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Abstract

Advances in representation learning have led to great
success in understanding and generating data in various do-
mains. However, in modeling vector graphics data, the pure
data-driven approach often yields unsatisfactory results in
downstream tasks as existing deep learning methods often re-
quire the quantization of SVG parameters and cannot exploit
the geometric properties explicitly. In this paper, we propose
a transformer-based representation learning model (SVG-
former) that directly operates on continuous input values and
manipulates the geometric information of SVG to encode out-
line details and long-distance dependencies. SVGfomer can
be used for various downstream tasks: reconstruction, clas-
sification, interpolation, retrieval, etc. We have conducted
extensive experiments on vector font and icon datasets to
show that our model can capture high-quality representation
information and outperform the previous state-of-the-art on
downstream tasks significantly.

1. Introduction

In the last few years, there have been tremendous ad-
vances in image representation learning [22, 26, 37], and
these representations lead to great success in many down-
stream tasks such as image reconstruction [40], image clas-
sification [14, 16], etc. However, most previous works have
focused on analyzing structured bitmap format, which uses
a grid at the pixel level to represent textures and colors [18].
Therefore, there is still considerable room for improving the
representation of detailed attributes for vector objects [25].

In contrast to bitmap image format, scalable vector graph-
ics (SVG) format for vector images is widely used in real-
world applications due to its excellent scaling capabili-
ties [12, 20, 33]. SVGs usually contain a mixture of smooth
curves and sharp features, such as lines, circles, polygons,
and splines, represented as parametric curves in digital for-
mat. This allows us to treat SVGs as sequential data and

learn their compact and scale-invariant representation using
neural network models. However, how to automatically learn
an effective representation of vector images is still non-trivial
as it requires a model to understand the high-level perception
of the 2D spatial pattern as well as geometric information to
support the high-quality outcome in downstream tasks.

Transformer-based models [30] have been proven to
achieve start-of-the-art results when dealing with sequen-
tial data in various problems including Natural Language
Processing (NLP) [34] tasks and time-series forecasting [41]
problems. We argue that representation learning for SVG is
different from these tasks for two reasons: Firstly, most if not
all NLP tasks need a fixed token space to embed the discrete
tokens, while SVGs are parameterized by continuous values
which make the token space infinite in the previous setting;
Secondly, the number of commands and the correlation be-
tween the commands vary greatly from one SVG to another,
which is hard to handle by a pure data-driven attention mech-
anism. For example, the font data may vary across different
families while sharing similar styles within the same font
family. Such property is encoded in the sequential data ex-
plicitly and can provide geometric dependency guidance for
modeling the SVG if used appropriately.

To tackle the above challenges and fully utilize the geo-
metric information from SVG data, this work introduces a
novel model architecture named SVGformer, which can take
continuous sequential input into a transformer-based model
to handle the complex dependencies over SVG commands
and yield a robust representation for the input. Specifically,
we first extract the SVG segment information via medial
axis transform (MAT) [2] to convey the geometric infor-
mation into the learned representation. Then we introduce
a 1D convolutional embedding layer to preserve the origi-
nal continuous format of SVG data, as opposed to previous
vector representation learning models [8] which need a pre-
processing step to discretize the input to limited discrete
tokens. After that, we inject the structural relationship be-
tween commands into the proposed geometric self-attention
module in the encoder layer to get the hidden representation
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Method Font-MF
[3]

SVG-VAE
[20]

Im2Vec
[25]

DeepVecFont
[33]

DeepSVG
[8]

LayoutTrans
[12]

SVGformer
(ours)

Encoding Modality Seq Img Img Img&Seq Seq Seq Seq
Decoding Modality Seq Img&Seq Seq Img&Seq Seq Seq Seq
Model Architecture GP-LVM VAE RNN LSTM+CNN Transformer Transformer Transformer
Sequence Format Keypoints Commands Keypoints Commands Commands Commands Commands

Geometric Information - - - - - - Segment

Table 1. Comparison of our SVGformer model and recent models for vector representation learning, where "Seq" donates sequence, and
"Img" donates image.

of each SVG. The representation learned with the recon-
struction pretext task can be used in various downstream
tasks including classification, retrieval, and interpolation. To
the best of our knowledge, our proposed model is the first
to explicitly consider vector geometric information as well
as directly deal with the raw input of SVG format in an
end-to-end encoder-decoder fashion.

The main contributions of this paper includes:

• SVGformer captures both geometric information and
curve semantic information with the geometric self-
attention module, which synergizes the strengths of
MAT and the transformer-based neural network to han-
dle long-term sequence relationships in SVG.

• SVGformer can take original continuous format as in-
put which can effectively reduce the token space in the
embedding layer. Thereby the model is general for all
continuous vector graphics without extra quantization.

• SVGformer achieves new state-of-the-art performance
on four downstream tasks of both Font and Icon dataset.
For example, it outperforms prior art by 51.2% on
classification and 42.5% on retrieval tasks of the font
dataset.

2. Related work
Transformer models in the computer version. In the
realm of computer vision, many researchers have proposed
using self-attention to model long-term dependencies, sim-
ilar to how transformers are used in natural language pro-
cessing and other real-world applications [5, 6, 34, 36]. By
leveraging self-attention in the encoder-decoder architecture,
these methods have shown promising results in computer
vision benchmarks, overcoming the limitations imposed by
inductive convolution bias [10]. The fields of those bench-
marks include object detection [7], image generation [11],
and classification on both image [21] and video [32]. In
most related works, the self-attention layer in computer vi-
sion takes a feature map as input and computes the atten-
tion weights between each pair of features. This operation
can result in an updated feature map where each position
has information about any other feature in the same image
which could be costly for high-resolution or long sequential

inputs. Thus, there are multiple works aimed at overcom-
ing this problem. For example, Informer [41] proposes a
sparse attention mechanism by sorting the important queries;
Axial-DeepLab [31] computes the attention score sequen-
tially along the two spatial axis and [23] processes the
patches of feature maps instead of the whole image. In addi-
tion, as inductive bias can always be beneficial to the learning
process [35], we need to inject the position information into
the transformers to help update features that are lost in the
input sequence. For learning the SVG representation, we can
introduce structural inductive bias into transformer-based
models by obtaining the position information from the input
sequence.

Representation learning for SVG. Designing and ma-
nipulating the SVG image including fonts and icons require
substantial expertise and expert knowledge [3]. Machine
learning-based models can automatically manipulate the out-
lines and skeletons of vector images by learning from spe-
cific datasets. For the previous works, Font-MF [3] utilize
the Gaussian Process Latent Variable Model [17] to learn a
manifold of fonts so that it can synthesize fonts in unseen
fonts. Im2Vec [25] proposes a new neural network that can
generate complex vector graphics with varying topologies
and only requires indirect supervision from readily-available
raster training images (i.e., with no vector counterparts). In-
stead of directly using bitmap format, DeepVecFont [33]
introduces a new generative paradigm to handle unstructured
data (e.g., vector glyphs) by randomly sampling plausible
synthesis results and a dual-modality learning strategy that
utilizes both image-aspect and sequence-aspect features of
fonts to synthesize vector glyphs. SVG-VAE [20] is a genera-
tive model with an autoencoder to learn the font style feature
and an SVG decoder to generate vector glyphs. In addition,
LayoutTransformer [12] uses the self-attention mechanism to
capture the contextual relationship between different vector
elements, which provides a potential solution for SVG data.
Besides, DeepSVG [8] raises a hierarchical transformer-
based generative model for vector graphics and collects a
large-scale dataset of SVG along with deep learning-based
SVG manipulation. However, most models that process the
SVG format fail to handle the continuous nature [4, 39] of
the input correctly. Besides, most of them do not consider
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In [ ]:

import os
os.chdir("/meladyfs/newyork/defucao/Adobe/deepsvg")
from deepsvg.svglib.svg import SVG
 
from deepsvg import utils
from deepsvg.difflib.tensor import SVGTensor
from deepsvg.svglib.utils import to_gif
from deepsvg.svglib.geom import Bbox
from deepsvg.svgtensor_dataset import SVGTensorDataset, load_dataset
from deepsvg.svg_dataset import  load_dataset as load_dataset_svg
from deepsvg.utils.utils import batchify, linear
 
import torch

def load_svg(path, file):
        svg = SVG.load_svg(os.path.join(path, file))
 
        #if not self.already_preprocessed:
        svg.fill_(False)
        svg.normalize().zoom(0.9)
        svg.canonicalize()
        svg = svg.simplify_heuristic()
 
        return svg

pred_layout = load_svg("/meladyfs/newyork/defucao/Adobe/Informer2020-font-deepsvg-fo

pred_layout.draw( with_points=True)
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Figure 1. The extraction of geometric information. Starting from
the original SVG commands pi delimited by blue circles, we ap-
ply MAT [2] to obtain a new set of commands and labels (p̂i, l̂i)
(denoted by curve color and delimited with crosses) that may not
exactly align with the original commands. A unique label li is
finally assigned to each original command, as outlined in black
color in the last column of the table.

geometric information, which can directly equip the relation-
ship of different curves into deep learning-based methods.
Refer to Table 1 for a complete comparison of related works.

3. Method

3.1. Overview

We propose a transformer-based deep neural network,
SVGformer, as a general solution for multiple vector graph-
ics downstream tasks. The overall architecture of SVG-
former is illustrated in Figure 2. The raw t-th SVG’s argu-
ments contain the type and corresponding coordinates of its
commands, where the coordinates with continuous values
are first constructed into a tensor format, X t ∈ Rn×8 and n
is the number of commands. Then the input tensor is fed into
the embedding layer to get the input vector for the encoder-
decoder model. The learnable embedding layer contains
three components to specifically abstract the information
from the original input: 1) the continuous token component
uses a 1D convolution to map X t into an embedding vector
U t; 2) the position component captures the positional infor-
mation P t from X t; 3) the geometric component treats the
outline labels li (refer to Figure 1) as a discrete token to map
extra contextual geometric information St to the embedding
vector. In addition, we build an adjacency matrix E based on
the labels and the neighboring commands in order to further
utilize the structural information in the training process.

Next, we combine the embedding vectors to feed the
encoder module, where we introduce the geometric self-
attention to replace the canonical self-attention in order to
generate a compact representation with a higher receptive
field efficiently. Specifically, we leverage structural rela-
tionships by encoding geometric segment information via a

graph convolution layer and injecting it into spared attention
score. Finally, we pass the hidden representation produced
by the encoder into the SVG-decoding module consisting of
the self-attention mechanism [41] and fully connected layers
to fine-tune the total model. The decoder aims to reconstruct
the original SVG commands from a masked input as well as
predict the type of commands.

In this way, the overall network can be trained end-to-end
by backpropagation of a reconstruction loss and classifi-
cation loss. Precisely, the classification loss has 3 different
labels as we only consider three types of commands: "Move"
(M), "Line" (L) and "Curve" (C).

3.2. Geometric Information from Raw Input

As the attention mechanism generally only calculates the
similarities via the commands’ semantic features, we want to
cooperate explicit geometric dependencies into the attention
mechanism to provide our model with the ability to capture
the structural relation between the commands. v We start
from the raw SVG input {p0, p1, p2, . . . , pn}, where pi de-
notes the i-th command in a given SVG, and n is the number
of original commands. As shown in Figure 1, we obtain
semantic labeling of segments with MAT. This tool lever-
ages the medial axis and outlines information to find new
segments labeled based on different geometric relationships:
{(p̂1, l̂1), (p̂2, l̂2), . . . , (p̂m, l̂m)}, where l̂i is the label of the
new command p̂i. Commands with the same label have a
strong position relationship inside the given SVG, which
is usually ignored by feature engineering. Note that MAT
can usually split an original command into several segments
(new commands), so m ≥ n. However, directly adding such
extra commands into the neural network will complicate
the task of representation learning. Instead, we propose to
map the new segments and labels back to the original in-
put. Specifically, we group different commands by start and
end points so that we have pi = {p̂k, . . . , p̂j}. To obtain
the final label li for pi, we calculate the longest label by
the distance between the start and end point of the label set
{l̂k, . . . , l̂j}. Then the final data we use to train the model is
{(p1, l1), (p2, l2), . . . , (pn, ln)}. We will introduce how to
incorporate geometric information into the transformer in
the next several sections.

3.3. Continuous Feature Embedding

Representation learning requires the model to learn the
inductive biases from the data and training task which can
facilitate the downstream task. Thus, any inductive bias
from raw input is able to coach the training process. In
this work, we have identified two inductive biases present
in raw input: continuous values and geometric information.
While previous related works have typically relied on man-
ually discretizing continuous values, our model is able to
support continuous-valued inputs. Additionally, our model
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Figure 2. Overall model structure of SVGformer.

is able to automatically discover structural information from
the geometric information present in the input, providing
further support for the inductive biases we have identified.
This section will present proposed modifications to make it
compatible with continuous SVG commands input with geo-
metric information rather than with discrete pre-processed
index sequences.

Specifically, for the raw input, we first set a maximum
sequence length Lx for the entire dataset, then we pad shorter
samples with arbitrary values (0 in our setting) as the length
of individual samples may vary considerably regarding the
SVG images. Then, we generate a padding mask that adds a
large negative value to the attention fraction of the padded
positions before computing the self-attentive distribution
with the softmax function. After that, different from previous
works that can only support discrete input with fix length of
the look-up table, we use a continuous value embedding
layer with 1D convolutional operation to project the t-th
SVG input X t into a d-dimension vector U t:

U t = CNN(X t) . (1)

Note that this embedding layer can fully utilize the trans-
lation equivariance [1] of convolutional operation for SVG
input and can have the ability of rotation invariance and size
invariance with data augmentation. Corresponding to the
continue value embedding layer, we preserve the input SVG
commands by using the position embedding layer:

P t(p, 2j) = sin(m/(2Lx)
2j/d),

P t(p, 2j + 1) = cos(m/(2Lx)
2j/d) ,

(2)

where j ∈ {1, . . . , ⌊d/2⌋} and m ∈ {0, . . . , Lx − 1}. In
this way, self-attention can compute the similarity with ac-
cess to global information and affordable consumption [41].
Note that this position encoding function is inductive and

parameters free to handle variable input length [19]. How-
ever, the above inductive embedding functions fail to capture
the geometric dependency among the different positions of
raw SVG commands. Thus, we exact the segment label lti
for each input command pti according to Section 3.2 and
use a geometric embedding layer with a look-up table,
containing all the segmented labels, to get the geometric
information S. Thus, we finally maintain the feeding vector
Xt

en ∈ RLx×d:

Xt
en = αU t + βP t + γSt , (3)

where α, β, γ are the factors balancing the magnitude be-
tween the scalar projection and position/geometric embed-
dings.

3.4. SVGformer Encoder with Geometric Informa-
tion

After the embedding layer, we feed the vector Xt
en to

the encoder to extract latent representation. We refer the
reader to the detailed description of the transformer model
in the original work [30]. In this section, we will introduce
the key technologies different from the vanilla transformer.
Specifically, the encoder consists of several stacked geomet-
ric self-attention modules which can deal with long-term
sequential dependency and geometric dependency in the
attention mechanism jointly.

Sparse Query for Self-Attention. As the representation
learning of SVG requires the model to have the ability to
capture precise long-term dependency, we need to utilize
the commands’ features via an efficient attention mecha-
nism. The canonical self-attention is defined based on the
scaled dot-product of the input tuple, i.e., query q∈Rd, key
K∈RLK×d, and value V∈RLV ×d. Specifically, the i-th
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query’s attention is defined as a kernel smoother in a proba-
bility form [29]:

A(qi,K,V) =
∑
j

k(qi,kj)∑
l k(qi,kl)

vj = Ep(kj |qi)[vj ] , (4)

where p(kj |qi)=k(qi,kj)/
∑

l k(qi,kl) and k(qi,kj) se-
lects the asymmetric exponential kernel exp(qik

⊤
j /

√
d). In-

spired by [41], we calculate the importance of queries by
Kullback-Leibler divergence:

M(qi,K) = max
j

{
qik

⊤
j√
d

} − 1

LK

LK∑
j=1

qik
⊤
j√
d

, (5)

where M(qi,K) is the i-th query’s sparsity score. A larger
M(qi,K) gives a higher chance to activate the dominate
dot-product pairs in the self-attention. Thus, we can build
a new query Q containing top u queries with query sparsity
score given by M and calculate the sparsity self-attention
score by:

Aatt = QK⊤/
√
d . (6)

Note that we can avoid information loss by generating dif-
ferent sparse query-key pairs according to different attention
heads and this attention score can capture the relationships
between input commands from a data-driven aspect.

Geometric Dependency in Self-Attention. Segments
with the same label share a strong relationship even if they
are at a long distance in the input sequence, which can-
not be reflected in the original self-attention module which
only considers the semantic characteristics. In addition,
commands can be represented as the nodes lying in a non-
Euclidean space and linked by edges with the geometric
information. such as the adjacency and the same segment la-
bel. In this work, we propose to apply the graph convolution
network (GCN) [15] to extract the structural relationship
between different commands. Specifically, we first use the
geometric label from Section 3.2 to build the weight matrix
E where the commands adjacent to each other or sharing the
same label have an edge in the weight matrix E, otherwise
there is no edge in the weight matrix E.

This has two advantages, firstly, the structure information
of SVG is contained in the weight matrix, and secondly,
commands sharing the same labels can distinguish local
details by their own features. After getting the weight matrix,
we use GCN to extract the structural information. The goal
is then to learn a function of SVG commands on a graph
G = (V,E), where V is the set of nodes’ (commands in
SVG) feature of each single SVG, i.e., Xt

en at the first layer,
and E is the in the form of the adjacency matrix, which is A
based on Figure 1. Our model can produce command-level
output Ageo ∈ RN×d with L multiple layers GCN where l-
th layer output H l can be used to represent the latent vectors
to get the final output :

H l+1 = f(H l, E) = σ(EH lW l) , (7)

where H0 is the input features of the GCN, i.e., Xen at
the very first layer, f is the graph convolutional function
with learnable matrix W and σ is the non-linear activation
function for GCN and HL = Ageo.

Geometric Self-Attention Module. To better encode the
geometric information into attention layers, we propose a
new self-attention module in SVGformer. The attention
mechanism needs to estimate correlations on both seman-
tics (features from commands) part and the geometric (de-
pendency of each command) part. Thus, for each ordered
command pair (pi, pj), we inject the relationship score from
GCN into the sparse attention score. Concretely, the atten-
tion mechanism with the modified attention score can be
represented as

A(Q,K,V) = Softmax(Aatt +Ageo)V . (8)

To enhance the ability of our model on handling the per-
mutation invariance where the order of shapes in an SVG
image is arbitrary, we apply the 1D convolutional op-
eration following an ELU activation function [9] and
max pooling [38] on the output of the attention layer:
Xj+1 = MaxPool

(
ELU( Conv1d([Xj ]Aj

) )
)
, where [·]A

represents the j-th geometric self-attention module.
The final representation of the encoder Z is the last layer’s

output of the encoder module and can be used for multiple
downstream tasks.

3.5. SVGformer Decoder

The decoder part is modified from the decoder structure
in [41], which can reconstruct the long sequences of SVG
at one forward operation rather than a step-by-step way with
the input of Xt

de = Concat(Xt
token,X

t
0) ∈ R(Ltoken+Ly)×d,

where Xt
token ∈ RLtoken×d is the start token, Xt

0 ∈ RLy×d is
a placeholder of 0 for the target sequence. Specifically, it
consists of masked geometric self-attention and multi-head
attention, where the masked geometric self-attention sets
masked dot-products to −∞ and gives up the geometric
GCN component, which can prevent data leakage in the
decoding stage. Besides, a fully connected layer is needed
to acquire the final logits for the loss function.

3.6. Loss Function

We need to reconstruct the input commands as well as pre-
dict the type of the commands. Thus, we choose the recon-
struction loss as the mean squared error (MSE) loss function
between the reconstructed commands and the ground-truth
command and the classification loss as the cross entropy
(CE) with logits between the predicted command type and
the type label.
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4. Experiments

4.1. Setup

We summarize the critical settings in this section. For
input SVG, we choose those font inputs with a maximum
length Lx equals to 60 and icon inputs with a maximum
length equals to 50. Then pad the font commands less than
60 (50 for icon commands) by 0. For the embedding layer, a
1D convolutional operation is used as the trainable module
for SVG recognition with kernel width equal to 3 and stride
equal to 1. Both the 1D convolutional operation and the
other two components inside the embedding layer’s output
dimension are 512. We recommend α, β, γ to be 1 inside the
embedding layer if the sequence input has been normalized.
In the training stage, the sparse attention’s head number is
8, and we add geometric information given by one GCN
layer, which output shape fits the attention score given by the
sparse self-attention. To gain the global representation for a
specific SVG, we use two stacked geometric self-attention
modules followed by 1D convolutional operations and maxi-
mum pooling operations to finish the fusion process of all
the commands and get the hidden representation with the
shape of Lx×512. For the decoder during the training stage,
we mask all the commands instead of the first command
(whose type is “Move”) to finish the reconstruction task,
which means Ltoken = 1 and Ly = Lx − 1.

In the remaining part of this section, we discuss the quali-
tative and quantitative results of our models on two represen-
tative datasets, Google Fonts1 and Icons [8]. Note that the
evaluation of representation learning models is difficult, and
most quantitative metrics can not provide a generic measure
of the novelty and veracity of the data sampled from repre-
sentation learning models. Thus, we will explore 4 types of
downstream tasks including reconstruction task, classifica-
tion task, retrieval task, and interpolation task with specific
quantitative metrics used by the various underlying methods.

4.2. Results

We evaluate the effectiveness of the proposed SVGformer
on both fonts dataset and the icons dataset. We first show
the reconstruction results, which is the training task. Note
that simply using MSE and CE metrics cannot accurately
show the coordinate values of control points on the contour
line because the average of the correct target values is often
not a correct value, so we use Chamfer distance (CD) metric
to do the evaluation. Then, for the downstream tasks, we
train a classification model to finish the classification task
and use the glyph label to verify the retrieval task, which is
a pure unsupervised process without any fine-tuning on the
representation. After that, we finish with an interpolation
task to show that SVGformer has good interpretability.

1https://fonts.google.com/

DeepSVG LayoutT OursDeepSVG LayoutT Ours

Figure 3. Reconstruction results on various glyphs. From left to
right, the original SVG (black), DeepSVG (orange), LayoutTrans-
former (green) and our SVGformer (blue), respectively.

4.2.1 Fonts

Reconstruction task. The reconstruction task is the train-
ing task where we can get the pre-trained model and obtain
the latent representation of a given SVG image. We use
Chamfer distance (CD) between corresponding paths of the
input SVG and reconstructed SVG to evaluate the perfor-
mance of the SVGformer.

Based on Table 2, our model produces a smaller gap
than the other baselines with 17.8% overperformance in a
mathematical sense, proving the accuracy of SVGformer.
In addition, we render the reconstructed results for quanti-
tative comparisons on Figure 3. Benefiting from the two
kinds of attention scores, SVGformer can reconstruct more
details of the raw input. As confirmed by the results, we
find that introducing the geometric information brings a sub-
stantial improvement in reconstruction error compared to the
previous baselines.

Classification task. For the classification task, we train a
linear classification model for the different hidden represen-
tations with 1000 epochs and show in Table 2 the accuracy re-
sults of glyph-based category (62 classes) and family-based
category (378 font family types filtered by a minimum class
size of 100 in the test set). The glyph-based classification
task is used to verify that our model’s latent representation
can identify the outline of inputs. The family-based classifi-
cation task is more challenging as it has more categories and
focuses on font style which needs the latent representation to
be distinctive in details. We can figure out that the geometric
information can help SVGformer gain further improvement
for this mature task. Specifically, we find that both the Lay-
outTransformer and DeepSVG fail to classify the family
labels with the accuracy of 7.0% and 35.2%, respectively,
which means they lose the style information during the data-
driven process. Especially we find that higher dimensional
data does not encompass more information because Lay-
outTransformer’s hidden representation has a larger shape

10098



Model
Reconstruction (CD ↓) Classification (Acc %) Retrieval (Acc %)
Fonts Icons Fonts Glyph Fonts Family Icons Fonts@5 Fonts@10 Icons@10

LayoutTransformer 37.6 18.8 75.6 7.0 57.6 1.7 1.6 13.4
DeepSVG 32.7 15.6 85.6 35.2 45.1 51.2 45.9 22.8

SVGformer 26.9 6.3 89.5 69.7 64.7 74.3 64.2 48.9
SVGformer-no-geo 30.8 7.9 89.3 46.3 46.7 69.6 59.4 46.2
SVGformer-discrete 41.5 19.3 85.9 15.0 63.7 60.7 51.5 30.5

Table 2. Result comparison for different downstream tasks on Fonts and Icons dataset.

Query Top7 retrieval results on all candidates

Query Top7 retrieval results on same scope

Figure 4. Retrieval results from all glyphs and same glyphs, respec-
tively. Results for DeepSVG are shown in orange, and results for
SVGformer in blue. SVGformer always retrieves the same glyph
as the query when searching from all glyphs, and returns results in
more similar styles when searching for a specific glyph.

than both DeepSVG and SVGformer, yet it performs almost
randomly on the family classification task.

Retrieval task. From the perspective of quality analysis,
we report the family accuracy of the most top 5% (@5) and
10% (@10) similar retrieval results by name on Tabel 2,
where the similarity score can be calculated by the inner
product of the query and all the candidates of an SVG image,
which is equivalent to the cosine similarity formula after
normalization. The retrieval results show that our model
can offer a 42.5% performance improvement compared with
DeepSVG. Besides, we use Figure 4 to show the retrieval re-
sults of some query samples which indicates SVGformer can

achieve higher accuracy in general than previous baselines.
Specifically, SVGformer can beat the previous state-of-the-
art in two different settings: 1. retrieving in all the candidates
(across families) to figure out the ability to find the same
family; 2. retrieving under the target family to verify that
our model’s representation can align the style of the query.

Interpolation task. To verify that our model can animate
SVGs by interpolating automatically from different glyphs,
we use the hidden representation from DeepSVG and SVG-
former to perform the comparison on the interpolation task.
As shown in Figure 5, SVGformer can give more mean-
ingful and smooth results with fewer artifacts and contor-
tions when handling both translations and deformations in
3 different interpolation types including "Thin" → "Black",
"Expanded" → "Condensed" and "Regular" → "Italic". For
example, when we interpolate the fonts’ size from "Thin" to
"Black", we can find a specific value for "Regular" size in
SVGformer’s results but cannot find that one in DeepSVG’s.

4.2.2 Icons

For the reconstruction task on the Icons dataset, we calcu-
late the CD metric as mentioned before in Table 2, where
SVGformer can build a new state-of-the-art by achieving
59.5% performance improvement over previous methods. In
addition, we also plot the reconstruction results in Figure 6
to show that SVGformer can yield more precise reconstruc-
tion results than DeepSVG. For the classification task, we
first collect icons’ labels by their categories including "cin-
ema", "city", "clothing", etc. Then we train a classification
model with 59 classes and report the top 10 accuracy, where
SVGformer achieves the highest accuracy. For the retrieval
task, we use visual inspection to verify the retrieval results
are relevant as there is no such ground truth information.
As shown in Figure 7, the unsupervised representation of
SVGformer has great capability to distinguish the global and
local structure of SVG, achieving better retrieval results than
other baselines.

4.3. Ablation Study

To better understand the effectiveness of different compo-
nents in SGVformer, we evaluate two model variants, namely
SVGformer-no-geo and SVGformer-discrete, by dropping the

10099



��������������������������

�����������������������������������������

����
	
�������
	��	
������������������

����
	
�������
	��	
������������������

�	��������������������������

�	�������������������������������������

Figure 5. Examples of interpolations between glyphs. The results
for DeepSVG are shown in orange, and those for SVGformer in
blue. The first and last columns are the given glyphs to be interpo-
lated, and the middle columns are the interpolations.

DeepSVG LayoutT OursDeepSVG LayoutT Ours

Figure 6. Example reconstruction results on Icons data. From left
to right, columns show original SVG (black), DeepSVG (orange),
LayoutTransformer (green), and our SVGformer (blue).

geometric information and continuous input embedding from
the full model. The results on both Fonts and Icons datasets
shown in the last two rows of Table 2 confirm that both com-
ponents are indispensable. Specifically, SVGformer-no-geo
aborts the geometric information inside the self-attention
mechanism, which indicates the importance of structural

Query Top7 retrieval results on all icons dataset 

Figure 7. Retrieval results on Icons data. The results of DeepSVG
are shown in orange, and the results of SVGformer in blue.

inductive bias for encoder-decoder-based transformer mod-
els. SVGformer-discrete provides a fair comparison of SVG-
former with the previous works which only accept discrete
SVG inputs. The results demonstrate that the raw input con-
tains detailed information which is critical to high-quality
hidden representation.

5. Limitation

We note some limitations of SVGformer in this section.
One of the major limitations is the effectiveness of represen-
tation is based on sufficient SVGs in the training process,
which is hard to guarantee in many real-world scenarios.
Admittedly, although our model can yield much more pre-
cise hidden representations than previous baselines to make
it identifiable for each SVG, we found that SVGformer’s
hidden space lacks linearity and smoothness when facing
complex downstream tasks such as some interpolation sam-
ples of different style transfers. Inspired by diffusion mod-
els [13,24,27,28], one possible insight for future work can be
smooth the latent space by introducing the diffusion process.

6. Conclusion

In this paper, we study representation learning for SVG
and propose a transformer-based model named SVGformer.
Specifically, we directly deal with the continuous input and
extract MAT segment information as the inductive bias of
SVG input. Besides, we design a geometric self-attention
module to utilize the stylistic semantics of SVG commands
and the geometric information jointly to handle long-term
sequence relations. The experiments on two datasets and
several downstream tasks demonstrate the effectiveness of
SVGformer for robust representation learning of SVG.
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