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Abstract

We tackle open-world semantic segmentation, which
aims at learning to segment arbitrary visual concepts in
images, by using only image-text pairs without dense an-
notations. Existing open-world segmentation methods have
shown impressive advances by employing contrastive learn-
ing (CL) to learn diverse visual concepts and transferring
the learned image-level understanding to the segmenta-
tion task. However, these CL-based methods suffer from
a train-test discrepancy, since it only considers image-text
alignment during training, whereas segmentation requires
region-text alignment during testing. In this paper, we pro-
posed a novel Text-grounded Contrastive Learning (TCL)
framework that enables a model to directly learn region-text
alignment. Our method generates a segmentation mask for
a given text, extracts text-grounded image embedding from
the masked region, and aligns it with text embedding via
TCL. By learning region-text alignment directly, our frame-
work encourages a model to directly improve the quality of
generated segmentation masks. In addition, for a rigorous
and fair comparison, we present a unified evaluation pro-
tocol with widely used 8 semantic segmentation datasets.
TCL achieves state-of-the-art zero-shot segmentation per-
formances with large margins in all datasets. Code is avail-
able at https://github.com/kakaobrain/tcl.

1. Introduction

Open-world semantic segmentation aims to identify the
arbitrary semantic concepts in the open world1. Conven-
tional semantic segmentation aims to learn segmentation
capability for the small number of pre-defined target cat-
egories, whereas open-world semantic segmentation ad-
dresses unrestricted arbitrary categories or free-form texts.
Such segmentation capability over unlimited targets drasti-

1This setting is often called both open-world and open-vocabulary. In
this paper, we mainly refer to this setting as open-world for clarity.
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Figure 1. Open-world segmentation performance comparison.
The proposed method remarkably outperforms existing methods
in all 8 segmentation benchmark datasets.

cally extends the application scope of the open-world seg-
mentation models.

The first challenge for open-world segmentation is
how to learn arbitrary concepts, beyond pre-defined cate-
gories. Inspired by the success of CLIP [23], previous ap-
proaches [11, 17–19, 28, 30, 33] tackle this challenge by ex-
ploiting massive web-crawled image-text paired data; since
the texts in web-crawled data contain a global semantic de-
scription for the paired images, the large-scale image-text
pairs can provide rich knowledge for arbitrary semantic cat-
egories. However, there still remains another challenge in
how to achieve precise localization of arbitrary concepts
without dense annotations. There are several approaches
that simply address this issue using dense annotation (seg-
mentation masks) in addition to image-text pairs [11,17,18].
The dense annotation helps to improve segmentation perfor-
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Figure 2. A conceptual comparison between the previous ap-
proach and ours. Open-world segmentation is typically achieved
through region-text alignment, which involves matching region
features and text embeddings. However, previous methods learn
image-text alignment during training, thus suffering from the
alignment-level discrepancy between training and testing. In con-
trast, our method facilitates end-to-end learning of region-text
alignment with only image-text pairs.

mance in a fixed benchmark dataset, but the requirements
of expensive dense annotation still limit the applicable do-
mains and scalability of the method.

In this paper, therefore, we focus on open-world se-
mantic segmentation from only image-text pairs without
any dense annotation. For this setting, the existing meth-
ods [19, 28, 30, 33] learn an image-text alignment capabil-
ity during training and heavily rely on the transferability of
the image-text alignment to perform region-text alignment
at inference. More specifically, MaskCLIP [33] leverages
CLIP models pre-trained to learn image-text alignment. To
perform region-text alignment using CLIP, MaskCLIP ap-
plies a simple heuristic modification to the CLIP image en-
coder. GroupViT [30] and ViL-Seg [19] propose to cluster
region-level visual features into distinct groups and gener-
ate segmentation masks by matching the groups and texts.
Note that they match the text embeddings and clustered re-
gion features in test time, but in training time, the text em-
beddings are aligned with global image embeddings. While
the existing methods have shown impressive results even
through the training with image-text alignment, they still
suffer from the alignment-level discrepancy between train-
ing and testing phases as depicted in Fig. 2.

To address this train-test discrepancy, we propose the
Text-grounded Contrastive Learning (TCL) framework,
which allows a model to learn region-text alignment di-
rectly from the image-text pairs without any dense anno-
tations. Our key idea is to incorporate a text grounding pro-
cedure within contrastive learning as illustrated in Fig. 2,
where TCL generates a segmentation mask indicating text-
grounded regions, computes grounded region embeddings

using the mask, and applies contrastive learning between
text and grounded region. By re-formulating the contrastive
loss to be directly affected by the segmentation quality, TCL
enables end-to-end training of the grounder and directly im-
proves the quality of region-text level alignment. We also
present a unified evaluation protocol using widely used 8
semantic segmentation datasets and compare existing meth-
ods in the same setting. As a result, TCL achieves state-of-
the-art zero-shot segmentation performance with large mar-
gins in all datasets, as shown in Fig. 1.

Our main contributions are summarized as follows:
• We introduce a novel framework for open-world seg-

mentation, named Text-grounded Contrastive Learn-
ing (TCL), which enables learning region-text align-
ment directly without train-test discrepancy, thus
learning to generate more precise segmentation masks
through only image-text pairs.

• We present a unified evaluation protocol and re-
evaluate recent open-world segmentation models for a
fair and direct comparison.

• We achieve the new state-of-the-art zero-shot segmen-
tation performance on 8 segmentation datasets with
large margins compared to existing methods.

2. Related Works

2.1. Open-world Semantic Segmentation

Open-world scenario aims to recognize arbitrary con-
cepts in the open world. It is also called open-vocabulary
because the target vocabulary is open rather than closed.
Contrastive Language-Image Pre-training (CLIP) [23] ush-
ered in the era of open-world image recognition using large-
scale image-text pairs [2, 5, 26, 27]. CLIP learns the align-
ment between an image and a text in training time, then
transfer it to the zero-shot classification by aligning image
and texts indicating target classes at inference time. The ad-
vent of CLIP enables open-world settings in various fields
such as object detection [12, 31], image captioning [13], or
semantic segmentation [30, 33].

Open-world semantic segmentation with image-text
pairs is addressed in two different settings. The first is
a semi-supervised setting, which uses dense annotation
(i.e., segmentation masks) in addition to image-text pairs
[11, 17, 18]. Semi-supervised approaches learn segmenta-
tion capability using dense annotation and expand the tar-
get vocabulary using image-text supervision. LSeg [17]
expands target class vocabulary using image-label datasets
and CLIP text encoder [23]. OpenSeg [11] and OVSeg
[18] first train a mask generator using dense annotation and
expand target vocabulary using image-text datasets. The
use of dense annotation makes the model learn region-
level alignment instead of image-level alignment, leading to
high-quality segmentation masks. However, it still relies on
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costly dense annotation, and applicable domains are limited
to the domains where dense annotation is available.

The target of this paper is an unsupervised setting,
which aims to learn segmentation from only image-text
pairs without any dense annotation [19, 28, 30, 33]. Since
the massive image-text pairs are easily obtained by web
crawling without human annotators, applicable domains of
unsupervised methods become almost unlimited. In order
to achieve segmentation capability using only image-text
pairs, we need to learn region-text alignment instead of
image-text alignment and train a text-grounded mask gen-
erator. However, the absence of dense annotation makes
this approach challenging. Existing open-world seman-
tic segmentation studies have taken a strategy to bypass
this issue. Instead of learning region-level alignment di-
rectly, they transfer image-level alignment to region-level
by heuristic modification [28, 33] or clustering [19, 30].
MaskCLIP [33] proposes to obtain a dense image embed-
ding from CLIP image encoder through heuristic modifica-
tion of the last attention layer. Even though it has several
limitations, such as low output resolution or noisy segmen-
tation results, they show it is a simple yet effective way to
obtain an initial segmentation map for refinement. ReCo
[28] proposes an advanced refinement method based on
MaskCLIP, by retrieval and co-segmentation. Clustering-
based methods [19, 30] learn representations using CL with
image-text pairs. They compute region-level image em-
bedding by clustering sub-region embeddings. These ap-
proaches also have shown impressive results but have sev-
eral limitations: (i) the learning objective is still image-level
alignment due to lack of the region annotation, (ii) the num-
ber of clusters is pre-defined independent of the given im-
age, and (iii) clustering sub-region image embeddings is
independent of the query text. In summary, existing meth-
ods indirectly address region-level alignment problems by
learning image-level alignment. To tackle this problem, we
propose a novel region-level alignment objective, named
Text-grounded Contrastive Learning (TCL).

2.2. Region-level Contrastive Learning

Learning region-level alignment instead of image-level
alignment is a fundamental target objective in dense tasks,
such as segmentation or object detection. There are ap-
proaches to learn region-level alignment using dense anno-
tation in the semi-supervised setting. They first train mask
or region proposal networks using dense annotation and
learn alignment between the proposals and texts [11,15,31].
For example, OpenSeg [11] trains a class-agnostic mask
generator using dense annotation. In the object detection
field, RegionCLIP [31] employs an off-the-shelf region pro-
posal network and learns region-level alignment. In contrast
to the existing region-level methods, the proposed method
learns region-level alignment without any dense annotation.

3. Methods
3.1. Overview

Open-world semantic segmentation is a task that aims
to learn a model capable of zero-shot segmentation for ar-
bitrary visual concepts, not restricted to pre-defined ones.
Our main goal is to develop an open-world segmentation
algorithm using only image-text pairs. However, achiev-
ing this objective is challenging because there is no ex-
plicit supervision (i.e., pixel-level dense annotations) for
text-described region segmentation. Existing methods learn
models parametrized by θ to maximize the mutual informa-
tion between paired images and texts [22, 23] as follows:

argmax
θ

Iθ(x
V ;xT ), (1)

where (xV ,xT ) is a random image and text pair. This
objective encourages the model to learn the alignment be-
tween images and texts, however, at test time, the learned
model generates segmentation masks for arbitrary concepts
by computing region-text alignments. Such alignment-
level discrepancy between train and test time can lead the
model to a sub-optimal solution as shown in Fig. 2. With
this in consideration, to bridge the gap between the objec-
tive of conventional contrastive learning (CL) and the re-
quirement of the zero-shot segmentation, we propose Text-
grounded Contrastive Learning (TCL) which incorporates a
text grounding process within CL to enable learning region-
text alignment directly. As a text grounding module, we
introduce a grounder to generate segmentation masks for
the given texts. In a nutshell, TCL learns a model to max-
imize mutual information between text-grounded regions
and texts as follows:

argmax
θ

Iθ(m · xV ;xT ), (2)

where m is a text-grounded mask of random variable indi-
cating the text-described region. Compared to contrastive
learning that implicitly learns a grounding capability, TCL
has a clear advantage of explicitly learning the grounding
capability through the end-to-end trainable grounder.

In the rest of this section, we first explain the text-
grounded mask generation procedure by the grounder.
Then, we describe how we define losses using the generated
mask to train our open-world grounder with text-grounded
contrastive learning. Lastly, we explain how our model per-
forms zero-shot inference for arbitrary concepts.

3.2. Grounder

Fig. 3 illustrates our overall training pipeline. For an
input batch of paired texts XT and images XV , TCL first
performs a grounding process to identify text-grounded re-
gions for a text via a grounder. The grounder consists of
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Figure 3. Overall training pipeline of TCL. The proposed TCL framework first obtains text-grounded masks using a grounder and
then learns the grounder using text-grounded contrastive learning. By incorporating the text grounding process with contrastive learning,
our framework can directly learn region-text alignment that is required for precise segmentation. CLIPT and CLIPI indicate CLIP text
and image encoders, respectively. CLIP encoders are frozen and we train the grounding decoder only. After training, the TCL block is
discarded, and only the Grounder block is used to generate the text-grounded segmentation mask for inference.

three components: (i) image encoder Ev is in charge of
providing a single (L2-normalized) global feature as well
as dense patch-level features, (ii) text encoder Et provides
a (L2-normalized) text embedding feature, and (iii) ground-
ing decoder Dg converts dense features from image en-
coder into finer pixel-level embeddings for alignment with
text. In practice, we adopt a pre-trained CLIP model [23]
to initialize two encoders and freeze them to preserve and
exploit the rich knowledge of CLIP learned during large-
scale pre-training. The text-grounded masks are computed
by the position-wise dot product between text embedding
and dense pixel-level embedding. The overall process of
grounder is summarized as follows:

T = Et

(
XT

)
and Vg,Vd = Ev

(
XV

)
, (3)

Vs = Dg(V
d), (4)

Mi,j = σ
(
w · t⊤j Vs

i + b
)
, (5)

where T ∈ RB×C , Vg ∈ RB×C , and Vd ∈ RB×L×C are
normalized text embeddings, normalized global image em-
beddings, and dense image features from CLIP encoders,
Vs ∈ RB×C×H×W is normalized pixel-level dense embed-
dings by the grounding decoder, and M ∈ RB×B×H×W is
text-grounded masks between images and texts in the batch.
B, C, and L indicate a batch size, the embedding dimension
size, and the number of patches, respectively. σ is a sigmoid
function, and w, b are learnable scalar projection.

The generated text-grounded masks are used to extract
text-grounded image embedding. By replacing the global
image embedding with text-grounded image embedding in
the contrastive learning framework, TCL enables the model
to learn region-text alignment in an end-to-end manner. In

the following section, we describe how the generated mask
M is used for text-grounded contrastive learning.

3.3. Text-grounded Contrastive Learning

Recall that the main idea of TCL is to use text-grounded
images instead of whole images, unlike conventional CL.
For this purpose, we define TCL losses in three different
levels—image-level, feature-level, and area-level—using
the generated masks M for all pairs of images and texts
in a batch; the detailed pseudo code to compute TCL losses
is given in Appendix A. We also employ smooth regulariza-
tion to further improve the quality of generated masks.

Image-level TCL loss. One intuitive way to compute the
text-grounded image embedding is to encode only the re-
gions of the image that contains the semantics of the paired
text, using the image encoder. To make the whole process
end-to-end trainable, we compute a differentiable masked
image by multiplying the given image XV

i and a binarized
mask Mb

i,i obtained from the generated mask Mi,i using
Gumbel-Max [14]. The masked image is then fed into the
image encoder, ṽg

i , ṽ
d
i = Ev

(
Mb

i,i ·XV
i

)
, to obtain text-

grounded image embedding ṽg
i . We compute the cosine

similarity matrix between text-grounded image embeddings
and text embeddings in a batch by Sm

i,j = ṽg
i
⊤
tj . Finally,

we use the symmetric version of InfoNCE [22, 23] to de-
fine the image-level TCL loss LTCLv to make the representa-
tions of positive image-text pairs similar to each other while
the representations of negative pairs dissimilar based on the
similarity matrix:

LTCLv
= InfoNCE (Sm) , (6)
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InfoNCE (S) =− 1

2B

B∑
i

log
exp(Si,i/τ)∑B
j exp(Si,j/τ)

− 1

2B

B∑
i

log
exp(Si,i/τ)∑B
j exp(Sj,i/τ)

, (7)

where τ is a learnable temperature.

Feature-level TCL loss. The image-level TCL loss drives
a model to generate segmentation masks for the paired texts
(i.e., texts of positive pairs). However, we observe that this
loss alone is insufficient to prevent the model from gener-
ating masks for regions not described in the text, particu-
larly for salient regions. This raises the need to suppress
negative masks obtained from unrelated texts (i.e., texts of
negative pairs), but computing the image-level TCL loss for
negative masks is infeasible due to the high computational
cost of encoding text-grounded images. To overcome this
challenge, we introduce the feature-level TCL loss, which
enables the effective computation of features of the nega-
tive masks. Specifically, for pixel-level dense embeddings
Vs

i ∈ RC×H×W from grounding decoder and a text em-
bedding vector tj , we compute feature-level text-grounded
image embedding vf

i,j ∈ RC by:

vf
i,j =

∑
h,w Mi,j,h,w · vs

i,:,h,w∑
h,w Mi,j,h,w

. (8)

Note that this feature-level embedding is computed using
negative masks Mi,j (i ̸=j), different from the image-level
TCL loss. We then compute the cosine similarity Sf

i,j =

vf
i,j

⊤
tj between all pairs of text embeddings and feature-

level text-grounded image embeddings in the batch. The
feature-level TCL loss is defined as follows:

LTCLf
= InfoNCE

(
Sf

)
. (9)

Area TCL loss. The image-level and feature-level TCL
losses focus on generating a mask to capture the text-
described region in the image. However, the model can
collapse into a trivial solution with only these losses—
generating a mask for the entire image instead of the de-
sired region. To prevent this collapse, we introduce an ad-
ditional objective to our TCL framework, named area TCL
loss, which incorporates priors on the mask area to ensure
capturing only the text-described region. To be specific, for
the positive masks (masks from positive pairs) M+ and the
negative masks (masks from negative pair) M−, we denote
the area of positive and negative masks by M+ and M−,
respectively. The area TCL loss is defined by L1-distance
between the area priors and the expected area of each mask:

Larea =
∥∥∥p+ − E

[
M+

]∥∥∥
1
+
∥∥∥p− − E

[
M−

]∥∥∥
1
, (10)

where p+ and p− are positive and negative area priors. For
the negative area prior p−, intuitively, we can expect the
area of the negative masks to be 0.0. We set the positive area
prior p+ to 0.4, which is the average text-described region
area measured by MaskCLIP [33] in the CC3M dataset [27].

Smooth regularization. In the image-text dataset, a text
usually describes the salient object or concept in the paired
image. We observe that the regions described by the text
are generally smooth rather than noisy. We employ total
variation (TV) regularization loss [24] to incorporate this
smoothness observation in the objective. The TV loss is
applied to both mask and pixel-level dense embedding:

Ltv = ∥M∥TV + ∥Vs∥TV, (11)

where ∥ · ∥TV is the anisotropic TV norm.

Final loss. Our final loss function is defined by:

L = λTCLLTCL + λareaLarea︸ ︷︷ ︸
TCL losses

+ λtvLtv︸ ︷︷ ︸
regularization

, (12)

where LTCL = LTCLv
+ LTCLf

, and λTCL, λarea, λtv are hy-
perparameters to balance three losses.

3.4. Inference Pipeline

The zero-shot inference pipeline is similar to CLIP [23],
except for performing pixel-level classification instead of
image-level classification. Specifically, for text embeddings
T ∈ RN×C and a pixel-level dense embedding vs ∈
RC×H×W , text-grounded mask M ∈ RN×H×W is com-
puted by Eq. (5), where N is the number of target classes.
The final segmentation map M is computed by:

Mh,w = argmax
n

Mn,h,w. (13)

Prompt templates such as “a photo of a {label}.”
are used to generate text embeddings as in CLIP [23].

4. Experiments
4.1. Experiment Settings

Unified evaluation protocol. In open-world semantic seg-
mentation, a standard evaluation protocol is not yet estab-
lished. Previous studies conduct an evaluation using their
own protocols such as different data processing strategies
on different datasets [19, 28, 30, 33]; surprisingly, even for
the same dataset, the target classes are sometimes different
across studies. For a fair comparison, we present a uni-
fied evaluation protocol following the open-world scenario
where prior access to the target data before evaluation is not
allowed. Under this scenario, the proposed protocol pro-
hibits dataset-specific hyperparameters or tricks, e.g., class
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with background class without background class
Methods VOC Context Object VOC20 Context59 Stuff City ADE Avg.

GroupViT (YFCC) 49.5 19.0 24.3 74.1 20.8 12.6 6.9 8.7 27.0
GroupViT (RedCaps) 50.4 18.7 27.5 79.7 23.4 15.3 11.1 9.2 29.4
MaskCLIP† 29.3 21.1 15.5 53.7 23.3 14.7 21.6 10.8 23.7
MaskCLIP 38.8 23.6 20.6 74.9 26.4 16.4 12.6 9.8 27.9
ReCo 25.1 19.9 15.7 57.7 22.3 14.8 21.1 11.2 23.5

TCL (Ours)
55.0 30.4 31.6 83.2 33.9 22.4 24.0 17.1 37.2

(+4.6) (+6.8) (+4.1) (+3.5) (+7.5) (+6.0) (+2.4) (+5.9) (+7.8)

Table 1. Zero-shot segmentation performance comparison on 8 semantic segmentation datasets. mIoU metric is used in every
experiment. We highlight the best and second-best results. MaskCLIP† indicates their baseline method without additional refinement
techniques. The YFCC and RedCaps of GroupViT indicate their training datasets in addition to CC12M. Each dataset abbreviation stands
for VOC: PASCAL VOC, Context: PASCAL Context, Object: COCO-Object, Stuff: COCO-Stuff, City: Cityscapes, ADE: ADE20K.

name expansion or rephrasing, leading to performance over-
estimation. For example, we observe that TCL can get sig-
nificant performance gains by expanding the target class of
“person” to its sub-concepts (e.g., man, woman, worker,
rider, etc.), but the kinds of class name-based tricks are not
allowed in our unified evaluation protocol because the ex-
pansion depends on the target class names. With this con-
sideration, we evaluate models using unified class names
from the default version of MMSegmentation [8] without
class name-based tricks. Dense CRF [16] is not used iden-
tically due to its expensive computational cost. All other
evaluation settings follow GroupViT [30], where the in-
put image is resized to have a shorter side of 448. We
employ mean intersection-over-union (mIoU) as a perfor-
mance metric, which is a standard metric in semantic seg-
mentation. While we aim to provide a fair comparison,
defining fair conditions can be subjective. Thus, we provide
further results and discussion on this topic in Appendix C,
especially regarding dataset scale and refinement methods.

Benchmark datasets and comparison methods. We pro-
vide an extensive evaluation on widely used 8 benchmarks,
categorized into two groups: (i) with background class
(PASCAL VOC [10], PASCAL Context [21], and COCO-
Object [3]), and (ii) without background class (PASCAL
VOC20 [10], PASCAL Context59 [21], COCO-Stuff [3],
Cityscapes [9], and ADE20K [32]). Note that open-world
segmentation methods rely on the textual description of
class names, which may require additional considerations
for the background class, such as probability thresholding
instead of using the “background” description as is. The
datasets with background class evaluate this aspect. We
compare TCL with all existing open-sourced methods, in-
cluding GroupViT [30], MaskCLIP [33], and ReCo [28]
under the unified protocol. We also include their variants
in comparison baselines for an extensive comparison. Ad-
ditional details and comparisons are given in Appendix E.

Implementation details. For the grounder, we use the
CLIP ViT-B/16 model where the size of input images is

224 × 224 and the patch size is 16 × 16. Following
MaskCLIP [33], we modify the last attention layer of the
CLIP image encoder to acquire the dense embedding rep-
resenting local semantics. The grounding decoder consists
of four gated convolution blocks with two upsampling in-
terpolations, and we use pixel-adaptive mask refinement
(PAMR) [1] for mask refinement. Further details on the
model architecture are provided in Appendix B. We use CC
3M and 12M datasets [5, 27] for training. The loss weights
of λTCL = 0.1, λarea = 0.4, λtv = 1.0 are used. We train
the model with a batch size of 1024 and a learning rate of
7.5× 10−5 for total 50, 000 iterations with 15, 000 warmup
steps and cosine schedule. AdamW optimizer [20] is used
with a weight decay of 0.05.

4.2. Zero-shot Transfer to Semantic Segmentation

Comparison of existing methods. We extensively com-
pare existing open-world semantic segmentation methods
in Table 1 using the proposed unified protocol, includ-
ing two checkpoints of GroupViT [30] and two variants of
MaskCLIP [33]. Between the existing methods, GroupViT
achieves the best average performance, particularly on
object-oriented datasets such as VOC, VOC20, and COCO-
Object. However, its performance tends to decrease when
the target dataset is dominated by stuff classes. On the
other hand, MaskCLIP performs the best on stuff-oriented
datasets such as Context, Context59, and COCO-Stuff, ben-
efiting from the large-scale pre-trained CLIP model. We
conjecture it benefits from leveraging a large-scale pre-
trained CLIP model. The refinement techniques proposed
in MaskCLIP [33] improve the average performance but
significantly degrade it on Cityscapes (21.6 → 12.6), sug-
gesting the limitation of the heuristic refinement methods.
The significant performance degradation of MaskCLIP and
ReCo between VOC20 and VOC may imply the need for
consideration for background class.

TCL remarkably outperforms existing methods. Al-
though the performances of existing methods vary depend-
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Figure 4. Visualization of the generated text-grounded masks.
“w/o Dg” rows show the generated text-grounded masks with-
out the grounding decoder (Dg), i.e., CLIP dense features Vd are
used instead of pixel-level dense embeddings Vs. “w/ Dg” rows
show the results with the grounding decoder. Each image is com-
pared using both positive (blue) and negative (red) prompts. The
results show that the grounder accurately and finely captures the
text-described region with less noise via the grounding decoder.

ing on the characteristics of the evaluation datasets, TCL
outperforms all the other methods by large margins across
all datasets as shown in Table 1. These results demon-
strate that our TCL framework successfully addresses the
alignment-level train-test discrepancy that exists in the pre-
vious methods by learning the region-level alignment. In
addition, region-level alignment learning of TCL allows
our model to learn the capability to distinguish the back-
ground region in a data-driven manner, thus, our method can
address the background class without any heuristic post-
processing that the previous methods typically rely on.

4.3. Qualitative Results

Visualization of the generated text-grounded masks.
Fig. 4 illustrates the impact of the learned grounding de-
coder. Since we follow MaskCLIP [33] modification, the
results in “w/o Dg” rows can be regarded as the initial re-
sults of MaskCLIP before refinement. Despite the vast pre-
training scale and remarkable zero-shot classification per-
formance of CLIP [23], its grounding capability is limited
because the learning objective targets image-level align-
ment (See “w/o Dg” rows). In contrast, the grounding
decoder (Dg) learns the region-level alignment by TCL,
resulting in more precise, finer, and less noisy generated
masks (See “w/ Dg” rows).

Qualitative comparison. We qualitatively compare the
proposed method in Fig. 5. On the PASCAL VOC dataset
(Fig. 5a), we observe various types of errors in each com-
parison method. The grouping procedure of GroupViT [30]

makes the segmentation results less noisy, but it also causes
an incorrect segmentation of a large group. ReCo [28]
struggles with the segmentation of background regions due
to the lack of consideration about the background class.
MaskCLIP [33] does not take this into account as well, but
its refinement methods make the results less noisy. In addi-
tion, we present examples in the wild to show open-world
segmentation capability in Fig. 5b. We collect test samples
containing visual concepts not included in conventional seg-
mentation datasets (e.g., moon, sunset) or free-form texts
(e.g., “two women and one man with a smiling snowman”).
GroupViT tends to focus on the main object of the image
and regard the other objects as background, which is consis-
tent with its good performance in object-oriented datasets.
Interestingly, in this qualitative comparison in the wild, we
observe ReCo consistently outperforms MaskCLIP contrary
to the quantitative results. We conjecture that this is be-
cause the refinement approach of ReCo is data-driven, while
the refinement approach of MaskCLIP depends on heuris-
tic post-processing, which may not guarantee general im-
provement. Compared to the baselines, TCL consistently
generates more precise segmentation masks. These results
demonstrate that our proposed method, which learns region-
level alignment, improves the segmentation quality both in
the evaluation dataset and in web images in the wild. Addi-
tional qualitative results are provided in Appendix H.

Additional analysis on failure cases and model behavior
are provided in Appendices F and G, respectively.

4.4. Ablation Studies

We investigate the impact of individual components of
the proposed framework by ablation studies on the train-
ing split of the PASCAL VOC20 dataset. We use a short
learning schedule with a batch size of 512 for total 40, 000
iterations including 10, 000 warmup steps.

Baseline to TCL. Table 2a presents cumulative ablation
studies on the grounding decoder and the TCL losses. Our
initial model before training based on MaskCLIP [33] is
referred to as the baseline (A), which modifies the last at-
tention layer of the CLIP image encoder. When we add
only the grounding decoder to the baseline without TCL
loss (B), there is no improvement in performance. This sug-
gests that training the decoder with the same CL loss as the
pre-training (CLIP) does not enhance the localization capa-
bilities. As shown in (C), the proposed framework becomes
complete with TCL loss.

Impact of individual TCL losses. The influence of each
component of the proposed TCL loss and its effect on the
segmentation performance compared to the conventional
CL loss are shown in Table 2b. Smooth regularization is
used for all experiments in this table. The CL loss (D) is
computed by applying attention pooling [23] to the dense
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(b) Examples in the wild.

Figure 5. (a) The comparison shows the error types of each method in the VOC dataset. GroupViT tends to make an error on a large group
rather than noisy results. ReCo suffers from segmentation of the background region. MaskCLIP tends to fail at capturing the target area
precisely. (b) shows results on the wild web images and free-form texts. Texts used as target classes are shown at the bottom of the images.

image embedding Vs. When comparing (D) and (C), the
proposed TCL loss remarkably improves the segmentation
performance (61.1 → 77.4). Image-level or feature-level
TCL loss (E, F) solely improves the performance signifi-
cantly, and using both losses together provides further per-
formance gain. Using CL in addition to TCL (G) does not
improve performance, and it is essential to use area TCL
loss in TCL framework to prevent model collapse (H), as
described in Sec. 3.3. The difference between (B) and (D) is
the use of smooth regularization.

Hyperparameters. Tables 2c to 2e shows the performance
changes according to the variation of the loss weight hyper-
parameters (HPs). The first rows show the importance of
each loss (λ = 0.0 cases). The absence of area TCL loss
causes a significant performance drop (Table 2d), as men-
tioned above. Smooth regularization also significantly con-
tributes to the final performance (Table 2e), supporting our
assumption that the text-described region is smooth rather
than noisy. Note that the sensitivity on HPs is about loss
balancing, not about the target dataset. As an open-world
segmentation method, TCL does not require any tuning with
the target dataset, including model fine-tuning and infer-
ence HPs tuning. Once a TCL model is trained, we evaluate
the model for every benchmark without any fine-tuning.

5. Conclusion
We propose a novel framework for open-world seman-

tic segmentation with only image-text pairs, addressing the
alignment-level discrepancy between training (image-text)

Method VOC20
A Baseline 53.2
B + Decoder 52.3
C + TCL 77.4

(a) Baseline to TCL.

TCLv TCLf Larea CL VOC20
D ✔ 61.1
E ✔ ✔ 74.6
F ✔ ✔ 76.0
C ✔ ✔ ✔ 77.4
G ✔ ✔ ✔ ✔ 75.6
H ✔ ✔ 67.1

(b) TCL losses.

λTCL VOC20
0.0 -

0.01 76.8
0.1 77.4
1.0 68.2

(c) LTCL

λarea VOC20
0.0 67.1
0.04 69.5
0.4 77.4
4.0 76.7

(d) Larea

λtv VOC20
0.0 73.8
0.1 75.2
1.0 77.4
10.0 70.7

(e) Ltv

Table 2. Ablation studies on TCL losses and hyperparameters.
Refinement techniques are not applied to reveal the effect of each
loss function clearly. Default settings are marked in gray .

and testing (region-text) in existing methods. In the pro-
posed framework, we incorporate the grounding process
within contrastive learning, thus allowing explicitly learn-
ing alignment between text and text-grounded regions (i.e.,
segmentation mask). We also present a unified evaluation
protocol for a fair comparison of existing methods, where
TCL achieves state-of-the-art zero-shot segmentation per-
formance on all 8 benchmarks, remarkably surpassing pre-
vious methods. We hope that this study encourages a new
research direction of explicitly learning region-text align-
ment for open-world semantic segmentation.
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