ness. However, when applied to 3D segmentation tasks, as a
heavy burden, most of them still require a dozen pixel-wise
fully annotation slice-by-slice.

Weakly-supervised Segmentation. Weakly-supervised
segmentation methods give pixel-level output with coarse
annotation including image-level annotation [16, 17, 39],
bounding box [12, 29], scribble [20, 21, 37] and even some
points [3]. Among them, image-level annotation is the most
popular setting and has been extensively studied. Many
image-level weakly-supervised segmentation methods are
based on class activation map (CAM). However, the area
suggested by CAM is incapable of directly training a seg-
mentation model as it only covers the most discriminative
part of large objects and is liable to over-covers small ob-
jects. Other annotation methods suffer from the same prob-
lem more or less. The common problem in these anno-
tation methods is that they discard the information of the
boundaries between objects, which is crucial for segmenta-
tion tasks. Our annotation method takes into consideration

the precise delineation of objects and utilizes volumetric in-
formation of 3D medical images.

Remark. Our setting could be regarded as a variant of
semi-supervised segmentation by requiring much fewer an-
notated slices. Our proposed orthogonal annotation has its
merits in preserving disparity to boost the performance in
semi-supervised scenario. Also, compared with weakly-
supervised segmentation, our method only requires very
few annotated slices while yielding promising results.

3. Method
In this work, we propose a novel annotation method

called orthogonal annotation and a coupled training method
comprised of 1) a registration module and 2) DesCO seg-
mentation model. The training procedure is illustrated in
Figure 2. We provide detailed introductions to the problem
setting, our orthogonal annotation, registration module and
the proposed DeSCO paradigm in the following parts.

3.1. Problem Setting and Notations

We aim to apply our orthogonal annotation in barely-
supervised segmentation setting, e.g., only 10 orthogonal
slices from 5 volumes for an entire 3D medical image
dataset. Training set contains N volumes {X1, X2, ..., XN}
of shape H × W × D, where H,W and D represent the
height, width and depth of each volume, respectively. These
volumes are further divided into {X1, X2, ..., Xl} with an-
notations and {Xl+1, Xl+2, ..., XN} without annotations.
Our methods annotates two slices from orthogonal planes
denoted by a and b. The labeled slices of Xi(1 ≤ i ≤ l) are
denoted as Xm

ia and Xn
ib, which means mth slice in plane a

and nth slice in plane b. Their annotations are denoted as
Y m
ia and Y n

ib .
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3.2. Justification for Orthogonal Annotation

Our proposed orthogonal annotation (OA in short),
which only labels two slices in orthogonal directions for a
3D volume, is highly efficient in annotation. Additionally,
we now validate its effectiveness empirically and experi-
mentally, which includes the discussion about 1) disparity,
2) feature representation, and 3) initial performance. We
here take LA dataset [42] as an example, which contains
100 3D volumes detailed in Sec. 4.1.

OA preserves the disparity. As revealed by previ-
ous theoretical studies in semi-supervised learning [30],
disparity (or disagreement) between views (or models)
providing complementary information is the key to suc-
cess. Now we explore the similarity of parallel slices
and orthogonal slices from both image- and feature-level.
The slices are chosen at random and the features are ex-
tracted from V-Net [28] trained with fully annotated data.

0.04

Image Feature
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orthogonal

0.008

0.028

0.010

HSIC

0.033

Figure 3. HSIC of parallel
slices and orthogonal slices.

We utilize the popularly-
used Hilbert-Schmidt
independence criterion
(HSIC) [26] as the evalua-
tion metric. Smaller value of
HSIC, more independence
of two variables. The results
are shown in Figure 3, which
reveal that parallel slices are
more relevant than orthogonal slices in terms of both image
and feature. It implies that parallel annotations have more
redundancy of information. Besides, slices from different
planes are inherently varied and complementary. Thus,
for the same amount of annotation, orthogonal annotation
could be superior to parallel annotation.

OA enhances consistency from different directions.
We now visualize the features under different settings. Here
are three models trained with only one labeled slice in each
volume. The labeled slices are from transverse plane for
models t1 and t2 and from coronal plane for model c. In
other words, labeled slices used to train models t1 and t2
are parallel and those used to train models t1 and c are or-
thogonal.

(a) model 𝑡𝑡1 and 𝑡𝑡2 (b) model 𝑡𝑡1 and 𝑐𝑐

Figure 4. t-SNE result of feature for classification.

We extract the features before the classification layer of
three models and use t-SNE to visualize them. The results
are shown in Figure 4. Red and orange represent positive
class while blue and aqua represent negative class. In par-

allel annotation, even the labeled slices come from a same
plane, they learn different sub-patterns to distinguish fore-
ground from background. Differently, the labeled slices to
train t1 and c share some common voxels (i.e., overlapping
part) so that the features/predictions for the same class are
closer. This result validates, by using orthogonal planes,
different classes could have more consistent representation.

OA provides a promising initialization. To further
explore the utility of the orthogonal annotation, we com-
pare it to the parallel annotation in each plane. We
trained models with three labeling manners: 1) one
transverse plane slice and one coronal plane slice 2)
two transverse plane slices 3) two coronal plane slices.
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Figure 5. Dice coefficient on test
set of models trained with different
annotations.

The testing result is
shown in Figure 5.
The model trained
with orthogonal an-
notations steadily and
vastly outperform the
other two models in its
initial stage. It shows
that simply leveraging
orthogonal plane
slices can promote the

performance greatly and this fact has always been neglected
in medical image segmentation field.

These observations have revealed the superiority of our
orthogonal annotation. More detailed settings of these ex-
periments are provided in the supplementary material.

3.3. Registration Module

Registration seeks a spatial transformation to map an im-
age to another image. For two slices: labeled slice(Xl, Yl)
and unlabeled slice Xu, registration obtains a spatial defor-
mation field Φ(·) by mapping from Xl to Xu. And pseudo
label of Xu can be acquired by applying the same spatial
deformation field to label Yl, which can be formulated as
Ŷu = Φ(Yl).

As the segmentation targets in adjacent slices are usu-
ally similar in shape and size, it is feasible to propagate the
label of a slice to its neighbouring slices through a regis-
tration module Mreg . Note that registration module is an
off-the-shelf tool that requires no training, so it introduces
little extra computational cost except generating pseudo la-
bels for only once.

For volume X with two orthogonal annotated slices
(Xm

a , Y m
a ) and (Xn

b , Y
n
b ) , we use the two slices to per-

form slice-by-slice label propagation and gradually gener-
ate two pseudo labels Ŷa and Ŷb for X through registration
module Mreg . First, we calculate spatial transformation
fields that maps Xm

a to its closest slices Xm−1
a and Xm+1

a

through Mreg . Then the spatial transformation fields are
applied to label Y m

a to acquire pseudo labels Ŷ m−1
a and
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Ŷ m+1
a , from which we further derive Ŷ m−2

a and Ŷ m+2
a .

Through the same procedure, we obtain pseudo labels for
all slices viewed in plane a, and concatenate them to com-
pose pseudo label Ŷa for volume X . Similarly, the pseudo
label Ŷb can be easily obtained. So here we have pseudo la-
bel sets {Ŷ1a, Ŷ2a, ..., Ŷla} and {Ŷ1b, Ŷ2b, ..., Ŷlb} for those
volumes with orthogonal annotation.

Performing label propagation suffers error accumulation
as the pseudo label of each unlabeled slice is derived from
its nearest pseudo label. Though error propagation can be
greatly mitigated through morphology operations, it cannot
be completely eliminated due to the limitation of registra-
tion itself. To alleviate the problem, we consider the impor-
tance of each slice in terms of their credibility.

3.4. Label Mixing

For each volume X with sparse orthogonal annotation,
we have ground truth sparse annotation Y and dense regis-
tration pseudo label Ŷa and Ŷb. Now we generate pseudo
label Ỹa and Ỹb by mixing up dense registration pseudo la-
bel and ground truth sparse annotation:

Ỹa = LabelMix(Ŷa, Y ), (1)

where LabelMix(·, ·) denotes a function mixing them by re-
placing the unlabeled voxels in Y with pseudo label in Ŷa.
Similarly, Ỹb can be generated.

As mentioned in Sec. 3.3, different slices in Ŷ should
be considered differently according to the quality of pseudo
labels. We assume the error rate of label propagation is a
certain value, and the credibility of slice i can be denoted as
wi = αd, where d is the distance from slice i to registration
source slice and α (0 ≤ α < 1) is the decay rate. On these
grounds, we set the voxel-wise weight for each voxel in Ỹa:

W i
a =

{
1 if voxel i is labeled in Y

αd otherwise.
(2)

Similarly for the voxel weight map of Ỹb, defined as Wb.

3.5. Dense-Sparse Co-Training

Our DeSCO paradigm consists of two 3D segmentation
networks Mseg·a and Mseg·b of a same structure. It lever-
ages labeled and unlabeled volumes simultaneously in a
mini-batch. As mentioned above, every volume Xi (i ≤ l)
has two pseudo labels, Ỹia and Ỹib. Segmentation network
Mseg·a is trained with Ỹia and Mseg·b is trained with Ỹib,
respectively. In this way, the two segmentation networks
mainly learn from two different perspectives with the targets
obtained from different plane registration, and the disparity
in orthogonal annotation is well-preserved. The supervised
loss contains weighted cross-entropy loss and weighted dice

loss, which are formulated as:

Lce = − 1∑H×W×D
i=1 wi

H×W×D∑
i=1

wiyi log pi, (3)

and

Ldice = 1−
2×

∑H×W×D
i=1 wipiyi∑H×W×D

i=1 wi(p2i + y2i )
, (4)

where wi is ith voxel of weight map W and pi, yi denote
the probability of foreground and pseudo label of voxel i
respectively.

At the early stage of training, segmentation models
need to learn from dense pseudo label for steady improve-
ment. Segmentation networks are gradually improved dur-
ing training and can produce better segmentation results
than the initial pseudo labels. Therefore, the initial pseudo
labels are actually becoming the obstacle for continual im-
provement. Based on this fact, we should weaken the in-
fluence of pseudo label. To implement this, we gradually
decrease the decay rate α, and down to zero at last, which
means the networks get rid of pseudo labels and only learn
from sparse annotation.

The supervised loss is the weighted sum of cross-entropy
loss and dice loss:

Lsup =
1

2
Lce +

1

2
Ldice. (5)

For those volumes without annotations, the two segmen-
tation models teach each other with their predictions. In a
training iteration of volume Xi (i ≥ l+1), Mseg·a takes Xi

as input and generates its one-hot prediction, which will be
partially selected as the pseudo label for Mseg·b. Here we
follow UAMT [43] by selecting those voxels whose uncer-
tainty is lower than a threshold and produce mask Mun for
better cross-supervision. Similarly, Mseg·b regards masked
one-hot prediction of Mseg·a as the pseudo label. The loss
is formulated as:

Lcross = − 1∑H×W×D
i=1 mi

H×W×D∑
i=1

miŷi log pi, (6)

where mi denotes the value in mask Mun, pi and ŷi de-
note the probability of foreground and one-hot pseudo label
predicted by two models.

For the late stage of training, the supervised loss mainly
comes from the labeled slices and the information have been
learnt by segmentation models, so keeping supervised loss
weight high is to no avail. Oppositely, the cross-supervision
weight should be increased for the two networks can correct
the mistakes from noisy pseudo label and reach a consensus
through cross-supervision. Thus, the overall objective is the
weighted sum of Lsup and Lcross:

L = (1− λ)Lsup + λLcross, (7)
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where λ is a dynamic parameter gradually increasing to op-
timal cross-supervision weight λoc.

4. Experiments
4.1. Datasets

LA Dataset [42] contains 100 3D gadolinium-enhanced
magnetic resonance images required using clinical whole-
body MRI scanner and full annotations for left atrial cavity
by radiologists. All scans have the same isotropic resolu-
tion of resolution of 0.625× 0.625× 0.625mm3 while their
dimensions vary from each other.

KiTS19 Dataset [14] is a benchmark for kidney and kid-
ney tumor segmentation. It contains 300 arterial phase ab-
dominal CT where there are one or more kidney tumors and
210 of them have accessible kidney and kidney tumor de-
lineations. The CTs have an average slice number of 216
and the slices thicknesses range from 1mm to 5mm. Most
of slices in the transverse plane have the size of 512× 512.

LiTS Dataset [4] consists of 201 contrast-enhanced ab-
dominal CT scans and corresponding segmentation of liver
as well as liver tumor provided by various clinical sites.
And 131 of segmentations are open to the public. There
are high variations in pixel spacing and slice thickness.

4.2. Experiment Setting

For the selection of annotated slices, the principle is that
the segmented target should be visible in the selected slice.
For generalization, we simply select a fixed slice roughly
located in the middle of the whole target.

For the implementation of our method, we adopt the
SyNRA method in Ants [1] as our registration module and
V-Net [28] as the backbone of our segmentation models.

For the training of segmentation models, we set the batch
size as 2, one for labeled sample and one for unlabeled sam-
ple. We use Stochastic Gradient Descent (SGD) with mo-
mentum of 0.9 and weight decay of 0.0001 as optimizer.
The learning rate is initialized as 0.01 and gradually decays
to 0.0001. Training iteration is set to 6000 for all experi-
ments. λoc is 0.8 for all three datasets. For the slice-wise
weight decay rate, we initialize α to 0.95 and update every
1000 iterations according to cosine rampdown from [23].

For the evaluation and comparison of our method and
other semi-supervised methods, we adopt four commonly
used metrics, which are Dice coefficient, Jaccard coeffi-
cient, 95% Hausdorff Distance (95% HD) and Average
Surface Distance (ASD). We compare our method with
some classic and state-of-the-art (SOTA) methods, includ-
ing Mean Teacher (MT) [36], Cross Pseudo Supervision
(CPS) [10], Cross Teaching Between CNN and Trans-
former (CTBCT) [25] and Conservative-radical Network
(CoraNet) [34]. All methods are implemented in 3D man-
ners. MT, CPS, CoraNet and the CNN network of CTBCT

use V-Net [28] as backbone, the transformer network of
CTBCT is implemented as UNETR, which is introduced
in [13]. As those methods are not specifically designed for
barely-supervised setting, for fairer comparisons, we de-
signed two training settings for those methods. 1) Dense:
we provided dense pseudo labels by registration as labeled
training data. From the comparison between our method
and other methods trained in this setting, we show that
our method can better leverage the inaccurate pseudo labels
while other methods suffers severe degradation. 2) Sparse:
we provide original orthogonal labels without registration.
And during training, the supervised loss only comes from
labeled voxles. In the comparison between our method and
other methods trained in this setting, we show that directly
learning from few sparse annotations is almost unattainable,
thus, generating initial pseudo labels is necessary and rea-
sonable. All the experiments are implemented using Py-
Torch and an NVIDIA GeForce RTX 3090 GPU.

4.3. Compared with SOTA Methods

Results on LA Dataset. Following [43], we use 80 vol-
umes for training and 20 for testing. 5 volumes of training
data have orthogonal annotations on transverse plane and
coronal plane, while the rest of the training data are used as
unlabeled volumes. As there’s no validation set in the exper-
iments, so we report the results at the end of 6000 iterations
of training for all methods. We randomly crop the original
size 112×112×88 into 112×112×80 for training, and the
patch size remains the same during testing. The prediction
is generated by sliding the patch window with a stride of 18
on the coronal and sagittal plane and 4 on the transverse
plane. The comparison results between our method and
other methods are presented as mean ± std of five cross-
validation in Table 1. It is clear that our method outper-
forms other SOTA semi-supervised methods in all metrics
except ASD. Compared to Mean Teacher trained with fully
annotated volumes, our method uses only 2.3% annotations
but there is only a 1.65% drop on Dice coefficient. We no-
tice that these methods in Sparse setting work poorly, it is
mainly because of the variety between slices and the lack of
supervision signal on most parts of the whole volume. The
segmentation result examples are shown in Figure 6.

Results on KiTS19 Dataset. We divided 210 samples
into training set and test set, which have 190 and 20 samples
respectively. Similar to LA, 5 volumes are randomly se-
lected to label and the rest 185 volumes are unlabeled data.
Patch size is set to 128×128×64. The results are shown in
Table 2. From the table we can see that our method outper-
forms all methods on all metrics. Note that our method even
outperforms MT trained with 32 times the annotated slices.
The segmentation result examples are shown in Figure 7.

Results on LiTS Dataset. For LiTS dataset, we also
randomly select 5 volumes as labeled data, 95 volumes as
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Table 1. Comparison on LA dataset segmentation.

Method Venue Setting Scans Used Metrics

L / U
Volumes Labeled Slices Dice (%) Jaccard (%) HD (voxel) ASD (voxel)

Barely-supervised

MT [36] NIPS’17 Dense 5 / 75 10 74.41±4.07 60.87±4.35 27.87±3.96 5.65±1.12
Sparse 5 / 75 10 63.17±2.28 47.48±2.38 39.87±4.32 14.75±2.41

CPS [10] CVPR’21 Dense 5 / 75 10 74.02±0.41 60.62±1.37 30.32±1.73 5.86±0.92
Sparse 5 / 75 10 62.24±2.55 46.12±2.87 45.03±2.77 17.83±2.29

CTBCT [25] MIDL’22 Dense 5 / 75 10 73.12±5.50 59.37±5.80 26.51±2.47 5.38±1.25
Sparse 5 / 75 10 64.71±1.49 48.89±1.14 42.09±2.13 15.91±0.83

CoraNet [34] TMI’22 Dense 5 / 75 10 40.63±1.34 31.94±2.41 40.88±3.73 20.19±1.57
Sparse 5 / 75 10 51.16±3.63 38.45±3.30 44.70±1.08 18.46±0.78

Ours this paper - 5 / 75 10 77.48±0.58 64.36±1.25 24.86±10.58 6.41±4.68

Semi-supervised MT [36] NIPS’17 - 5 / 75 440 79.13±2.37 66.92±2.82 17.41±1.85 4.76±1.36

Figure 6. Visual segmentation examples from LA dataset. The red, cyan, blue, green, magenta, yellow curves denote the corresponding
results of ground-truth, mean teacher [36], CPS [10], CTBCT [25], CoraNet [34] and ours, respectively.

Table 2. Comparison on KiTS19 dataset segmentation.

Method Venue Setting Scans Used Metrics

L / U
Volumes Labeled Slices Dice (%) Jaccard (%) HD (voxel) ASD (voxel)

Barely-supervised

MT [36] NIPS’17 Dense 5 / 185 10 78.16±1.99 66.96±1.41 17.15±5.93 5.40±2.25
Sparse 5 / 185 10 32.16±13.78 20.41±11.04 67.42±12.73 32.35±9.83

CPS [10] CVPR’21 Dense 5 / 185 10 76.51±5.81 64.67±6.69 17.71±8.67 5.74±3.50
Sparse 5 / 185 10 8.87±2.87 4.68±1.58 81.60±10.15 41.21±5.38

CTBCT [25] MIDL’22 Dense 5 / 185 10 80.65±0.83 69.99±2.27 14.88±6.07 4.28±1.88
Sparse 5 / 185 10 17.87±0.87 9.88±0.55 76.06±8.57 37.83±5.17

CoraNet [34] TMI’22 Dense 5 / 185 10 43.08±28.61 33.27±23.87 24.17±3.88 8.61±2.11
Sparse 5 / 185 10 28.64±25.05 18.90±19.44 72.62±22.57 35.22±13.43

Ours this paper - 5 / 185 10 86.93±2.78 78.33±3.21 11.61±2.15 3.28±0.51

Semi-supervised MT [36] NIPS’17 - 5 / 185 320 84.98±4.68 76.51±5.63 16.51±0.18 4.61±0.83

Figure 7. Visual segmentation examples from KiTS19 dataset. The red, cyan, blue, green, magenta, yellow curves denote the corresponding
results of ground-truth, mean teacher [36], CPS [10], CTBCT [25], CoraNet [34] and ours, respectively.

unlabeled data and the rest 31 as testing data. We adopt
random cropping to get patches of 176×176×64 for train-
ing and testing. From Table 3, our method uses only 10
labeled slices and obtains a Dice coefficient close to 90%.
Compared with other methods, our method outperforms all
methods by a large margin. And our method is only 1.53%
lower than MT trained with full volumetric annotation on
Dice metric, but performs much better on HD and ASD.

The segmentation result examples are shown in Figure 8.

4.4. Ablation Study

Effectiveness of Each Component: In order to better
understand and evaluate the components of our method,
we conduct an ablation experiment on the KiTS19 dataset.
Now we introduce each setting of our experiment: 1) train-
ing from mixed dense pseudo label (Dense), 2) leverag-

3308



Table 3. Comparison on LiTS dataset segmentation.

Method Venue Setting Scans Used Metrics

L / U
Volumes Labeled Slices Dice (%) Jaccard (%) HD (voxel) ASD (voxel)

Barely-supervised

MT [36] NIPS’17 Dense 5 / 95 10 81.76±4.82 69.73±7.01 28.87±13.85 8.57±4.03
Sparse 5 / 95 10 56.82±25.76 43.83±28.78 74.03±34.02 31.41±17.58

CPS [10] CVPR’21 Dense 5 / 95 10 73.86±10.13 59.73±13.16 32.78±14.68 10.73±5.20
Sparse 5 / 95 10 20.46±2.15 11.48±1.35 92.27±3.03 41.34±2.09

CTBCT [25] MIDL’22 Dense 5 / 95 10 79.68±5.45 66.95±7.41 30.46±13.36 9.18±4.12
Sparse 5 / 95 10 40.07±7.95 25.52±6.24 71.83±11.41 29.49±5.44

CoraNet [34] TMI’22 Dense 5 / 95 10 80.17±1.77 68.97±3.16 19.42±7.47 4.34±0.50
Sparse 5 / 95 10 36.84±8.20 23.13±6.03 95.89±1.94 43.25±2.03

Ours this paper - 5 / 95 10 89.24±1.37 81.10±2.28 10.05±2.42 2.27±0.45

Semi-supervised MT [36] NIPS’17 - 5 / 95 320 90.77±1.91 83.62±3.11 18.32±7.17 4.95±1.81

Figure 8. Visual segmentation examples from LiTS dataset. The red, cyan, blue, green, magenta, yellow curves denote the corresponding
results of ground-truth, mean teacher [36], CPS [10], CTBCT [25], CoraNet [34] and ours, respectively.

Table 4. Ablation study on KiTS19 dataset.
Methods Dense ws Mun D → S λ ↑ Dice (%) Jaccard (%) HD (voxel) ASD (voxel)

#1 ✓ 75.33±8.77 63.20±10.95 19.14±8.14 6.53±3.27
#2 ✓ ✓ 77.69±5.07 65.75±6.57 17.90± 6.34 5.65±2.47
#3 ✓ ✓ ✓ 78.31±3.94 66.48±4.67 18.35±5.59 5.43±1.62
#4 ✓ ✓ ✓ ✓ 78.45±6.45 67.03±9.13 30.50±6.28 9.57±3.32
#5 ✓ ✓ ✓ ✓ 84.86±2.01 74.99±2.16 12.21±2.75 3.34±0.95

#6 ✓ ✓ ✓ ✓ ✓ 86.93±2.78 78.33±3.21 11.61±2.15 3.28±0.51

ing slice-wise weight (ws), 3) uncertainty-guided cross-
supervision (Mun), 4) gradually decreasing the weight de-
cay rate α to zero, i.e., learning from dense to sparse (D →
S), and 5) gradually increasing cross-supervision weight to
λoc (λ ↑). The results are shown in Table 4.

The process of learning from dense to sparse and a high
cross-supervision weight in the late stage play the most crit-
ical role. Throughout the training procedure, the perfor-
mance of the segmentation models is improving, and they
can produce better results than the initial pseudo labels, so
the high weighted supervised loss is gradually hampering
the segmentation networks from improving. Simply lever-
aging slice-wise weight ws is also effective.

Quantitative Analysis on Hyper-Parameter: We also
conduct exhaustive experiments of different optimal cross-
supervision weights λoc on the KiTS19 datasets. Specifi-
cally, we set the optimal cross-supervision weight as 0.1,
0.2, 0.4, 0.6, 0.8 and 1.0. We find that setting λoc as 0.8
serves best. Detailed results are shown in Figure 9.

It is shown that optimal cross-supervision weight should
not be too large or too small, because small λoc makes the
networks concentrate on learning from registration labels
and neglect the fact that the networks are improving during
the training procedure, while too large λoc makes the net-
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Figure 9. Segmentation result on KiTS dataset with different opti-
mal cross-supervision weight λoc.

work gradually lose the supervision from the ground truth
labels, and the performance tends to decrease through fur-
ther cross-supervision without constraint.

5. Conclusion
In this paper, we proposed orthogonal annotation for

3D medical image segmentation which is to label two or-
thogonal slices for a volume, and we verified its high-
efficiency. Then we applied this annotation manner in
barely-supervised segmentation setting. To better leverage
the volumes with orthogonal annotation and the large num-
ber of unlabeled volumes, we designed a dense-sparse co-
training paradigm, which learns from dense pseudo label
first, then reduces noise and gains further promotion from
sparse annotation in later stage. Our method could better
synthesize the knowledge from two planes through cross-
supervision. Large quantities of experiments have validated
the effectiveness of our orthogonal annotation and DeSCO
paradigm, e.g., our method could achieve a close or better
performance compared with semi-supervised method, but
with only 2%∼3% annotations.
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