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Abstract

Although deep neural networks have achieved astonish-
ing performance in many vision tasks, existing learning-
based methods are far inferior to the physical model-based
solutions in extreme low-light sensor noise modeling. To tap
the potential of learning-based sensor noise modeling, we
investigate the noise formation in a typical imaging process
and propose a novel physics-guided ISO-dependent sensor
noise modeling approach. Specifically, we build a normal-
izing flow-based framework to represent the complex noise
characteristics of CMOS camera sensors. Each compo-
nent of the noise model is dedicated to a particular kind
of noise under the guidance of physical models. Moreover,
we take into consideration of the ISO dependence in the
noise model, which is not completely considered by the ex-
isting learning-based methods. For training the proposed
noise model, a new dataset is further collected with paired
noisy-clean images, as well as flat-field and bias frames
covering a wide range of ISO settings. Compared to exist-
ing methods, the proposed noise model is equipped with a
flexible structure and accurate modeling capabilities, which
is beneficial for better denoising performance in extreme
low-light scenes. The dataset and code are available at
https://github.com/happycaoyue/LLD.

1. Introduction

In recent years, learning-based image denoising methods
have achieved tremendous success with pairwise training
samples [22, 32]. However, it is still challenging to recover
high-quality results in extreme low-light scenarios, mainly
due to limited data [9, 31]. Considering the difficulty of
collecting enormous pairwise training data, noise model-
ing [25, 31, 33] becomes an alternative solution by simu-
lating noises that match the extreme low-light distribution.

The noises in extreme low-light scenarios contain severe

striping artifacts and color bias, and the damage to image
quality is inconsistent across different ISO settings and lo-
cations. To model such complicated noises, physics-based
methods [9, 29, 31, 33] build cumbersome statistical mod-
els according to the physical process from photons (i.e., the
light) to digital signals (i.e., the rawRGB image). Neverthe-
less, the noise parameter calibration relies on a large num-
ber of flat-field and bias frames, which is also laborious and
expensive. For example, PMN [9] requires 400 bias frames
at each ISO setting to calibrate the noise parameters.

For circumventing the tedious parameter calibration pro-
cess, learning-based methods [1, 5, 25] directly learn the
mapping from clean images to their noisy counterparts. Yet
the performance is still far inferior to the physics-based
statistical methods [31, 33]. To boost the performance of
learning-based sensor noise modeling, we delve into such
inferiority and attribute the major cause to the inconsistency
between the noise models and the imaging process. For
example, NoiseFlow [1] utilizes the distribution matching
ability of normalizing flow but is unable to model strip-
ing artifacts and color bias. Starlight [25] leverages vari-
ous noise sources like heteroscedastic Gaussian noise, row
noise, and fixed-pattern noise. However, it mixes the noises
with the clean image and delivers them into a GAN model.
In other words, the noises are entangled with each other,
which increases the difficulty of describing the noise distri-
butions. Moreover, these methods [1,5,25] either ignore the
ISO dependency of the noise or are based on the assumption
of a small range of ISO settings, further limiting the perfor-
mance of learning-based noise modeling methods.

As a remedy, we propose a refined noise model to tap
the potential of learning-based sensor noise modeling. As
shown in Tab. 1, the proposed noise model covers the
most common kind of noises in the imaging process, in-
cluding shot noise Nshot, dark current fixed-pattern noise
NFP , black level error noise NBLE , dark current shot noise
NDCSN , read noise Nread, row noise Nrow, and quantiza-
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Table 1. Comparison between noise modeling methods. S means that the noise is sampled from real images.

Method Category Nshot NFP NBLE NDCSN Nread Nrow Nq Learnability ISO dependence

ELLE [29] Physics ✔ ✔ ✔ ✔ ✔ ✔ None Incomplete
ELD [31] Physics ✔ S ✔ ✔ ✔ ✔ None Incomplete

SFRN [33] Physics ✔ S S S S S ✔ None Incomplete
PMN [9] Physics ✔ ✔ ✔ ✔ None Incomplete

NoiseFlow [1] Learn ✔ ✔ ✔ ✔ Complete Incomplete
Startlight [25] Learn ✔ ✔ ✔ ✔ ✔ ✔ Incomplete Incomplete

Ours Learn ✔ ✔ ✔ ✔ ✔ ✔ ✔ Complete Complete

tion noise Nq . Among them, NFP , NBLE , and NDCSN

jointly model the dark current noise NDC . Besides, the ISO
dependence is also better considered compared to existing
methods. The noise model is implemented in the normal-
izing flow framework, and each component corresponds to
a specific type of noise. Such configuration leverages the
explicit distribution modeling ability of normalizing flow
models, and the network architecture is also flexible enough
to align accurately with our proposed noise model.

Apart from the inconsistency between existing noise
models and the imaging process, another key factor imped-
ing accurate noise modeling is the dataset. For obtaining
the reference clean images, the SIDD dataset [2] overlays
multiple noisy images, which leaves the black level error
noise [9,29,31] and fixed-pattern noise [4,21,23] unable to
remove. Another commonly used dataset SID [6] adopts the
same ISO setting for pairwise long and short exposure im-
ages, which results in the long exposure reference images
still containing noises such as fixed-pattern noise. There-
fore, for better training the proposed noise model, we have
also collected a low-light image denoising (LLD) dataset,
which contains pairs of noisy (short exposure, high ISO)
and clean (long exposure, low ISO) images. Furthermore,
we also provide flat-field and bias frames at various ISO
settings in the LLD dataset, hoping it can facilitate the un-
derstanding of real noise and image denoising research.

With the LLD dataset, we train the proposed noise model
in a two-stage manner. Specifically, the noises are divided
into two groups, i.e., the fixed-pattern noise and the ran-
dom noise. Then the noise model is first trained to describe
the random noise and then fitted to the fixed-pattern noise.
Thanks to the flexible structure and accurate modeling ca-
pabilities, the proposed noise model can better capture the
characteristics of real noise. The image denoising methods
can also benefit from our noise model and achieve superior
performance in extreme low-light scenes.

To sum up, the main contributions of this work include:

• We investigate the noise formation process in ex-
treme low-light scenarios and propose a novel physics-
guided noise model. The ISO dependence is taken into
consideration in the proposed method.

• We collect a dataset for extreme low-light image de-
noising. The dataset contains pairwise noisy-clean im-

ages captured by two cameras (i.e., Sony A7S2 and
Nikon D850). We also provide flat-field and bias
frames covering a wide range of ISO settings.

• While the learning-based nature eliminates the labor-
intensive parameter hand-calibration process, our pro-
posed method can achieve superior noise modeling ac-
curacy and boost the image denoising performance.

2. Related Work

2.1. Physics-based Statistical Noise Modeling

Physics-based statistical noise modeling approaches
generally divide the noises into signal-dependent and
signal-independent components. Shot noise is the dominant
source of signal-dependent noises, which is generally mod-
eled as a Poisson distribution and is determined by the sig-
nal and the camera gain. To obtain the camera gain, some
methods [9, 31, 33] capture flat-filed frames when the sen-
sor is uniformly illuminated, and derive the system gain via
the photon transfer method [15]. Similarly, PMRID [30]
utilizes a burst of grayscale chart images to calibrate the
system gain by means of the photon transfer method.

Signal-independent noises typically are composed of
dark current noise, read noise, row noise, and quantiza-
tion noise. Generally, the parameters of signal-independent
noises can be obtained from bias frames captured in a light-
free environment. To model the read noise and dark cur-
rent noise, ELD [31] employs the Tukey lambda distri-
bution [17], which has a longer tail and can mitigate the
chrominance artifacts in low-light conditions. By contrast,
PMN [9] only models dark current fixed-pattern noise. Be-
sides dark current fixed pattern noise, the thermal effects
of the circuit also lead to black level error noise, which
is modeled by a uniform distribution [29], randomly sam-
pling from real data [31], or averaging hundreds of bias
frames [9]. Row noise is typically modeled by a vector fol-
lowing Gaussian distribution [12,29,31], while quantization
noise mathematically follows a uniform distribution.

Although current physics-based noise modeling methods
have achieved decent performance, they generally require
laborious calibration and still cannot model the color bias in
extreme low-light scenarios, which motivates us to develop
more accurate and flexible methods for noise modeling.
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2.2. Learning-based Noise Modeling

Recently, several learning-based noise models [1,5,7,16,
18, 24, 25] have adopted normalizing flow-based [20, 28] or
GAN-based [11,13] frameworks to model real-world noises
in a data-driven manner. For example, NoiseFlow [1] ap-
plies a flow-based model that maximizes the likelihood of
sampled noise. CA-GAN [5] feeds the clean image and
a random Poisson-Gaussian noise into a noise generator
to produce the final synthetic noise. The above pioneer-
ing works are based on normal light or ordinary low-light
scenes (∼103 photons per pixel or > 1 lux). However,
due to the ignorance of the complex physical noise prop-
erties, existing learning-based methods are still far inferior
to physics-based statistical methods, especially in extreme
low-light scenarios [31, 33]. Starlight [25] adopts a more
demanding setting under starlight (∼1 photon per pixel or
≤ 0.001 lux), yet the performance is still limited and the
fixed-pattern noise needs to be hand-calibrated. To this end,
there is still a lack of learning-based noise models to simu-
late extreme low-light noise, which can give full play to the
potential of neural networks while circumventing specific
scenario captures like no lighting [9, 33] or flat-field [31] to
obtain certain parameters in physics-based methods.

2.3. Image Denoising Dataset

To obtain sufficient paired noisy-clean data, SIDD [2]
employs a straightforward approach to collect burst images
and then average them as ground-truth images. In addition
to being sensitive to misalignment problems, such a method
is unable to remove the fixed-pattern noise and black level
error noise. Chen et al. [6] have also collected a dataset
termed SID, consisting of short-exposure noisy images and
the corresponding clean images exposed for a long time.
However, with the same ISO settings for both short- and
long-exposure images, fixed-pattern dark current noise is
still observed in the long-exposure image when a high ISO
is adopted. To sum up, there are still some challenges inex-
tricable with existing rawRGB image denoising datasets.

Some commonly used benchmarks (e.g., DND [27] and
ELD [31]) adopt high-ISO short-exposure settings for noisy
images and low-ISO long-exposure settings to obtain the
ground-truth clean images. Such a configuration is more
reasonable, and we follow them to collect our low-light im-
age denoising (LLD) dataset since they are reserved for test-
ing only. Besides, to the best of our knowledge, our LLD
dataset is also the first public dataset with flat-field and bias
frames available for various ISO settings.

3. Proposed Method

In this section, we first discuss the noise formation pro-
cess and present our noise model, which points out the key
noise sources in extreme low-light environments. Then, the

noise model is implemented in a normalizing flow frame-
work under the guidance of the physical process. Finally,
we give the details of noisy image synthesis and the pro-
posed low-light image denoising (LLD) dataset.

3.1. Physics-guided Noise Model

There are multiple stages in the rawRGB image acqui-
sition process, and various noises can be induced in these
operations [3]. Inspired by existing physics-based meth-
ods [9, 29, 31], we initialize the noise model as follows,

D = I +Nshot +NDC +Nread +Nrow +Nq, (1)

where D and I are the observed noisy image and potential
clean rawRGB image, Nshot, NDC , Nread, Nrow, and Nq

represent the shot noise, dark current noise, read noise, row
noise, and quantization noise, respectively. In the following,
we will expand on these noises to finalize our noise model.

Shot Noise. Shot noise arises due to the uncertainty gen-
erated when photons are incident, which is an unavoidable
physical phenomenon [12, 21]. Typically, the shot noise is
modeled by a Poisson distribution controlled by the signal
and the system gain. Following [10, 14], we approximate
the Poisson distribution by a Gaussian,

Nshot ∼ N (0, βshot · I), (2)

where Nshot ∈ RH×W and βshot is relevant to the ISO.

Dark Current Noise. For converting the light into digi-
tal signals, the camera leverages the photoelectric effect to
generate current, whose value represents the light intensity.
However, apart from the current yielded by the photons, the
thermal effect in the sensor will also cause a current named
dark current, which results in the dark current noise [8, 21].
Ideally, we can subtract the dark current generated by the
thermal effect, but the randomness of the thermal effect, the
ISO dependence, and the spatial non-uniformity also need
to be considered [8, 9, 21]. Therefore, we model the dark
current noise with three components according to the phys-
ical properties,

NDC = k ·NFP +NBLE +NDCSN , (3)

where k and NBLE are two numbers linearly and non-
linearly related to the ISO configuration respectively, and
NBLE is called black level error noise. NFP ∈ RH×W de-
notes the dark current fixed-pattern noise, which is a fixed
non-uniform variable. NDCSN ∼ N (0, σ2

DCSN ) is the
dark current shot noise representing the randomness of the
thermal effect.

Read Noise and Row Noise. In the readout procedure of
the sensors, the uncertainty of the electronic readout will
cause inevitable read noise, which is a device-dependent
noise [12]. Besides, in CMOS sensors, each column shares
one analog-to-digital converter (ADC), i.e., the readout pro-
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Figure 1. The pipeline of the proposed physics-guided ISO-dependent sensor noise model. Note that zr ∈ RH×1.

cess is performed in a row-by-row manner. The randomness
of ADCs between different rows will lead to row noise,
which contributes significantly to the strip artifacts in the
horizontal direction. Following previous works [12,29], we
model these two noises with the following zero-mean Gaus-
sian distribution, i.e.,

Nread ∼ N (0, σ2
read), Nrow ∼ N (0, σ2

row), (4)

where Nread ∈ RH×W and Nrow ∈ RH×1.

Quantization Noise. Considering that the ADC has a fi-
nite accuracy, the signals should be quantified before being
stored as the rawRGB image. The probability distribution
of the quantization noise is usually considered to be uni-
form, i.e.,

Nq ∼ U(−1/2q, 1/2q), (5)

where q denotes the quantification step. Since the bit num-
ber of the rawRGB digital image is known, q does not need
to be estimated.

Heteroscedastic Gaussian Noise. Considering that the
shot noise Nshot, dark current shot noise NDCSN , and read
noise Nread are all Gaussian distributions with the size of
H × W , we introduce a new term NHG following a het-
eroscedastic Gaussian distribution [10] to model them, i.e.,

NHG ∼ N (0, β1 · I + β2) , (6)

where β1 is the βshot of shot noise, and β2 is determined by
the dark current shot noise and read noise.

To sum up, the final noise model can be formulated as,

D = I +NHG + k ·NFP +NBLE +Nrow +Nq. (7)

3.2. Noise Model Implementation

As shown in Fig. 1, our proposed deep noise model is im-
plemented in a normalizing flow-based framework, and four
components are deployed to model different noises. We
start with a brief introduction to the normalizing flow-based
framework and then introduce each component in detail.

Normalizing Flow-based Framework. Normalizing flows
are composed of several differentiable and bilateral map-
ping functions that learn a transformation z = f(x|Θ) with
parameter Θ. Following this scheme, the proposed normal-
izing flow-based noise model transforms a data sample xi

from a real extreme low-light noise distribution pX to the Z
space which follows standard Gaussian distribution. Based
on the change of variables formula, the probability density
function in real extreme low-light noise space can be ex-
pressed as,

pX (x) = pZ(f(x|Θ)) |detJf(x|Θ)| , (8)

where Jf(x) denotes the Jacobian matrix of function f at
x, det denotes the determinant of the input matrix, and | · |
denotes the absolute value. Equipped with real noise sam-
ples {xi}Mi=1, the mapping function f can be optimized by
minimizing the negative log-likelihood (NLL) function,

LNLL = −
M∑
i=1

log pZ (f (xi|Θ)) + log |detJf (xi|Θ)| . (9)

When the training is finished, we can sample a random
noise z from the Gaussian distribution pZ . Then the inverse
transformation operation f−1 can synthesize the real noise
by x = f−1(z). In the remaining part, we will introduce the
four components in detail, which are designed following the
noise model presented in Sec. 3.1.

Dark Current Fixed-pattern Noise Layer. For mod-
eling the dark current fixed-pattern noise that stays con-
stant throughout all images, we define a learnable tensor
Nf ∈ RH×W. Then a multilayer perceptron (MLP) gFP

is deployed to learn the linear parameter k in Eq. (3), i.e.,
k = gFP (ISO). Therefore, the dark current fixed-pattern
noise layer fFP is defined as,

fFP (x) = x− gFP (ISO)⊙Nf , (10)

where ⊙ denotes point-wise multiplication. The corre-
sponding inverse mapping can be obtained by f−1

FP (x) =
x+ gFP (ISO)⊙Nf .
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Black Level Error Noise Layer. As shown in Eq. (3), the
black level error noise is non-linearly related to the ISO.
Given that there are a limited number of ISO configura-
tions, we choose to model the NBLE for each ISO config-
uration respectively. Specifically, NBLE(ISO) generates
the NBLE for a given ISO, and the bilateral mapping in the
black level error noise layer can be written as,{

fBLE(x) = x−NBLE(ISO)
f−1
BLE(x) = x+NBLE(ISO).

(11)

HG Noise Layer. The HG noise layer is based on the het-
eroscedastic Gaussian noise model in Eq. (6). To map the
heteroscedastic Gaussian noise to a standard Gaussian dis-
tribution, the operation can be formulated as,

z = fHG(x) = x/σHG, where σHG =
√

β1 ⊙ I + β2, (12)

where β1 and β2 indicate the noise parameter terms of
the signal-dependent and signal-independent parts, respec-
tively, which are fitted by the MLPs gβ1

and gβ2
, i.e.,

β1 = gβ1(ISO), β2 = gβ2(ISO). (13)

The absolute value of the determinant of the Jacobian ma-
trix at this layer needs to be calculated when optimizing the
negative log-likelihood, i.e.,

log |detJfHG| =
H×W∑
j=1

− log(σHG[j]), (14)

where σHG[j] denotes the j-th element of σHG and H×W
denotes the total dimension of the clean image I . During
the test phase, the operation of the HG noise layer can be
represented as,

f−1
HG(z) = σHG ⊙ z, (15)

where z is a random noise sampled from the standard Gaus-
sian distribution.

Row Noise Layer. The row noise layer is based on a Gaus-
sian noise model in Eq. (4), which is further applied to the
network as a flow-based layer and can be expressed as,

zr = frow(x) = h(x)/σr, where σr = gσr (ISO), (16)

where h(·) indicates mean operation by row and MLP gσr

is used to fit the relationship between noise parameter σr

and the ISO. The absolute value of the determinant of the
Jacobian matrix at row noise layer can be calculated as:

log |detJfrow| = − log σr. (17)

During the test phase, the row noise layer can be represented
as,

f−1
row(zr) = σr ⊙ zr, (18)

where zr is also a random noise sampled from a standard
Gaussian distribution.

3.3. Training Strategy
Following previous studies [21,23], noise sources can be

broadly classified as either fixed-pattern (time-invariant) or
random (time-variant) noises, i.e.,

D = I + k ·NFP︸ ︷︷ ︸
Fixed-pattern Noise

+NHG +Nrow +NBLE +Nq︸ ︷︷ ︸
Random Noise

.
(19)

Note that the linear dependence of fixed-pattern noise (i.e.,
k ·NFP ) holds only when NBLE and NDCSN are removed.
Therefore, to stabilize the training process, we adopt a two-
stage training strategy to train the proposed noise model,
i.e., the random noise modeling phase and the fixed-pattern
noise modeling phase.

In particular, the network architecture for the random
noise modeling phase can be represented as,{

f1 (xi|Θ1) = fHG (fBLE (xi))
f2 (xi|Θ2) = frow (fBLE (xi)) .

(20)

The loss function consists of two components, for the two
branches respectively, i.e.,

−
M∑
i=1

log pZ (f1 (xi|Θ1)) + log |detJf1 (xi|Θ1)|

+ log pZ (f2 (xi|Θ2)) + log |detJf2 (xi|Θ2)|

(21)

Then, the parameters for the random noise modeling
phase can be fixed, and the network architecture of the
fixed-pattern noise modeling phase becomes,

f3 (xi|Θ3) = fHG (fBLE (fFP (xi))) , (22)

with the following optimization loss function,

−
M∑
i=1

log pZ (f3 (xi|Θ3)) + log |detJf3 (xi|Θ3)| . (23)

3.4. Noisy Image Synthesis Schemes
After training, our noise model can be adopted in two

noisy image synthesis schemes, i.e., clean image-based
synthesis and real noise-based synthesis.

Clean Image-based Synthesis. Clean image-based synthe-
sis is the most intuitive way to generate noisy images. When
given enough clean images I , the corresponding synthetic
noisy images D̂ can be obtained by,

D̂ = I + f−1
FP

(
f−1
BLE

(
f−1
row (zr) + f−1

HG(z)
))

+Nq, (24)

where D̂ and I are respectively utilized as the input and the
learning target of denoising networks.

Real Noise-based Synthesis. In addition to clean image-
based synthesis, real noise-based synthesis strategies are at-
tracting upsurging attention [9, 26, 33].

Darkshading Correction Strategy. According to the
noise model in Sec. 3.1, for a given camera, the fixed pat-
tern noise and black level error noise can be regarded as de-
terministic. Thus, PMN [9] proposes subtracting the fixed
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pattern noise and black level error noise from the noisy im-
ages, in both the training and inference phases of the de-
noiser. Specifically, the noises are divided into darkshading
and zero-mean noises, i.e.,

D = I + k ·NFP +NBLE︸ ︷︷ ︸
Darkshading

+NHG +Nrow +Nq︸ ︷︷ ︸
Zero-mean Noise

. (25)

Then PMN utilizes the (D−k ·NFP−NBLE(ISO), I) pair
for training the denoiser, and the denoiser takes Dtest − k ·
NFP −NBLE(ISO) as input for noisy testing image Dtest.
The zero-mean nature of the remaining noises makes the
denoising task much easier, leading to better performance.
Since the darkshading is also modeled by our method, we
can follow PMN to synthesize such noisy-clean pairs.

Zero-mean Noise Strategy. Furthermore, all the zero-
mean noises in Eq. (25) have been modeled by our noise
model, thus we can also generate more synthetic data from
the opposite direction, resulting in the (I+NHG+Nrow +
Nq, I) training pairs. It is worth noting that PMN is unable
to generate such synthetic noisy images due to their incom-
plete noise model.

3.5. Low-light Image Denoising Dataset

In our low-light image denoising dataset (LLD), we pro-
vide noisy-clean pairs for two cameras, i.e., Sony A7S2 and
Nikon D850. To guarantee that the noisy-clean pairs have
consistent illumination and minimal misalignment issues,
we choose to collect the LLD dataset in indoor scenes, and
the cameras are controlled by the official remote software.
Our LLD follows similar strategies to ELD [31], i.e., the
noisy images are captured with high ISO and shorter ex-
posure time, while the reference images are captured with
low ISO and longer exposure time. In specific, the base
ISO (i.e., 100) is used to capture the reference image, and
24 other different ISO settings are adopted for obtaining the
noisy images. There are 30 scenes in total, resulting in 720
rawRGB noisy-clean image pairs for each camera. More
details about our LLD dataset can be found in the supple-
mentary material. Besides, to facilitate the real noise un-
derstanding and image denoising research, the flat-field and
bias frames are also provided in our LLD dataset. There
are 20 flat-field frames and 400 bias frames for each ISO
setting.

3.6. Discussion

In this part, we have a brief discussion about the dif-
ferences between our approach and existing physics-based
or learning-based approaches separately. For physics-based
methods, ELD [31] and ELLE [29] consider only image-
specific black level error noise and lack modeling of fixed-
pattern noise. Although PMN [9] takes into account fixed-
pattern noise and ISO-specific black level error noise, the
lack of modeling of random signal-independent noise still

limits its modeling capabilities. Inspired by the above-
mentioned approach, we present a refined noise model,
which guides us in designing the modeling network and
training strategy. Further, the learning-based method can
estimate noise parameters and their ISO dependencies more
accurately than the statistical calibration process.

As for learning-based methods, the structure design in
NoiseFlow [1] is relatively simple, ignoring complex low-
light noise components such as row noise and fixed-pattern
noise. Starlight [25] only considers a single ISO setting
and ignores ISO-related noise parameters, which greatly re-
duces the accuracy and generalization ability of the noise
model. In addition, they still require manually calibrat-
ing the fixed-pattern noise, which limits the flexibility of
starlight [25]. In contrast, our approach takes into account
strip artifacts and color bias without manual parameter cal-
ibration and is flexible enough to incorporate the emerging
real noise-based denoising process.

4. Experiments
4.1. Implementation Details

We use 4-channel packed rawRGB images, i.e., R, Gr,
B, Gb, and the Adam optimizer [19] for training. gFP , gβ1

,
gβ2

, and gσr
are implemented by one-layer MLP. Assuming

that there are v different sets of ISO settings, NBLE(ISO)
is then achieved by a v-dimensional learnable parameter.

Random Noise Modeling Stage. We randomly crop the
image patches with size 64 × 64 × 4 and train the random
noise model with batch size 64 for 200 epochs. The learning
rate is initialized to 1×10−4 and decreased to 1×10−5 after
50 epochs.

Fixed-pattern Noise Modeling Stage. The network pa-
rameters in the random noise part (i.e., gβ1

, gβ2
, gσr

, and
NBLE(ISO)) are frozen in this stage. We use the rawRGB
images with original size (H/2)× (W/2)× 4 and train the
fixed-pattern network parameters for 200 epochs with batch
size 1. The initialized learning rate is initially set to 1×10−4

and then set to 1× 10−5 after 100 epochs.

Denoising Stage. As shown in Sec. 3.4, we use our noise
model in two noisy image synthesis schemes, i.e., clean
image-based and real noise-based, which are denoted by
Ours and Ours∗, respectively. For the former, all noisy im-
ages are synthesized from the clean image. For the latter,
in each mini-batch, half data comes from the darkshading
correction strategy (i.e., (D − k ·NFP −NBLE(ISO), I)
pairs) and the other comes from the zero-mean noise strat-
egy (i.e., (I +NHG +Nrow +Nq, I) pairs). More training
details can be found in the supplementary material.

4.2. Comparison with State-of-the-Art

We compare our physics-guided ISO-dependent noise
model with 3 learning-based methods, 3 physics-based
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34.62/0.777 34.34/0.766 40.43/0.959 33.71/0.769 34.14/0.780 34.11/0.745
P-G ELLE ELD NoiseFlow CA-GAN Starlight

29.42/0.519 39.60/0.956 41.11/0.967 40.00/0.965 41.10/0.969 41.18/0.970 PSNR/SSIM
Noisy Image Paired Data SFRN PMN Ours Ours∗ Reference

Figure 2. Denoising results of different methods on real noisy images from SID [6].

Table 2. Quantitative results (PSNR/SSIM) of different noise modeling methods on Sony A7S2 Camera (SID and ELD dataset). Red and
blue are utilized to indicate the best and second best results, respectively.

Dataset Ratio Index
Physics-based Learning-based Real noise-based

P-G [10] ELLE [29] ELD [31] NoiseFlow [1] CA-GAN [5] Starlight [25] Ours Paired Data (SID) SFRN [33] PMN [9] Ours∗

SID [6]

×100
PSNR 39.03 40.09 41.95 38.89 38.66 40.47 42.10 42.06 42.31 43.16 43.36
SSIM 0.926 0.931 0.953 0.929 0.921 0.926 0.955 0.955 0.955 0.960 0.961

×250
PSNR 35.57 36.13 39.44 35.80 35.30 36.25 39.76 39.60 40.18 40.92 41.02
SSIM 0.861 0.863 0.931 0.867 0.846 0.858 0.933 0.938 0.937 0.947 0.948

×300
PSNR 32.26 32.54 36.36 32.29 32.02 32.99 36.76 36.85 36.97 37.77 37.80
SSIM 0.781 0.782 0.911 0.801 0.768 0.780 0.912 0.923 0.915 0.934 0.935

ELD [31]
×100

PSNR 41.76 43.11 45.45 41.05 41.48 43.80 45.61 44.47 45.74 46.50 46.74
SSIM 0.930 0.940 0.975 0.925 0.933 0.936 0.977 0.968 0.976 0.985 0.986

×200
PSNR 39.33 40.30 43.43 39.23 39.26 40.86 43.84 41.97 43.84 44.51 44.95
SSIM 0.872 0.884 0.954 0.889 0.877 0.884 0.959 0.928 0.955 0.973 0.977

Table 3. Quantitative results (PSNR/SSIM) of different noise modeling methods on Nikon D850 Camera (ELD). Red and blue are utilized
to indicate the best and second best results, respectively.

Dataset Ratio Index
Physics-based Learning-based Real noise-based

P-G [10] ELLE [29] ELD [31] NoiseFlow [1] CA-GAN [5] Starlight [25] Ours Paired Data (LLD) SFRN [33] PMN [9] Ours∗

ELD [31]
×100

PSNR 41.71 42.04 42.86 41.64 41.55 42.12 42.94 43.01 43.04 43.28 43.58
SSIM 0.910 0.916 0.949 0.881 0.886 0.927 0.949 0.951 0.949 0.960 0.963

×200
PSNR 40.05 39.94 41.08 38.96 38.72 40.33 41.11 41.12 41.28 41.32 41.63
SSIM 0.890 0.886 0.938 0.820 0.822 0.907 0.938 0.936 0.930 0.941 0.945

methods, and 3 real noise-based methods. For a fair com-
parison, we follow all settings of PMN [9] except the
noise model and noisy image synthesis strategy. For the
Sony A7S2 camera, we use the LLD dataset for training
all the noise models. When training the denoising net-
work, all noise models are applied to SID [6] data and
the same denoising network from SID is adopted. For the
Nikon D850 camera, we retrain the learning-based model
using the noisy-clean image pairs in our LLD dataset. P-
G [10], ELLE [29], ELD [31], NoiseFlow [1], CA-GAN [5],
Starlight [25] and Ours only require long-exposure clean
images from paired data for noise synthesis. SFRN [33] re-
quires clean images and real bias frames. As mentioned in
Sec. 3.4, PMN [9] and Ours∗ require paired noisy-clean im-
ages for noise synthesis. For a fair comparison, the training
data for the learning-based noise models are consistent, and
the implementation details and training strategies follow the

official settings. Since SFRN [33] and ELLE [29] do not
release pre-trained models and code, we use bias and flat-
field frames from our LLD to calibrate the noise parameters
as described in their paper.

4.2.1 Evaluation on Sony A7S2 Camera

The results of the comparison between the 7 methods in
the clean image-based synthesis strategy and the 4 methods
in the real noise-based synthesis strategy are summarised
in Tab. 2. Early learning-based methods [1, 5] are even
inferior in performance to the Poissonian-Gaussian noise
and ELLE [29], due to that their network design and train-
ing strategies ignore the physical properties of the noise.
Despite being inspired by physical models, Starlight [25]
still has a significant performance gap over the classical
low-light noise modeling (e.g., ELD [31]), since the ISO
dependence and BLE noise are ignored. Our proposed
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Table 4. PSNR/SSIM with ablation studies about noise compo-
nents and training strategy performed on the SID and ELD.

Noise Components
Training Mode

SID ELD
NHG NBLE Nq Nrow k ·NFP 100 250 300 100 200

✔

Two Stage

PSNR 39.62 35.28 31.98 43.08 40.02
SSIM 0.913 0.821 0.739 0.931 0.871

✔ ✔ ✔
PSNR 41.65 39.56 36.37 44.86 42.99
SSIM 0.951 0.928 0.906 0.968 0.944

✔ ✔ ✔
PSNR 40.87 37.00 33.77 44.75 42.50
SSIM 0.934 0.872 0.812 0.955 0.923

✔ ✔ ✔ ✔
PSNR 41.89 39.54 36.43 45.28 43.33
SSIM 0.953 0.931 0.910 0.973 0.951

✔ ✔ ✔ ✔ ✔
PSNR 42.10 39.76 36.76 45.61 43.84
SSIM 0.955 0.933 0.912 0.977 0.959

✔ ✔ ✔ ✔ ✔ One Stage
PSNR 41.23 37.11 33.80 45.03 42.72
SSIM 0.940 0.885 0.829 0.965 0.934

physical-guided ISO-related noise model (Ours) can out-
perform ELD [31] since we have considered the ISO de-
pendence for black level error noise and FPN.

For real noise-based methods, PMN [9] adopts the dark-
shading correction strategy, which outperforms Paired Data
and SFRN [33] and inspires us to adopt similar strategies.
Even though PMN adopts the Poisson noise augmentation
strategy, our proposed zero-mean noise model can augment
signal-dependent and signal-independent noise simultane-
ously. As shown in Fig. 2, our method provides the clearest
texture and most accurate color denoising result.

4.2.2 Evaluation on Nikon D850 Camera
The results on the Nikon D850 camera between different
noise modeling methods are summarised in Tab. 3. Com-
pared to the physics-based method, our proposed data-
driven noise model performs better and eliminates the la-
borious noise parameter calibration procedure. Owing to
the use of real noise data, real noise-based synthesis meth-
ods are superior to clean image-based synthesis methods.
It is worth noting that PMN [9] requires not only pairs of
noisy-clean images, but also a large number of bias and flat-
field frames. By contrast, our method relies only on paired
noisy-clean data and achieves the best performance. More
qualitative results are given in the supplementary material.

4.3. Ablation Study

All the ablation experiments are performed on the Sony
A7S2 camera for both SID [6] and ELD [31].

Noise Components and Training Strategy. We first study
the effectiveness of our five noise components and two-
stage training strategy, i.e., random and fixed-pattern noise
modeling stages. In Tab. 4, one can see that, removing the
noise components NBLE or k · NFP results in great per-
formance degradation, due to that the color bias introduced
by dark currents greatly damages visual quality in extreme
low-light scenes. When the two-stage training strategy is
eliminated, the learning-based noise model fails to model
black level error and dark current fixed-pattern noise accu-
rately, which therefore results in a significant degradation in
performance. The heteroscedastic Gaussian and row noise
also contribute to the final performance.

Table 5. PSNR/SSIM performance with ablation studies about dif-
ferent black level error (BLE) noise.

BLE Index
SID ELD

100 250 300 100 200

ELLE [29]
PSNR 41.78 39.66 36.65 45.22 43.34
SSIM 0.954 0.932 0.907 0.975 0.958

ELD [31]
PSNR 42.02 39.73 36.59 45.11 43.32
SSIM 0.955 0.933 0.903 0.973 0.956

Ours
PSNR 42.10 39.76 36.76 45.61 43.84
SSIM 0.955 0.933 0.912 0.977 0.959

Table 6. PSNR/SSIM performance with ablation studies about dif-
ferent real noise-based synthesis strategies.

Training Inference
Index

SID ELD
(Input,Target) Input 100 250 300 100 200

(D, I) Dtest PSNR 42.06 39.60 36.85 44.47 41.97
SSIM 0.955 0.938 0.923 0.968 0.928

(D − k ·NFP −NBLE(ISO), I) Dtest − k ·NFP −NBLE(ISO)
PSNR 42.84 40.53 37.57 46.12 44.34
SSIM 0.960 0.946 0.933 0.982 0.974

(I +NHG +Nrow +Nq, I) Dtest − k ·NFP −NBLE(ISO)
PSNR 42.75 40.41 37.15 46.24 44.51
SSIM 0.956 0.932 0.916 0.984 0.973

(D − k ·NFP −NBLE(ISO), I),
Dtest − k ·NFP −NBLE(ISO)

PSNR 43.36 41.02 37.80 46.74 44.95
(I +NHG +Nrow +Nq, I) SSIM 0.961 0.948 0.935 0.986 0.977

ISO-Dependence of Black Level Error Noise. In addi-
tion to our more complete modeling of noise, the main dif-
ference between our noise model and existing methods is
that we regard the black level error (BLE) noise as ISO-
dependent. Such an operation is contrary to the assumption
in ELLE [29] (which adopts image-specific BLE parame-
ters and simulates the black level error noise with a uniform
distribution) and ELD [31] (which randomly samples from
real black level errors). For verifying our noise model, we
conduct experiments with different black level error noise
sources. From Tab. 5, our method has better performance,
showing the rationality of our noise model.

Real noise-based Synthesis Strategy. As mentioned in
Secs. 3.4 and 4.2, the real noise-based synthesis strategy
can greatly improve the performance of denoising networks
compared to training on paired data. Thanks to the flexibil-
ity of our noise model, we have also conducted an exper-
iment to evaluate different strategies for utilizing the real
noise-based synthesis method. The results in Tab. 6 show
the effectiveness of our proposed strategy in Sec. 3.4.

5. Conclusion

In this paper, we proposed a novel physics-guided ISO-
dependent sensor noise model for modeling real rawRGB
noises in extreme low-light scenes and collected an LLD
dataset under a more reasonable data collection scheme.
The noise model implemented in the normalizing flow-
based framework achieved appealing accuracy and mar-
velous flexibility without any manual calibrations, and the
denoiser trained with our noise model also achieved supe-
rior performance. In the future, we will consider more noise
types in our noise model such as the periodic noise.
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