
Masked Image Training for Generalizable Deep Image Denoising

Haoyu Chen1∗, Jinjin Gu2,3*, Yihao Liu2,4,5, Salma Abdel Magid7,
Chao Dong2,4, Qiong Wang6, Hanspeter Pfister7, Lei Zhu1,8†

1The Hong Kong University of Science and Technology (Guangzhou) 2Shanghai AI Lab 3The University of Sydney
4ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
5University of Chinese Academy of Sciences 6Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology,

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
7Harvard University 8The Hong Kong University of Science and Technology

Project page: https://github.com/haoyuc/MaskedDenoising

Abstract

When capturing and storing images, devices inevitably
introduce noise. Reducing this noise is a critical task called
image denoising. Deep learning has become the de facto
method for image denoising, especially with the emergence
of Transformer-based models that have achieved notable
state-of-the-art results on various image tasks. However,
deep learning-based methods often suffer from a lack of
generalization ability. For example, deep models trained on
Gaussian noise may perform poorly when tested on other
noise distributions. To address this issue, we present a
novel approach to enhance the generalization performance
of denoising networks, known as masked training. Our
method involves masking random pixels of the input image
and reconstructing the missing information during training.
We also mask out the features in the self-attention layers
to avoid the impact of training-testing inconsistency. Our
approach exhibits better generalization ability than other
deep learning models and is directly applicable to real-
world scenarios. Additionally, our interpretability analysis
demonstrates the superiority of our method.

1. Introduction
Image denoising is a crucial research area that aims to

recover clean images from noisy observations. Due to the
rapid advancements in deep learning, many promising im-
age denoising networks have been developed. These net-
works are typically trained using images synthesized from
a pre-defined noise distribution and can achieve remarkable
performance in removing the corresponding noise. How-
ever, a significant challenge in applying these deep models
to real-world scenarios is their generalization ability. Since
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Figure 1. We illustrate the generalization problem of denois-
ing networks. We train a SwinIR model on Gaussian noise with
σ = 15. When tested on the same noise, SwinIR demon-
strates outstanding performance. However, when applied to out-
of-distribution noise, e.g., the mixture of various noise. SwinIR
suffers from a huge performance drop. The model trained by the
proposed masked training method maintains a reasonable denois-
ing effect, despite aldo being trained on Gaussian noise.

the real-world noise distribution can differ from that ob-
served during training, these models often struggle to gen-
eralize to such scenarios.

More specifically, most existing denoising works train
and evaluate models on images corrupted with Gaussian
noise, limiting their performance to a single noise distri-
bution. When these models are applied to remove noise
drawn from other distributions, their performance drasti-
cally drops. Figure 1 shows an example. The research
community has become increasingly aware of this gener-
alization issue of deep models in recent years. As a coun-
termeasure, some methods [80] assume that the noise level
of a particular noise type is unknown, while others [5, 68]
attempt to improve the performance in real-world scenarios
by synthesizing or collecting training data closer to the tar-
get noise or directly performing unsupervised training on
the target noise [11, 71]. However, none of these meth-
ods substantially improve the generalization performance of
denoising networks, and they still struggle when the noise
distribution is mismatched [1]. The generalization issue of
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deep denoising still poses challenges to making these meth-
ods broadly applicable.

In this work, we focus on improving the generalization
ability of deep denoising models. We define generalization
ability as the model’s performance on noise different from
what it observed during training. We argue that the gener-
alization issue of deep denoising is due to the overfitting of
training noise. The existing training strategy directly op-
timizes the similarity between the denoised image and the
ground truth. The intention behind this is that the network
should learn to reconstruct the texture and semantics of nat-
ural images correctly. However, what is often overlooked is
that the network can also reduce the loss simply by overfit-
ting the noise pattern, which is easier than learning the im-
age content. This is at the heart of the generalization prob-
lem. Even many popular deep learning methods exacerbate
this overfitting problem. When it comes to noise different
from that observed during training, the network exhibits this
same behavior, resulting in poor performance.

In light of the preceding discussion, our study seeks
to improve the generalization performance of deep de-
noising networks by directing them to learn image con-
tent reconstruction instead of overfitting to training noise.
Drawing inspiration from recent masked modeling methods
[4, 20, 34, 69], we employ a masked training strategy to ex-
plicitly learn representations for image content reconstruc-
tion, as opposed to training noise. Leveraging the properties
of image processing Transformers [15,45,78], we introduce
two masking mechanisms: the input mask and the attention
mask. During training, the input mask removes input image
pixels randomly, and the network reconstructs the removed
pixels. The attention mask is implemented in each self-
attention layer of the Transformer, enabling it to learn the
completion of masked features dynamically and mitigate
the distribution shift between training and testing in masked
learning. Although we use Gaussian noise for training –
similar to previous works – our method demonstrates sig-
nificant performance improvements on various noise types,
such as speckle noise, Poisson noise, salt and pepper noise,
spatially correlated Gaussian noise, Monte Carlo-rendered
image noise, ISP noise, and complex mixtures of multiple
noise sources. Existing methods and models have yet to ef-
fectively and accurately remove all these diverse noise pat-
terns.

2. Related Works
Image Denoising approaches very broadly lie in two cat-
egories: traditional model-based and data-driven deep-
learning-based. Traditional methods are usually based on
modeling image priors to recover image content contami-
nated by noise [7, 19, 23, 32, 53]. These methods usually
do not impose too many constraints on the type of noise,
and have been proven to be applicable to a variety of noise,

with good generalization performance [1]. However, these
methods are not satisfactory for the reconstruction of im-
age content. In recent years, the paradigm of denoising
has gradually shifted to data-driven methods based on deep
learning methods [13]. Many techniques have been pro-
posed to improve the capabilities of the denoising networks
continuously, e.g., residual networks [39,80,81], dense net-
works [37, 86], recursive networks [9, 48, 63], multi-scale
[21, 31, 76], encoder-decoder [16, 54, 73], attention opera-
tions [84, 85], self-similarity [35], and non-local operations
[43, 44, 58]. Since 2020, the paradigm of vision network
design has gradually shifted from CNNs to Transformers
[22]. Vision Transformers treat input pixels as tokens and
use self-attention operations to process interactions between
these tokens. Inspired by the success of vision Transform-
ers, many attempts have been made to employ Transformers
for low-level vision tasks [10,14,15,45,62,67,70,74,77,78]
During the development of these models, the noise pattern
used for training is often consistent with the testing one.
The factor that determines its denoising performance is the
fitting ability of the network, in other words, the ability of
the network to overfit to the training noise. However, a bet-
ter network does not mean a better generalization ability of
the denoising model. As we will show in the experiment
section, a more efficient network even indicates worse gen-
eralization performance.

Generalization Problem in low-level vision often arises
when the testing degradation does not match the training
degradation, e.g., different downsampling kernel in super-
resolution [30, 40, 47]. We typically develop deep denois-
ing models based on Gaussian noise in the laboratory set-
ting. However, noise in the real-world is mostly non-
Gaussian. Models trained on Gaussian noise fail in these
non-Gaussian scenarios. There are two main categories
of solutions to this problem. The first is to make training
datasets with noise modeling as close to reality as possible
during development, e.g., synthesizing real noise according
to physical system modeling [5, 68], learning to generate
real noise [11, 24, 71], collecting real noise – clean image
pairs for training [1, 33, 41, 57]. Although the models ob-
tained by these methods can improve the effect on the tar-
get noise, they still cannot generalize to out-of-distribution
noise. Another category of solutions is to develop “blind”
denoising models, which are supposed to deal with un-
known noise [41, 72, 80]. These methods usually simply
assume that the noise level is unknown, or train on a large
amount of noise types [79], which also fails to generalize to
other noise not present in the training set. Few workd have
been proposed to study the reasons for the lack of general-
ization ability in low-level vision [40]. Liu et al. [49] ar-
gue that networks tend to overfit to degradations and show
degradation “semantics” inside the network. The presence
of these representations often means a decrease in general-
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Trainging image Denoised by our method

Denoised by SwinIRGround truth

Our reconstruction result

Figure 2. SwinIR, when trained solely on immunohistochemistry
images with Gaussian noise, can still denoise natural images. This
observation supports the assertion that most existing methods per-
form denoising primarily through overfitting the training noise. In
contrast, our approach emphasizes reconstructing natural image
textures and edges observed in the training set on natural images,
rather than relying on noise overfitting for denoising. This distinc-
tion underlines the fundamental difference between our method
and previous approaches. “Our reconstruction result” refers to us-
ing our model but taking masked images as input.

ization ability. The utilization of this knowledge can guide
us to analyze and evaluate the generalization performance
[50]. Apart from that, few works have been proposed to
improve the generalization ability of denoising models.

Masked modeling for language [6, 20, 59, 60] is success-
ful for learning pre-trained representations that generalize
well to various downstream tasks. These methods mask out
a portion of the input sequence and train models to predict
the missing content. A similar approach can also be ap-
plied to the vision model pre-training. Masked image mod-
els learn representations from corrupted images. The earli-
est attempts in this regard can be traced back at least to the
denoising auto-encoder [66]. Since then, many works have
used predicting missing parts of images to learn efficient
image representations [4, 12, 34, 56, 69]. However, there
have been few successful attempts to apply masked image
modeling to low-level vision, even though the masked pre-
training method is in the form of low-level vision tasks.

3. Method

Our objective is to create denoising models capable of
generalizing to noise not encountered in the training set. In
this section, we first discuss our motivation before delving
into the specifics of our masked training method.

Motivation. When training a deep network on a large
number of images, the expectation is for the network to
learn to discern the rich semantics of natural images from
noise-contaminated test cases. However, several studies
have noted that the semantics and knowledge acquired by
low-level vision networks differ significantly from our ex-
pectations [29, 49, 50, 52]. We argue that the poor general-
ization ability of denoising models results from our train-
ing method, which leads the model to focus on overfit-

original mask 70% mask 90%

Figure 3. The illustration of the proposed mask-and-complete
training strategy. Even if a large number of pixels are masked,
the model can still reconstruct the input to some extent.

ting the training noise rather than learning image recon-
struction. We conduct a simple experiment for verification.
We trained a SwinIR denoising network [45] using images
that greatly differ from natural images (immunohistochem-
istry images [65]). We synthesized training data pairs us-
ing Gaussian noise, and then assessed the model’s perfor-
mance on natural images with Gaussian noise. According
to our hypothesis, if the model learns the content and recon-
struction of image semantics from the training set, it should
not perform well on natural images, as it has not been ex-
posed to any. If the model is simply overfitting the noise,
the model can remove the noise even if the images are dif-
ferent, as the model mainly relies on detecting the noise for
denoising.

The results are presented in Figure 2. As observed, the
SwinIR trained on immunohistochemistry images can still
denoise and reproduce the natural image. This supports our
conjecture regarding generalization ability, indicating that
most existing methods perform denoising by overfitting the
training noise. Consequently, when the noise deviates from
the training conditions, the denoising performance of these
models declines significantly.

This observation also inspires our approach to develop-
ing deep denoising models with improved generalization
ability. We aim for the model to learn the reconstruction
of image textures and structures, rather than focusing only
on noise. In this paper, we propose a new masked training
strategy for denoising networks. During training, we mask
out a portion of the input pixels and then train the deep net-
work to complete them, as shown in Figure 3. Our approach
emphasizes reconstructing natural image textures and edges
observed in the image, rather than overfitting noise. In Fig-
ure 2 we also show the results of our method. It is evi-
dent that our approach seeks to reconstruct the immuno-
histochemistry image texture from the training set on the
testing natural image, instead of relying on noise overfit-
ting for denoising. This demonstrates the potential of this
idea in improving generalization performance. By training
our method on natural images, it will concentrate on recon-
structing the content of natural images, aligning with our
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Figure 4. The transformer architecture of our proposed masked image training. We make a minimal change to the original SwinIR
architecture – the input mask operation and the attention masks. Other micro-designs are not essentially different from other Transformers.

original w/o attention mask w/ attention mask

Figure 5. Quantitative effect of the attention mask. The histogram
differences are also shown above.

core concept of employing deep learning for low-level vi-
sion tasks.

The Transformer Architecture. Our approach exploits
the excellent properties of visual Transformers, so we first
describe the basic Transformer backbone used in this study.
The shifted window mechanism is proven to be flexible and
effective for image processing tasks [15, 45, 78]. We only
make minimal changes when applying it to the proposed
masked training method without the loss of generality. This
model is illustrated in Figure 4. Transformers divide the
input signal into tokens and process spatial information us-
ing self-attention layers. In our method, a convolution layer
with kernel size 1 is used as the feature embedding mod-
ule to project the 3-channel pixel values into C-dimensional
feature tokens. The 1 × 1 convolution layer ensures that
pixels do not affect each other during feature embedding,
which facilitates subsequent masking operations. These
feature tokens are gathered with shape H ×W ×C, where
H , W and C are the height, width and feature dimension.
The shifted window mechanism first reshapes the feature
maps of each frame to HW

M2 ×M2×C features by partition-
ing the input into non-overlapping M ×M local windows,
where HW

M2 is the total number of windows. We calculate
self-attention on the feature tokens within the same window.
Therefore, M2 tokens are involved in each standard self-
attention operation, and we produce the local window fea-
ture X ∈ RM2×C . In each self-attention layer, the query Q,
key K and value V are calculated as Q = XWQ, K =
XWK , V = XWV , where WQ,WK ,WV ∈ RC×D

are weight matrices, and D is the dimension of projected
vectors. Then, we use Q to query K to generate the atten-

Mixture noise Referencew/o input mask full methodw/o attention mask

Figure 6. The effectiveness of the input mask and attention mask.
Note that the brightness of the image is wrong w/o attention mask.

Input
Mask

Attention
Mask PSNR SSIM

✓ 29.17 0.8227
✓ 26.96 0.8202
✓ ✓ 29.74 0.8672

Table 1. The importance of using
different mask operations.

Mix. noise on CBSD68 [55]
Ratio (%) PSNR SSIM

65 29.57 0.8657
75 29.76 0.8678
85 28.84 0.8548

Table 2. Ablation on the at-
tention mask ratio.

tion map A = softmax(QKT
/
√
D+B) ∈ RM2×M2

, where
B is the learnable relative positional encoding. This atten-
tion map A is then used for the weighted sum of M2 vectors
in V . The multi-head settings are aligned with SwinIR [45]
and ViT [22].

Masked Training. Our masked training mainly consists
of two aspects, the input mask and the attention mask. Al-
though both are mask operations, the purpose of these two
masks is different. We describe them separately.

The Input Mask randomly masks out the feature tokens
embedded by the first convolution layer, and encourages the
network to complete the masked information during train-
ing. The input mask explicitly constructs a very challenging
inpainting problem, as shown in Figure 3. It can be seen that
even if up to 90% of the pixel information is destroyed, the
network can still reconstruct the target image to a certain
extent. The method is very simple. Given the feature token
tensor f ∈ RH×W×C , we randomly replace the token with a
[mask token]∈ RC with a probability pIM, where pIM
is called the input mask ratio. The network is trained under
the supervision of the l1-norm of the reconstructed image
and the ground truth. The [mask token] can be learn-
able and initialized with a 0 vector. But we actually found
that the 0 vector itself is already a suitable choice. The ex-
istence of the input mask forces the network to learn to rec-
ognize and reconstruct the content of the image from very
limited information.

The Attention Mask. We cannot build usable image pro-
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Figure 7. The trade-off of choosing different mask ratios. The per-
formance drop on training noise is not significant until 75% mask-
ing ratio. Our performance gain on the noise outside the training
set is greater than the performance loss on the training set.

cessing networks relying solely on the input mask opera-
tion. Because during testing, we will input uncorrupted im-
ages to retain enough information. At this time, due to the
inconsistency between training and testing, the network will
tend to increase the brightness of the output image. Such as
the example in Figure 5. Since Transformer uses the self-
attention operation to process spatial information, we can
narrow the gap between training and testing by perform-
ing the same mask operation during the self-attention pro-
cess. The specific mask operation is similar to the input
mask, but a different attention mask ratio pAM and [mask
token] are used. When some tokens in the self-attention
are masked, the attention operation will adjust to the fact
that the information of these tokens is no longer reliable.
Self-attention will focus on unmasked tokens in each layer
and complete the masked information. This operation is
difficult to implement on convolutional networks. Figure 5
shows the effect of the attention mask. As can be seen, the
attention mask successfully makes the masked trained net-
work work on the unmasked input image.

4. Experiments
Training Settings. For synthesizing training data, we
sample the clean images from DIV2K [64], Flickr2K [46],
BSD500 [3], and WED [51] during training. In our work,
all the networks are trained using Gaussian noise with stan-
dard deviation σ = 15. Each input image is randomly
cropped to a spatial resolution of 64×64, and the number
of the total training iteration is 200K. We adopt the Adam
optimizer [38] with β1=0.9 and β2=0.99 to minimize the L1

pixel loss. The initial learning rate is set as 1×10−4 and re-
duced by half at the milestone of 100K iterations and 150K
iterations. The batch size is set to 64.

Testing Noise. Since the training process utilizes the
Gaussian noise, we evaluate the generalization performance
of the models on six other synthetic noise: (1) Speckle
noise, a type of noise that occurs during the acquisition of
medical images or tomography images. (2) Poisson noise, a
type of signal-dependent noise that occurs during the acqui-
sition of digital images.(3) Spatially-correlated noise. This
is to synthesize the complex artifact after denoising using a
flawed algorithm. It is produced by filtering Gaussian noise
with a 3×3 average kernel. Different standard deviations of

the Gaussian noise indicate different noise levels. (4) Salt &
pepper noise. (5) Image signal processing (ISP) noise. [5]
proposes a method to synthesize realistic ISP noise dur-
ing digital imaging. (6) Mixture noise obtained by mix-
ing the above different types of noise with different lev-
els [79]. The clean images are sampled from the bench-
mark datasets, including CBSD68 [55], Kodak24 [26], Mc-
Master [82], and Urban100 [36]. We also include two real
noise types in this work: the Smartphone Image Denoising
Dataset (SIDD) [1] and Monte Carlo (MC) rendered image
noise. For evaluation, we follow [27,28] and use the metrics
PSNR, SSIM [51], and LPIPS [83] to evaluate the results.
Since PSNR and SSIM are questioned in assessing the per-
ceptual quality of images [27,28], we also use the LPIPS as
an additional metric.

4.1. Resutls

Ablation Study. Table 1 and Figure 6 show the effective-
ness of using different mask operations. As we can see,
without the input mask, the model will lose its generaliza-
tion ability, and cannot effectively remove the noise out-
side the training set. Without the attention mask, due to the
training-testing inconsistency, the quantitative performance
degrades significantly, and the output image will have the
wrong brightness. In addition, even without the attention
mask, the generalization ability of the model is not signif-
icantly affected, and most of the noise is still effectively
removed. The input mask is the crucial factor in improving
the model the generalization ability.

Table 3a shows the impact of the different input mask
ratios. We test fixed ratios and random ratios from a uni-
form distribution. From our experiments, fixed ratios are
less stable for training than randomly chosen from a range,
and the performance is also worse. The best quantitative
performance is achieved with random sampling ratios be-
tween 75% ∼ 85%. This is a trade-off between denoising
generalization ability and the preservation of image details.
As shown in Figure 7, smaller ratios are not enough for the
network to learn the distribution of images because more
noise patterns are preserved. The larger ratio improves the
model generalization, as the model focuses more on recon-
struction. But at the same time, some image details may
be lost. For attention mask ratio, we show the effects in
Table 2. The optimal ratios are around 75%.

The Generalization Performance. We evaluate our deep
denoising method on synthetic noise, where our training
noise follows a Gaussian distribution with a single noise
level, but we test on multiple types of non-Gaussian noise
to assess the model’s generalization performance. In Fig-
ure 11, we compare our method with other state-of-the-art
models based on their PSNR and SSIM scores. The re-
sults show that our model outperforms all the other mod-
els in terms of generalization performance. Particularly, as
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CBSD68: img 053

Spatially correlated Gaussian, σ = 50 DnCNN [80] RIDNet [2] RNAN [85]

Restormer [75] SwinIR [45] baseline Masked Training

CBSD68: img 0046

Speckle noise, σ2 = 0.013 DnCNN [80] RIDNet [2] RNAN [85]

Restormer [75] SwinIR [45] baseline Masked Training

CBSD68: img 0067

Salt-and-pepper noise, d = 0.02 DnCNN [80] RIDNet [2] RNAN [85]

Restormer [75] SwinIR [45] baseline Masked Training

Figure 8. Visual comparison on out-of-distribution noise. When all other methods fail completely, our method is still able to denoise
effectively. Please refer to the supplementary material to see more visual results.

Noisy Reference DnCNN

RNANRendered image (256 spp) SwinIR Ours

Figure 9. Visual results of denoising a Monte Carlo rendered image.

Noisy Reference DnCNN

RNAN SwinIR Ours

Figure 10. Results of ISP noise removal.

the noise level increases, our model exhibits a slower per-
formance degradation and thus demonstrates better gener-
alization. In contrast, other models suffer from significant
performance drops when dealing with more severe noise.
We also provide visual comparisons in Figure 8, where our
model achieves remarkable denoising results even though it
is trained only on Gaussian noise with a fixed standard devi-
ation. In contrast, existing models tend to overfit the train-
ing noise and fail when facing unseen noise. More quanti-
tative and qualitative results can be found in the supplemen-
tary material.

Evaluation on ISP noise. The removal of the ISP noise
is of great application value. Brooks et al. [5] present a sys-
tematic approach for generating realistic raw data with ISP
noise that can facilitate our research. We use the default
parameter settings of the method proposed in [5] to synthe-
size ISP noise on the Kodak24 [26] dataset for testing. The
results are shown in Figure 10 and Table 3c. Our method
achieves superior results compared to all other methods.
Notably, our method achieves a significant lead in LPIPS,
indicating that our results exhibit better perceptual quality.
Although DnCNN and our method obtain the same PSNR,
our method still outperforms DnCNN in terms of SSIM and
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Mix. noise on CBSD68 [55]
Ratio (%) PSNR SSIM

75 29.17 0.8132
85 29.44 0.8545
95 19.60 0.7273

70–80 29.86 0.8593
75–85 30.04 0.8756
75–90 29.87 0.8728
75–95 29.26 0.8607
80–90 29.74 0.8672

(a) Abl. of input mask ratios.

128 samples per pixel 64 samples per pixel
Method PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [80] 29.94 0.7883 0.2671 26.28 0.6779 0.4216
RIDNet [2] 29.96 0.7921 0.2548 26.27 0.6788 0.4122
RNAN [85] 29.86 0.7825 0.2702 26.26 0.6743 0.4290
SwinIR [45] 29.32 0.7627 0.2943 26.14 0.6651 0.4485
Restormer [75] 24.98 0.6598 0.4575 24.59 0.5880 0.5375
Dropout [40] 28.85 0.7753 0.2941 26.10 0.6696 0.4443
baseline 29.68 0.7738 0.2851 25.91 0.6535 0.4564

Ours 30.62 0.8500 0.2254 28.25 0.7694 0.3348

(b) Quantitative comparison on Monte Carlo rendered image denoising.

Synthetic ISP noise [5]
Method PSNR SSIM LPIPS

DnCNN [80] 29.44 0.7857 0.3083
RIDNet [2] 28.75 0.7446 0.3696
RNAN [85] 28.47 0.7243 0.3601
SwinIR [45] 28.39 0.7079 0.3346
Restormer [75] 19.31 0.4982 0.6556
Dropout [40] 28.39 0.7816 0.2621
baseline 28.89 0.7595 0.2917

Ours 29.44 0.7920 0.2368

(c) Comparison on synthetic ISP noise.

Table 3. We train all the models on Gaussian noise, σ = 15. All the testing noise is out of the training set, therefore the results can show
the models’ generalization performance on different unseen noise.

 DnCNN  RIDNet  RNAN  SwinIR  Restormer  Dropout  baseline  Ours
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Figure 11. Performance comparisons on four noise types with different levels on the Kodak24 dataset [26]. All models are trained only
on Gaussian noise. Our masked training approach demonstrates good generalization performance across different noise types. We involve
multiple types and levels of noise in testing, the results cannot be shown here. More results are shown in the supplementary material.

LPIPS. Furthermore, as evident from Figure 10, DnCNN’s
results still contain visible noise, while our method effec-
tively removes the noise.

Evaluation on Monte Carlo rendering noise. Monte
Carlo denoising is a vital component of the rendering pro-
cess since the widespread use in the industry of Monte Carlo
rendering algorithms [8, 17, 42]. We use the test dataset
proposed by [25] for Monte Carlo rendered image denois-
ing. The test images were rendered in 128 samples-per-
pixel (spp) and 64 spp. The lower the spp, the more severe
the noise of the image. In order to adapt the test set to our
model, we first convert the data set to sRGB color space by
tone mapping. Figure 9 and Table 3b show the denoising re-
sults. Our method outperforms all methods on both 128spp
and 64spp settings. In Figure 9, the existing methods fail
completely because of poor generalization. Our model is
still able to remove this noise, demonstrating the wide ap-
plicability of our method.

4.2. Generalization Analysis

Training curve. Figure 13 shows the training curves of
the model with and without the proposed masked training.
The models are trained using only Gaussian noise. The
baseline method has a significant overfitting problem. The
performance of our method gradually improves with train-

ing without overfitting.

CKA analysis. To investigate how masked training dif-
fers from normal training strategy, we utilize the centered
kernel alignment (CKA) [18, 61] to analyze the differences
between network representations obtained from those two
training methods. Due to the limited space, we describe the
detail of CKA in supplementary. In Figure 12, we present
our key findings. Specifically, Figure 12 (a) shows the
cross-model comparison between the baseline model and
our masked training model. We observe a significant dif-
ference between the two models in terms of their feature
correlations in the deeper layers. Specifically, the features
of the deeper layers of the baseline model exhibit low cor-
relations with all layers of our model. This finding suggests
that these two training methods exhibit inconsistent learn-
ing patterns for features, especially for the deeper layers.

To explore how the models perform on different noise
types, Figure 12 (b) shows the cross-noise comparison be-
tween in-distribution noise and out-of-distribution noise,
such as Gaussian and Poisson noise. For the baseline model,
we observe a low correlation between different noise types
in the deep layers, indicating that the network processes
these two types of noise in different ways for the deep lay-
ers. This trend holds for other types of noise as well. This
phenomenon may be due to the baseline approach causing
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b. cross-model comparison between different noisea. cross-model comparison on Gaussian 15

Figure 12. CKA similarity to analyze the representation similarity of network layers.
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Figure 13. The testing curves on different noise types and levels.
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Figure 14. Comparing generalization ability with the SRGA met-
ric. A lower SRGA value indicates better generalization ability.
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Figure 15. The distribution of baseline model features is biased
across different noise types. Our method produces similar feature
distributions across different noise.

the deep layers of the model to overfit to the patterns of the
training set, thereby limiting their generalization capabili-
ties to handle different noise types. In contrast, the high
correlation between adjacent layers in our masked training

model suggests that the model’s representation of two dif-
ferent noise types is similar. Our masked training forces the
network to learn the underlying distribution of the images
themselves, which makes the model more robust to differ-
ent noise types and enhances its generalization capability.

Quantification of generalization performance. Liu et
al. [49, 50] suggest that model generalization ability can be
measured by measuring the consistency of the model’s rep-
resentations across different types of noise. They also pro-
pose a generalization assessment index for low-level vision
networks called SRGA [50]. It is a non-parametric and non-
learning metric which exploits the statistical characteristics
of internal features of deep networks. The lower the value of
SRGA, the better the generalization ability. In our case, we
use Gaussian noise as the reference and other types of noise
for testing. Figure 14 shows the SRGA results. Inspired
by [50], we visualize the distributions of deep features on
different noise types, shown in Figure 15. We can see that
for the baseline model, the feature distributions under differ-
ent noise types deviate from each other significantly. For the
model w/ masked training, the deep feature distributions of
different noise types are close to each other. This confirms
the effectiveness of our method.

5. Conclusion and Limitations
This work presents a masked training method to improve

the generalization performance of deep learning-based im-
age denoising models. The limitation of our method is that
the mask operation inevitably loses information. How to
preserve more details needs to be explored in future work.
Our approach is a step towards developing more robust
models for real-world applications.
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