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Abstract

The practical needs of the “right to be forgotten” and
poisoned data removal call for efficient machine unlearn-
ing techniques, which enable machine learning models to
unlearn, or to forget a fraction of training data and its lin-
eage. Recent studies on machine unlearning for deep neural
networks (DNNs) attempt to destroy the influence of the for-
getting data by scrubbing the model parameters. However,
it is prohibitively expensive due to the large dimension of
the parameter space. In this paper, we refocus our attention
from the parameter space to the decision space of the DNN
model, and propose Boundary Unlearning, a rapid yet ef-
fective way to unlearn an entire class from a trained DNN
model. The key idea is to shift the decision boundary of the
original DNN model to imitate the decision behavior of the
model retrained from scratch. We develop two novel bound-
ary shift methods, namely Boundary Shrink and Boundary
Expanding, both of which can rapidly achieve the utility and
privacy guarantees. We extensively evaluate Boundary Un-
learning on CIFAR-10 and Vggface2 datasets, and the re-
sults show that Boundary Unlearning can effectively forget
the forgetting class on image classification and face recog-
nition tasks, with an expected speed-up of 17× and 19×,
respectively, compared with retraining from the scratch.

1. Introduction

Suppose a company trains a face recognition model with
your photos and deploys it as an opened API. Your photos
could be stolen or inferenced by attackers via model inver-
sion attack [6,18]. With the increasing awareness of protect-
ing user’s privacy, a lot of privacy regulations take effect to
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provide you the control over your personal data. For exam-
ples, the General Data Protect Regulation (GDPR) estab-
lished by the European Union gives individuals “the right
to be forgotten” and mandates that companies have to erase
personal data once it is requested [35].

Beyond the “right to be forgotten”, data forgetting from
machine learning (ML) models is also beneficial when cer-
tain training data becomes no longer valid, e.g., some train-
ing data is manipulated by data poisoning attacks [10, 26],
or outdated over time, or even identified to be mistakes after
training. These practical needs call for efficient machine un-
learning techniques, which enable ML models to unlearn,
or to forget a fraction of training data and its lineage.

In this paper, we focus on unlearning an entire class from
deep neural networks (DNNs), which is useful in realis-
tic scenarios like face recognition: unlearning one’s data
needs to forget the entire class of one’s face images. As
the DNN model retrained from scratch is the optimal un-
learned model, early studies try to accelerate the retrain-
ing process of deep networks [1, 11, 38], but have to inter-
vene the original training process, which degenerates the
model utility and increases the training time. A branch of
recent researches [8, 9, 23, 27] attempt to destroy the influ-
ence of the forgetting data by scrubbing the model param-
eters. For example, the Fisher Information Matrix (FIM) is
used to locate the influence of forgetting data at the param-
eter space [8, 9]. However, it is prohibitively expensive due
to the large dimension of the parameter space.

In order to find an efficient unlearning approach to forget
an entire class, we visualize the decision space of the re-
trained DNN model and discover two key observations (c.f.
Figure 1). First, the forgetting samples spread around the
decision space of the retrained DNN model, indicating that
the decision boundary of the forgetting samples has been
broken. Second, most of the forgetting samples move to the
border of other clusters; this helps us recall the closest-to-
boundary criterion [24] that samples at the border of cluster
in the decision space will probably be predicted with huge
uncertainty.
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Figure 1. Key observations from the decision space of the re-
trained DNN model. The solid dots in different colors represent
the remaining samples belonging to different classes and the hol-
low circles in different colors stand for the forgetting samples pre-
dicted as corresponding classes. It can be observed that (1) the
forgetting samples spread around the feature space of the retrained
DNN model, and (2) most of the forgetting samples move to the
borders of other clusters.

These two observations naturally match the two critical
goals of machine unlearning: utility and privacy guarantees.
Utility guarantee ensures that the unlearned model should
generalize badly on the forgetting data while the prediction
performance on the remaining data is maintained. Privacy
guarantee means that the unlearned model should not leak
any information of the forgetting data. Based on our key ob-
servations, the utility guarantee can be achieved by only de-
stroying the boundary of the forgetting class but maintain-
ing the boundary of the remain classes, while the privacy
guarantee can be accomplished by pushing the forgetting
data to the border of other clusters.

In light of the above ideas, we refocus our attention
from the parameter space to the decision space of the DNN
model1, and propose Boundary Unlearning, a rapid yet ef-
fective way to unlearn the forgetting class from a trained
DNN model. Boundary Unlearning tries to shift the de-
cision boundary of the original DNN model to imitate the
decision behavior of the retrained model. To achieve the
critical goals, we further introduce two novel boundary shift
methods: Boundary Shrink and Boundary Expanding. The
former breaks the decision boundary of the forgetting class
by splitting the forgetting feature space into other classes,
while the latter disperses the activation about the forgetting
class by remapping and pruning an extra shadow class as-
signed to the forgetting data.

1Previous unlearning approaches try to destroy the information of the
forgetting data by locating the influential parameters directly, while we find
that unlearning can be accomplished by manipulating the parameters with
the guidance of the decision behaviors of the retrained model.

We summarize our major contributions as follows:

• We propose Boundary Unlearning, the first work to un-
learn an entire class from a trained DNN model by
shifting the decision boundary. Compared with ex-
isting studies, Boundary Unlearning neither costs too
much computational resource nor intervenes the origi-
nal training pipeline.

• We propose two novel methods, namely, Boundary
Shrink and Boundary Expanding, to shift the decision
boundary of the forgetting class. Both methods can
rapidly achieve the utility and privacy guarantees with
only a few epochs of boundary adjusting.

• We conduct extensive experiments to evaluate Bound-
ary Unlearning on image classification and face recog-
nition tasks. The results show that Boundary Unlearn-
ing can rapidly and effectively forget the forgetting
class, and outperforms four state-of-the-art techniques.
The code has been released for reproducibility2.

2. Related Work
Machine unlearning is first introduced on convex mod-

els to find some comprehensible indications, but is found
more useful and challenging for DNNs. Existing unlearn-
ing methods for DNNs can be broadly categorized into two
groups: retrain acceleration and updating parameters.

Unlearning for ML Models. Machine unlearning is
first proposed in statistical query learning, which makes the
trained model forget specific data by transforming learning
algorithm into a summation form [4]. Obviously, not every
ML algorithm can be converted to summation form. So a
few works [2, 7, 12] explore the unlearning task on convex
models and try to find some constructive indications with
solid theoretical bases. However, they cannot generalize to
DNNs due to the non-convex nature of the loss functions.

Retrain Acceleration for DNN Models. The DNN
model retrained from scratch with the remaining data is a
naive yet optimal unlearning method, but it is expensive in
terms of the cost of training time and resources. A few ap-
proaches are thus proposed to accelerate the retrain process.
An approach called SISA adopts the idea of “divide and
conquer” and proposes to split and mark the training data
to train some sub-models and then aggregates them into the
final well-trained model [1]. Graves et al. [11] achieve re-
train acceleration by saving the gradient information of each
training batch during the original training phase and unlearn
the forgetting data by subtracting the gradient update of the
specific batch. Similarly, Wu et al. [38] propose Delta-
grad, which saves and subtracts the gradient of each for-
getting sample by leveraging Quasi-Newton method. More

2https : / / www . dropbox . com / s / bwu543qsdy4s32i /
Boundary-Unlearning-Code.zip?dl=0
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recently, rapidly retrain has also been applied in federated
learning to tackle the unlearning problem [20,22,36]. Since
all these approaches have to intervene the original training
pipeline, they may inevitably hurt the utility of the DNN
model and cannot fit the needs of practical Machine Learn-
ing as a Service (MLaaS) platforms [13, 37].

Updating Parameters for DNN Models. Another
branch of researches attempt to unlearn a DNN model by
updating its parameters according to the forgetting data.
Golatkar et al. [8] propose Fisher Forgetting to scrub the
weights clean of information about the forgetting data, by
applying noisy Newton update on parameters of the DNN
model. To locate the influence of the forgetting data at the
parameter space, Fisher Forgetting adopts the Fisher Infor-
mation Matrix (FIM), restricted to the remaining data, to
compute the specific noise to destroy the information of the
forgetting data. However, it is prohibitively expensive to
compute FIM due to the large dimension of the parameter
space. To alleviate this issue, Peste et al. [27] approximate
FIM in an empirical way, which requires a single gradient
computation per sample. Considering that the null-space
of weights with similar activations may disable the added
noise when it destroys the information of the forgetting data,
Golatkar et al. [9] propose NTK (Neural Tangent Kernels)
forgetting [17] by transforming the trained DNN model into
a linearized NTK model and adding the same noise to a lin-
earized version of the trained model. Nevertheless, the com-
putational complexity of these methods is not that scalable
as the increasing of data size. Also, we find the specific
noise of these methods may still hurt the utility of the re-
maining data. One potential reason would be that the influ-
ence of the forgetting data at the parameter space cannot be
estimated exactly due to the poor interpretability of DNNs.

3. Preliminaries and Notation
We define the notion of machine unlearning in the con-

text of supervised classification with DNNs. Let D =
{xi,yi}Ni=1 ⊆ X ×Y be the training dataset where xi ∈ X
denotes one input and yi ∈ Y denotes the corresponding
class label. Y = {1, ...,K} denotes the label space where
K is the total number of classes. We denote Df ⊆ D
as a subset of training data as the forgetting data, and
Dr = D \ Df as the remaining training data containing
the information we expect to retain. In this work, we pri-
marily focus on the case where Df consists of the samples
of an entire class.

Let the original DNN model trained onD be represented
by fw0

parameterized by w0. Given an input x, fw0
(x) is

the logit output by the trained model on the input x. Given
fw0 , we aim to unlearn the information of Df ⊆ D from
fw0

by updating the parameters w0 → w′, where w′ repre-
sents the updated parameters obtained by unlearning meth-
ods. Note that in the problem of unlearning, we expect that

the unlearned model fw′ is as similar to the retrained model
fw∗ as possible, and fw∗ is retrained on the remaining data
Dr as the optimal unlearning model.

In Boundary Unlearning, we mainly focus on decision
boundary of each class pair (i, j), which can be defined as:
B(i,j) , {x|f i(x) = f j(x) = max

k
fk(x)}, where i, j ∈

{1, , ...,K} denote labels of the class pair and f i(x) denotes
the i-th element of the output of DNN on input x. Let xf ∈
Df denote a forgetting sample and the label of the forgetting
class is t. Then, the prediction of xf on the retrained model
fw∗ will behave as argmax

k
fkw∗(xf ) 6= t.

4. Proposed Methods

Observing that imitating the decision behavior of the re-
trained model fw∗ is able to accomplish the utility and pri-
vacy guarantees of machine unlearning, we transfer our at-
tention from parameter space to decision boundary and de-
sign two strategies to shift decision boundary in Boundary
Unlearning as follows.

Boundary Shrink splits the decision space of the forget-
ting class by the constraint: argmax

k
fkw′(xf ) = ynbi.

Boundary Expanding disperses the activation about the
forgetting data by the constraint: f tw′(xf ) ≈ 0.

4.1. Boundary Shrink

An intuitive boundary shifting method is to finetune the
trained DNN model fw0

with randomly labeled forgetting
data, but this will also shift the boundary of the remaining
class randomly, leading to the degeneration of utility the on
remaining data. As can be observed from Figure 1, most
of the forgetting samples are predicted as specific classes,
instead of random classes. It reminds us to discover the
similarity between forgetting samples and samples of other
classes in the feature space.

Motivated by recent advances of adversarial attacks [29,
39], which can generate adversarial examples across the
nearest decision boundary, we thus propose a neighbor
searching method to identify the nearest but incorrect class
labels to guide the way of boundary shifting (c.f Figure 2).
Our neighbor searching shows us the direction of shifting
the decision boundary of forgetting samples, and can attain
the nearest but incorrect labels by predicting the cross sam-
ples on original model. Then we can assign the labels of the
cross samples to their corresponding forgetting samples. In
this way, finetuning the trained model fw0 with all reas-
signed samples will shrink the boundary of the forgetting
class in a precise direction.

More formally, we assume the original model fw0
is op-

timized by the loss function L, where L can be any standard
loss functions, such as cross-entropy. w0 is the optimal so-
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Figure 2. Illustrating the key ideas of Boundary Shrink and Boundary Expanding. The ovals in different colors represent features of
samples in different categories and the dots represent the training samples of the forgetting class. Both Boundary Shrink and Boundary
Expanding can destroy the decision boundary of the forgetting class.

lution of the original model:

w0 = argmin
w

∑
(xi,yi)∈D

L(xi,yi,w) (1)

Then, we find the nearest but incorrect label for each
forgetting sample with our neighbor searching method, by
adding noise vector whose elements are equal to the sign
of the elements of the gradient of the loss function. Note
that this is somewhat similar to adversarial attacks, but the
difference is that we do not need to seek the imperceptible
noise (actually, we set a relatively large noise bound), so our
method will be much faster.

Given an initial forgetting sample xf and a noise bound
ε, our neighbor searching updates its cross example using:

x′f = xf + ε · sign(5xf
L(xf ,y,w0)) (2)

Once we get the cross samples of all forgetting samples,
the nearest but incorrect labels ynbi can be predicted by the
original model fw0 by:

ynbi ← softmax(fw0
(x′f )) (3)

To shrink the boundary of the forgetting class, we then
finetune the original model fw0 with the reassigned forget-
ting samples (x,ynbi) ∈ Df , and obtain:

w′ = argmin
w

∑
(xi,ynbi)∈Df

L(xi,ynbi,w0) (4)

For the utility guarantee, Boundary Shrink deactivates
the power of the DNN model on the forgetting class, but
barely hurts the generalization performance on remaining
classes. The nearest but incorrect labels help to shrink
the boundary of forgetting sample from the sides of other
classes, which split the decision space of the forgetting
class. Compare to finetuning with random labels, Bound-
ary Shrink achieves the privacy guarantee better as well.

Finetuning with random labels will make most of the for-
getting samples too conspicuous, which expresses as being
predicted with excessive uncertainty. By contrast, Bound-
ary Shrink pushes the forgetting samples close to the new
decision boundary, which makes the unlearned model pre-
dict on these forgetting samples with low certainty. The new
boundary between remaining classes and forgetting class
can be formulated as B(i,t) = {xf | argmax

k
fkw′(xf ) =

ynbi = i}. Hence, attackers cannot inference these forget-
ting samples from the unlearned model.

4.2. Boundary Expanding

Although Boundary Shrink achieves both utility and pri-
vacy guarantees well, it may cost some time during the
neighbor searching. So we propose Boundary Expanding
which aims to imitate the decision behavior of the retrained
model even more quickly.

In Boundary Expanding, we do not find the nearest but
incorrect way to shift the boundary in decision space. In-
stead, we artificially assign forgetting samples to an extra
shadow class of the original model, which will exploit a
new area on decision space (c.f. Figure 2). Recall that we
start from our observation that most of forgetting samples
move to the border of other clusters on the retrained model.
This phenomenon means the forgetting data are predicted
as other classes with low certainty. As for a single sam-
ple, low certainty represents the output vector is more even.
Based on this phenomenon, we design a boundary expand-
ing and remapping method to disperse the activation about
forgetting data of the unlearned model.

More specifically, we first introduce an extra shadow
class to expand the decision space. This is done by adding
a neuron at the last layer of the original DNN model. Then,
we finetune the expanded model with the forgetting samples
reassigned with the shadow class label:

w′ = argmin
w

∑
(xi,yshadow)∈Df

L(xi,yshadow,w0) (5)
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This finetuning approach will remap the forgetting sam-
ples to the new area of decision space. After that, the ac-
tivation about forgetting data will be collected in the new
neuron and the classification neuron of forgetting class will
be deactivated. Then, we discard this new area by prun-
ing the extra neuron. Thus, the new model unlearned by
Boundary Expanding will get back to the same size as the
original model, and the pruned model will throw away the
information about the forgetting data.

Intuitively, the expanding and remapping operations only
move the forgetting samples in the decision space. As
Boundary Expanding never assigns any samples to the re-
maining classes, the activation of the remaining classes will
not change much. Thus, the utility of the DNN model to the
remaining data is maintained and the utility guarantee can
be achieved by Boundary Expanding. Moreover, the clas-
sification neuron of the forgetting class in the pruned DNN
model will be disabled. Also, the activation about forget-
ting data will be dispersed to the neurons belong to other
classes. Therefore, attackers will only get fuzzy logits of
the forgetting samples when they attack the pruned model.

5. Performance Evaluation

5.1. Experimental Settings

Datasets. We conduct experiments on CIFAR-10 [19] and
Vggface2 [3] datasets, as in [8,9,34], to test unlearning per-
formance on image classification task and face recognition
task.
Baselines. We implement the following baseline unlearn-
ing methods for comparisons:
Retrain: we train the model from scratch with the remain-
ing data as the retrained model. Thus, the retrained DNN
model is the optimal unlearned model.
Finetune: we finetune the original model on the remaining
training data Dr with large learning rate.
Random Labels [14]: finetune the original model on the ran-
dom relabeled forgetting data Df .
Negative Gradient [8]: finetune the original model on the
forgetting data Df in the direction of gradient ascent.
Fisher Forgetting [8]: Fisher Forgetting first locates the
most relevant parameters in terms of forgetting data and
then scrub them by adding noise.
Amnesiac Unlearning [11]: amnesiac unlearning is a typi-
cal method of rapidly retrain. We need save the updates of
parameters during several batches on the original training
phase. Then, we can unlearn the forgetting data by sub-
tracting the corresponding updates of parameters.
Implementations. Our methods and other baselines are im-
plemented in Python 3.8 and use the PyTorch library [25].
All experiments are conducted on a workstation with one
NVIDIA GeForce RTX 2070 GPU. For CIFAR-10 dataset,
we train the All-CNN model [33] from scratch for 30

epochs using SGD with a fixed learning rate of 0.1, mo-
mentum of 0.9 and batch-size of 64. For Vggface2 dataset,
we randomly select face images of 10 celebrities to conduct
experiments. We obtain the original model by finetuning
the pretrained ResNet50 model [3,15] with the training im-
ages of the 10 celebrities. The original training parameters
are similar to those on CIFAR-10. For the fine-tune process
in Boundary Unlearning we use a learning rate of 10−5 for
10 epochs. Note that we use the same forgetting class as
the forgetting data for all unlearning methods and the rest
of classes are the remaining data.
Metrics. We verify the unlearning performance on both
utility and privacy guarantees.
For utility guarantee, we utilize four accuracy metrics: ac-
curacy on the remaining training data Dr, forgetting train-
ing data Df , remaining testing data Drt, forgetting testing
data Dft. The unlearned model is expected to get close ac-
curacy with the retrained model.
For privacy guarantee, we construct a simple yet general
membership inference attack (MIA) based on [32] using
the output of the unlearned model and test the attack suc-
cess rate (ASR). MIA aims to infer whether a data record
was used to train a target ML model or not [16, 21, 28],
and its ASR is widely used as an evaluation metric to verify
the privacy guarantee of an unlearning method [1,5,23,30].
Ideally, a forgetting procedure should have the same attack
success as a retrained model.

5.2. Utility Guarantee

For an effective unlearning method, the unlearned model
is expected to contain little information about the forgetting
data. So we first present comparison results of the accuracy
of models by different unlearning methods on CIFAR-10
and Vggface2 datasets in Table 1, which demonstrate the
difference of utility caused by the information of the for-
getting data. From the results we can observe that all the
baselines can erase the information of Df to some degree.
Finetuning the original model onDr with lager learning rate
and epoch significantly decreases the accuracy onDf (0.0%
from the initial 98.57% on Vggface2). But the more fine-
tune epoch cost more time, and only finetuning on Dr fails
on pursuing the privacy goal, which suggests that finetun-
ing is not a correct unlearning method (as will be shown in
the next section). Negative Gradient and Random Lables
perform well on accuracy of Dr and Drt, which means the
information of Dr is maintained, but they fail to erase Df

completely (still preserve 10.4% and 7.84% accuracy ofDf

on CIFAR-10). In brief, these baselines unlearn the infor-
mation about Df insufficiently.

On the contrary, our methods achieve the utility guar-
antee efficiently. Owing to the well-organized moving di-
rection, Boundary Shrink unlearns the forgetting class and
maintains the information of the remaining classes in a more
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Table 1. Comparison of utility guarantee among baselines and Boundary Unlearning.

Dataset Metric
Original
Model

Retrain Finetune
Negative
Gradient

Random
Labels

Boundary
Shrink

Boundary
Expanding

CIFAR-10
Acc onDr 99.97 100.00 100.00 97.16 98.49 99.24 98.03
Acc onDf 99.92 0.00 0.22 7.84 10.40 5.94 8.96
Acc onDrt 84.83 85.74 86.50 80.42 81.81 83.13 81.07
Acc onDft 81.20 0.00 0.10 6.50 7.50 5.94 7.00

Vggface2
Acc onDr 99.94 100.00 99.52 96.57 98.89 98.57 98.20
Acc onDf 98.57 0.00 0.00 2.85 4.29 1.54 4.22
Acc onDrt 98.87 99.06 99.96 99.58 95.14 99.72 97.12
Acc onDft 97.14 0.00 5.52 7.26 2.86 0.87 1.41

Table 2. Comparison of utility guarantee among Fisher Forgetting
and Amnesiac Unlearning on CIFAR-10.

Metrics Acc on Dr Acc on Df Acc on Drt Acc on Dft

Amnesiac Unlearning 95.79 0.00 81.50 0.00
Fisher Forgetting 61.62 1.80 54.20 1.60

fine-grained way. As shown in Table 1, Boundary Shrink re-
duces the accuracy onDf (only preserves 5.94% and 1.54%
on CIFAR-10 and Vggface2) but maintains the accuracy on
Dr (degrades 0.73% and 1.37% on the two datasets). Com-
pared with baselines, Boundary Shrink harms the informa-
tion ofDr to the least extent and erasesDf most completely.
Similarly, Boundary Expanding also maintains the accuracy
on Dr and Drt. However, it leaves more residual informa-
tion about Df than Boundary Shrink (8.96% and 5.94% on
CIFAR-10), but still less than Random Labels (10.40% on
CIFAR-10). As mentioned before, we take Boundary Ex-
panding as a faster alternative method, which takes a trade-
off between performance and time consumption.

We also run Fisher Forgetting on CIFAR-10, which de-
stroys the information about Df by adding a specific noise
to parameters, to demonstrate the effectiveness of our meth-
ods. The results in Table 2 show that Fisher Forgetting
erases Df optimally (only preserves 1.8% accuracy on Df )
but fails to maintain the utility on Dr (decreases 38.35%
accuracy). However, both Boundary Shrink and Boundary
Expanding achieve forgetting and maintain the information
of Dr well. We also show the utility performance of Am-
nesiac Unlearning in Table 2. Amnesiac Unlearning erases
information about Df ideally, but still hurts the utility of
Dr as it intervenes the original training process. Most im-
portantly, Amnesiac Unlearning costs too much time and
memory space to accomplish unlearning, as will be shown
in the following section.

5.3. Privacy Guarantee

Next, we turn to evaluate the privacy guarantee to ensure
that the unlearned model by our Boundary Unlearning does

(a) On CIFAR-10. (b) On Vggface2.

Figure 3. The attack success rate of each unlearning method. The
green line represents the ASR of the retrained model, and it is
expected to be more close to it to reduce the privacy leakage.

not leak any information about the forgetting data. We plot
the ASR for the unlearning methods on CIFAR-10 and Vg-
gface2 datasets, and the results are shown in Figure 3. The
green line in Figure 3 represent the ASR of the retrained
model and all the unlearning methods attempt to match with
it: the closer the better. Here, as an unlearned model gets
a closer ASR to 100%, the less information about Df is
erased. Contrarily, a quite low ASR (close to 0%) may rep-
resent the Streisand effect which can provide more informa-
tion about the forgetting data [8], i.e. all samples of Df are
predicted as one class.

From the results in Figure 3, we can see that the ASR
of Finetune is fairly high on both datasets, which means
Finetune barely removes information about forgetting data.
For Negative Gradient on CIFAR-10 dataset, it gets a pretty
low ASR which is far from the ASR of the retrained model.
Random Labels can erase a part of forgetting data but only
achieves a relatively low ASR on CIFAR-10. Interestingly,
both Negative Gradient and Random Labels have high ASR
on Vggface2 dataset, mainly because Vggface2 consists of
millions of face images and the basic patterns of faces are
more difficult to erase, especially for weaker unlearning
methods. Similar to the test of utility guarantee, we also test
Fisher Forgetting, but find that the ASR of Fisher Forgetting
is 0 which represents the severe Streisand effect. Amnesiac
Unlearning obtains an ASR close to the retrained model, as
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Figure 4. The time consumption of each unlearning method.

it saves and then subtracts the updates of parameters related
to Df , which makes it more like a rapid retraining model.

As for our Boundary Shrink/Expanding, they can
achieve quite close ASR to that of the retrained model
on both datasets. To be more specific, Boundary Shrink
achieves better ASR than Boundary Expanding because
Boundary Shrink particularly considers the distance be-
tween forgetting samples and samples belong to other
classes. In a word, Boundary Unlearning methods can
achieve a better performance on privacy guarantee.

5.4. Computational Complexity

In this section, we report the time consumed by each
unlearning method to show the computational complexity.
The major results on CIFAR-10 and Vggface2 are depicted
in Figure 4. Compared with Retrain, all other unlearning
methods of course spent less time, but Finetune takes much
more time than other methods, and it still gets a fairly high
ASR in respect of privacy guarantee. As for Boundary Un-
learning, both of them can forget the forgetting data in a
short time and achieve the privacy guarantee well in the
mean time. On the Vggface2 dataset, Boundary Expanding
and Boundary Shrink reduce the forgetting time by 26.6×
and 11.7×, respectively. As for CIFAR-10 dataset, Bound-
ary Expanding and Boundary Shrink provide a speed-up
of 29.7× and 4.8×, respectively. As we discussed before,
Boundary Shrink takes a little more time than Boundary Ex-
panding because the generation of cross samples.

Also, we test the time consumption of Fisher Forgetting
and Amnesiac Unlearning. We do not add the results to Fig-
ure 4 because both of them cost extremely long time and the
results cannot fit the figure well. For CIFAR-10 on All-CNN
model, Fisher Forgetting costs around 2.7× 103 seconds to
unlearn the forgetting class, mainly caused by the huge pa-
rameter space and the large amount of training samples. Al-
though Fisher Forgetting can erase the forgetting data per-
fectly, the time consumption is intolerable. As for Amne-
siac Unlearning, the unlearning process consists of parame-
ters subtracting and repairing, which costs around 2.8×102

Figure 5. The attention map of each unlearning method.

seconds. But from our reproduction, we find that Amne-
siac Unlearning doubles the time consumption of original
training process (costs around 1.0 × 103 seconds), which
is mainly caused by the operation of saving parameters up-
date. Thus, we can see that our Boundary Unlearning can
remove the forgetting data effectively and quickly.

5.5. Attention Map

To make the effect of forgetting more transparent, we
plot the attention maps of models on the forgetting data in
the Vggface2 dataset before and after applying Boundary
Unlearning. The attention map [31] highlights the impor-
tant areas in the image for predicting the concept. The
columns in Figure 5 (from left to right) show the focus
areas of the original model, the retrained model and un-
learned models generated by Boundary Unlearning. We find
that the retrained model does not focus on the area of face,
and Boundary Unlearning transfers the attention of models
from face to background. In particular, the model unlearned
by Boundary Shrink only focuses on the background. Al-
though Boundary Expanding fails to transfer the attention
completely, it still refocuses on the area outside of face. The
results indicate that the output of unlearned model contains
hardly any information about the forgetting data.

5.6. Visualization of Decision Space

To make more clear how the decision boundary of the
forgetting data shifts, we visualize the decision boundary
before and after unlearning in Figure 6. We can find that
the forgetting data (hollow circles) has been predicted as
the nearest classes after applying Boundary Shrink, even
the cluster does not entirely spread out like on the retrained
model. In addition, we find that some hollow circles move
to other clusters in Figure 6c. These phenomenons reveal
that the decision space of the forgetting class is split by
its near classes, like on the decision space of the retrained
model (c.f. Figure 6b). Meanwhile, the clusters of remain-
ing classes still keep compact, which means the model util-
ity to the remaining data is maintained. In the decision
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(a) Original (b) Retrained (c) Boundary Shrink (d) Boundary Expanding

Figure 6. Visualization of decision space of different methods on CIFAR-10 dataset. The solid dots in different colors represent samples
belonging to different remaining classes and the hollow circles stand for the forgetting data. Ideally, we wish the unlearned models act like
the retrained model.

Figure 7. Distribution of the entropy of model’s output on the remaining data Dr , the forgetting data Df and the testing data.

space of the unlearned model generated by Boundary Ex-
panding shown in Figure 6d, the cluster of the forgetting
data is pushed away from the center. The forgetting samples
are predicted as the remaining classes. Moreover, the clus-
ters of remaining classes are maintained and few remaining
data is predicted incorrectly. Therefore, Boundary Unlearn-
ing makes the decision boundary of the unlearned model
more like that of the retrained model and thus accomplishes
the unlearning efficacy.

5.7. Distribution of the Entropy of Model Output

At last, we deep into the distribution of the model’s out-
put to figure out why Boundary Unlearning can achieve
privacy guarantee. With respect to the distribution of the
model’s output on the forgetting data, we expect the un-
learned models to match closely with the retrained model.
On the other side, a great difference between distributions
before and after unlearning will give rise to Streisand effect.

Figure 7 shows the distribution of entropy of model’s
output. From the results, we can see that the entropy of
outputs on Dr and Df is lower (more confident) than that
on the testing data, because both of them are training data of
the original model. As the retrained model has not trained
on Df , the entropy of Df on it increases evidently (less
confident). The distributions of unlearned models generated
by Boundary Unlearning are more similar to that of the re-
trained model. For the distribution on the unlearned model
with Random Labels, its entropy of Df is pretty large and

vary significantly than that of the retrained model, which
may provide even more information about Df , i.e., all sam-
ples of Df are predicted as a specific class by the unlearned
model, which may make Df more prominent to attackers.

We can also observe that scrubbing Df from the origi-
nal model by Boundary Unlearning makes the distribution
of model’s output on Df more uniform, which means the
model is less confident about the prediction. We believe that
the change about the distribution is caused by the shifting of
the decision boundary. Boundary Unlearning destroys the
boundary of the forgetting class and thus Df is predicted as
one of its nearest classes, as shown in Figures 6c and 6d,
which means the unlearned model predicts them with low
confidence like predicting the testing samples. This will
make the attackers harder to inference the membership in-
formation about Df .

6. Conclusion

In this paper, we have presented Boundary Unlearning,
the first machine unlearning methodology to remove infor-
mation of an entire class from a trained DNN by shifting
the decision boundary. It neither costs too much computa-
tional resource nor intervenes the original training pipeline.
Extensive experimental results demonstrate its rapid and ef-
ficient forgetting performance in both utility and privacy
guarantees of unlearning. We envision our work as a prac-
tical step in machine unlearning towards revealing the rela-
tionship between decision boundary and forgetting.
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