
NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds

Jun-Kun Chen1† Jipeng Lyu2† Yu-Xiong Wang1

1University of Illinois at Urbana-Champaign 2Peking University †Equal Contribution
{junkun3, yxw}@illinois.edu lvjipeng@pku.edu.cn

Figure 1. Our NeuralEditor offers native support for general and flexible shape editing of neural radiance fields via manipulating point
clouds. By generating a precise point cloud of the scene with a novel point cloud-guided NeRF model, our NeuralEditor produces high-
fidelity rendering results in both shape deformation and more challenging scene morphing tasks.

Abstract
This paper proposes NeuralEditor that enables neural

radiance fields (NeRFs) natively editable for general shape
editing tasks. Despite their impressive results on novel-view
synthesis, it remains a fundamental challenge for NeRFs to
edit the shape of the scene. Our key insight is to exploit the
explicit point cloud representation as the underlying struc-
ture to construct NeRFs, inspired by the intuitive interpreta-
tion of NeRF rendering as a process that projects or “plots”
the associated 3D point cloud to a 2D image plane. To
this end, NeuralEditor introduces a novel rendering scheme
based on deterministic integration within K-D tree-guided
density-adaptive voxels, which produces both high-quality
rendering results and precise point clouds through opti-
mization. NeuralEditor then performs shape editing via
mapping associated points between point clouds. Exten-
sive evaluation shows that NeuralEditor achieves state-of-
the-art performance in both shape deformation and scene
morphing tasks. Notably, NeuralEditor supports both zero-
shot inference and further fine-tuning over the edited scene.
Our code, benchmark, and demo video are available at im-
mortalco.github.io/NeuralEditor.

1. Introduction
Perhaps the most memorable shot of the film Transform-

ers, Optimus Prime is seamlessly transformed between a

humanoid and a Peterbilt truck – such free-form editing of
3D objects and scenes is a fundamental task in 3D com-
puter vision and computer graphics, directly impacting ap-
plications such as visual simulation, movie, and game in-
dustries. In these applications, often we are required to ma-
nipulate a scene or objects in the scene by editing or mod-
ifying its shape, color, light condition, etc., and generate
visually-faithful rendering results on the edited scene effi-
ciently. Among the various editing operations, shape edit-
ing has received continued attention but remains challeng-
ing, where the scene is deformed in a human-guided way,
while all of its visual attributes (e.g., shape, color, bright-
ness, and light condition) are supposed to be natural and
consistent with the ambient environment.

State-of-the-art rendering models are based on implicit
neural representations, as exemplified by neural radiance
field (NeRF) [27] and its variants [3,33,37,39,48]. Despite
their impressive novel-view synthesis results, most of the
NeRF models substantially lack the ability for users to ad-
just, edit, or modify the shape of scene objects. On the other
hand, shape editing operations can be natively applied to ex-
plicit 3D representations such as point clouds and meshes.

Inspired by this, we propose NeuralEditor – a general
and flexible approach to editing neural radiance fields via
manipulating point clouds (Fig. 1). Our key insight is to
benefit from the best of both worlds: the superiority in
rendering performance from implicit neural representation

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12439

combined with the ease of editing from explicit point cloud
representation. NeuralEditor enables us to perform a wide
spectrum of shape editing operations in a consistent way.

Such introduction of point clouds into NeRF for general
shape editing is rooted in our interpretation of NeRF ren-
dering as a process that projects or “plots” the associated
3D point cloud to a 2D image plane. Conceptually, with a
dense enough point cloud where each point has an opacity
and its color is defined as a function of viewing direction, di-
rectly plotting the point cloud would achieve similar visual
effects (i.e., transparency and view-dependent colors) that
are rendered by NeRF. This intrinsic integration between
NeRF and point clouds underscores the advantage of our
NeuralEditor over existing mesh-based NeRF editing meth-
ods such as NeRF-Editing [51], Deforming-NeRF [44], and
CageNeRF [30], where the process of constructing and op-
timizing the mesh is separated from the NeRF modeling,
making them time-consuming. More importantly, with the
point cloud constructed for a scene, the shape editing can be
natively defined as and easily solved by just moving each
point into the new, edited position and re-plotting the point
cloud. Therefore, our approach supports more general scene
editing operations which are difficult to achieve via mesh-
guided space deformation.

The key component in our NeuralEditor lies in a point
cloud-guided NeRF model that natively supports general
shape editing operations. While the recent method Point-
NeRF [43] has demonstrated improved novel-view synthe-
sis capability based on point clouds, it is not supportive to
shape editing. Our idea then is to exploit the underlying
point cloud in ways of not only optimizing its structure and
features (e.g., adaptive voxels) for rendering, but also ex-
tracting additional useful attributes (e.g., normal vectors) to
guide the editing process. To this end, we introduce K-D
trees [4] to construct density-adaptive voxels for efficient
and stable rendering, together with a novel deterministic in-
tegration strategy. Moreover, we model the color with the
Phong reflection [31] to decompose the specular color and
better represent the scene geometry.

With a much more precise point cloud attributed to these
improvements, our NeuralEditor achieves high-fidelity ren-
dering results on deformed scenes compared with prior
work as shown in Fig. 1, even in a zero-shot inference man-
ner without additional training. Through fast fine-tuning,
the visual quality of the deformed scene is further enhanced,
almost perfectly consistent with the surrounding light con-
dition. In addition, under the guidance of a point cloud dif-
fusion model [24], NeuralEditor can be naturally extended
for smooth scene morphing across multiple scenes, which
is difficult for existing NeRF editing work.

Our contributions are four-fold. (1) We introduce
NeuralEditor, a flexible and versatile approach that makes
neural radiance fields editable through manipulating point

clouds. (2) We propose a point cloud-guided NeRF model
based on K-D trees and deterministic integration, which
produces precise point clouds and supports general scene
editing. (3) Due to the lack of publicly available bench-
marks for shape editing, we construct and release a repro-
ducible benchmark that promotes future research on shape
editing. (4) We investigate a wide range of shape editing
tasks, covering both shape deformation (as studied in exist-
ing NeRF editing work) and challenging scene morphing (a
novel task addressed here). NeuralEditor achieves state-of-
the-art performance on all shape editing tasks in a unified
framework, without extra information or supervision.

2. Related Work
Neural Scene Representation. Traditional methods

model scenes with explicit [2, 11, 15, 20, 34, 38] or im-
plicit [6, 19, 26, 28, 40] 3D geometric or shape representa-
tions. Initiated by NeRF [27], leveraging implicit neural
networks to represent scenes and perform novel-view syn-
thesis has become a fast-developing field in 3D vision [8,9].
While most of the follow-up work focuses on improving
aspects such as the rendering realism [3, 10, 21, 37], effi-
ciency [33, 41, 48], and cross-scene generalization [5, 39,
43, 49], the scene editing capability is substantially miss-
ing in the NeRF family which we address in this paper. In
addition, we exploit K-D tree-guided point clouds as the un-
derlying structure, different from other NeRF variants based
on octrees [21, 33, 48] or plain voxels [41].

Point-Based NeRFs. Recently, using point clouds to
build a NeRF model has shown better encoding of scene
shape and improved rendering performance, as represented
by PointNeRF [43]. PointNeRF proposes a point initializa-
tion network to produce the initial point cloud together with
the point features, which is further optimized by a pruning
and growing strategy. While both PointNeRF and our Neu-
ralEditor employ point clouds as the underlying structure,
NeuralEditor better exploits useful information within the
point clouds: PointNeRF only directly uses the locations of
points; by contrast, NeuralEditor considers the point cloud
more as a geometrical shape and extracts relevant informa-
tion like normal vectors, which plays an important role in
rendering and shape editing. Importantly, our approach is
designed to support scene editing, in contrast to PointNeRF.

Scene Editing via NeRFs. Different types of scene
editing have been studied under NeRFs. EditNeRF [22],
ObjectNeRF [45], and DistillNeRF [18] perform sim-
ple shape and color editing for objects specified with
human-input scribble, pixel, segment, language, etc. Neu-
Physics [32] edits a dynamic scene via physics parameters.
CCNeRF [35] proposes an explicit NeRF representation
with tensor rank decomposition to support scene composi-
tion. INSP-Net [42] considers filter editing like denoising.
Such work cannot address 3D shape editing and only sup-

12440

ports simple editing operations, like object selection, simi-
larity transformation, or limited shape deformation.

3D Shape Editing. Traditional representation meth-
ods support keypoint-based shape editing [13, 14, 16, 25,
36, 47, 52] with meshes [29, 50], which cannot be directly
applied to implicit representations used by NeRF. Existing
NeRF editing work primarily studies a particular shape edit-
ing task, mesh deformation, and addresses it in a common
paradigm [30, 44, 51]: A mesh of the scene is first con-
structed by either exporting it from a trained NeRF with
the Marching Cubes algorithm [23], or optimizing close-
to-surface cages along with training. After the user de-
forms the mesh, the deformed scene is rendered by deform-
ing the space and bending the viewing rays in the original
scene with the trained NeRF. Doing so requires extra efforts
to convert implicit scene representation to explicit mesh,
which might not be precise enough, and only supports con-
tinuous shape editing that can be converted to space defor-
mation. On the contrary, our NeuralEditor directly main-
tains and utilizes alternative explicit scene representation –
the point cloud which is intrinsically integrated with NeRF,
making NeuralEditor require no extra efforts and support
more general shape editing tasks like scene morphing. Neu-
ralEditor supports both zero-shot inference and further fine-
tuning over the edited scene, while prior work cannot.

3. NeuralEditor: Point Cloud-Guided NeRF
We propose a novel point cloud-guided NeRF model,

NeuralEditor – it not only achieves realistic rendering re-
sults in the novel-view synthesis task, but also produces a
point cloud that precisely describes the shape of the scene,
thus facilitating general shape editing tasks. As illustrated
in Fig. 2, we leverage the K-D trees [4] to construct density-
adaptive voxels (which also naturally enable us to skip
empty spaces), and introduce deterministic spline integra-
tion for rendering. We use the Phong reflection to model
the color along with the normal vectors obtained from the
underlying point cloud. With our enhanced point cloud op-
timization, NeuralEditor obtains much more precise under-
lying point clouds, compared with noisy and imprecise out-
puts of state-of-the-art PointNeRF [43] (as shown in Sec. 5).

3.1. K-D Tree-Guided Voxels

To render with points, we construct multi-scale density-
adaptive voxels based on K-D trees [4], namely, K-D vox-
els. K-D trees are a data structure constructed on K-
dimensional points, where K = 3 for 3D points. As a spe-
cial decision tree, K-D tree’s each node divides the point set
into two equal-sized parts with axis-parallel criterion.

For each K-D tree’s node, we compute its bounding box
by taking the minimum and maximum x, y, z coordinates in
its subtree and with proper padding margins. As we divide
the points in a top-down manner in one of the x, y, z direc-

Figure 2. Our K-D Voxels. Column 1: original point clouds
constructed from two scenes, colored with normal vector direc-
tions. Column 2: upper-level voxels which coarsely represent
the shape. Column 3: lower-level voxels which tightly cover the
shape. Right: Visualization of K-D voxels on a 2D point cloud.
Each color represents boxes of nodes on each level of the K-D tree.
Lower-level boxes containing fewer points cover the shape more
tightly, and vice versa for higher-level boxes.

tions, in each layer of the K-D tree, different nodes’ bound-
ing boxes are mutually exclusive. Therefore, the bounding
boxes can be regarded as voxels. As boxes in the upper lay-
ers contain more points (larger voxels), while those in the
lower layers contain fewer points (smaller voxels), we na-
tively obtain a multi-scale voxel construction from one K-D
tree. As shown in Fig. 2, voxels from the large to small
scales represent the shape of the scene from coarse to fine.

3.2. Rendering Over K-D Voxels

We now introduce a rendering scheme that exploits K-D
voxels to perform all the sub-procedures associated with
rendering in a unified way. This scheme enables us to ren-
der more naturally, efficiently, and even deterministically,
meanwhile it also simplifies some widely-adopted design
choices in conventional NeRF rendering.

Skipping Empty Spaces. In NeRF rendering, we are
supposed to focus only on the surface of scene objects. As
shown in Fig. 2, all our K-D voxels are produced to stick to
the surface of objects, which the point cloud is constructed
to describe. Such a property allows us to avoid explicitly
“skipping” empty spaces, which often requires extra consid-
eration in most NeRF models – only considering the space
inside a voxel automatically focuses on the surface; as the
depth of the voxel’s node goes deeper, it becomes closer
to the surface. Moreover, during the construction of the
K-D tree, the points at each node are divided within its sub-
nodes, and the node’s voxel fully covers all its sub-nodes.
This further provides us with a native top-down recursive
procedure to locate the voxels intersected with the query-
ing ray: We start from the root node, and recurse on the
sub-nodes until we (1) reach a pre-set node depth (or equiv-
alently, a pre-set voxel size) and then query within the asso-
ciated voxel, or (2) stop recursion on non-intersected nodes.

Density-Adaptive Rendering. An important design in
NeRFs is the coarse-to-fine strategy for density-adaptive
rendering, so that more points are sampled in high-volume
density areas. Our K-D voxels natively support such a de-
sign without additional bells and whistles. This is because

12441

Figure 3. Our NeuralEditor architecture. We propose deterministic spline integration for KNN-based point features over each K-D
tree-guided density-adaptive voxel, and model the color via Phong reflection with normal vectors estimated from the point cloud’s shape.

voxels in the same K-D tree layer contain the same number
of points. As the point density can be regarded as an approx-
imation of volume density, all such voxels have the same
density. Therefore, we directly use K-D voxels to guide
the density-adaptive rendering. Specifically, we conduct the
rendering process at the voxels of some bottom layers in the
K-D tree. For each querying ray, we use the aforementioned
recursive procedure to locate the minimal intersected vox-
els that are deep enough. Here “minimal” means that the
ray intersects with the node’s voxel, but does not intersect
with any sub-node’s voxel. These intersected voxels divide
the querying ray into several segments (Fig. 3). The seg-
ments covered by a voxel are close to the surface and used
for rendering, while those not covered are in empty spaces.

Deterministic Spline Integration. DIVeR [41] shows
that deterministic integration outperforms stochastic inte-
gration in NeRF rendering. So we perform a determinis-
tic integration to obtain the segment’s feature within each
voxel. Since we do not necessarily have points at the voxel’s
vertices, the trilinear interpolation used in DIVeR is not fea-
sible here. Instead, we use spline integration. For the i-th
intersected voxel in the ray passing order, we uniformly se-
lect points in this segment, and integrate their features to ob-
tain the average feature fi of the segment of the i-th voxel:

fi =
1

ri − li

∫ ri

li

feature(o+ t · d)dt, (1)

where [li, ri] is the intersection interval, and o and d are
the source and direction of the querying ray, respectively.
This average feature fi can be interpreted as the feature of a
representative point pi located somewhere in the segment.

KNN-Based Feature Aggregation. For each uniformly
selected point q in the segment during spline integration, we
obtain its feature via weighted interpolation from the fea-
tures of its K nearest neighbors (KNN) in the point cloud:

feature(q) =
∑

pj∈KNN(q;K)

kjej ,

{kj} = SoftMax
pj∈KNN(q;K)

(
log γj − log ∥q − pj∥22

)
,

(2)

where for each point pj in the point cloud, we parameterize
its confidence γj and point feature ej as in PointNeRF.

Figure 4. In the two scenes of NeRF Synthetic [27], NeuralEditor
optimizes the rough initial point cloud to a precise point cloud.
The points are colored with their normal vectors.

Phong Reflection-Based Color Modeling with Point
Cloud Normal Vectors. To obtain the volume density σi

and color ci of the representative point pi in the i-th voxel,
we use the Phong reflection model [31]. As we have the
underlying point cloud, we use Open3D [53] to estimate
the normal vector for each point, and integrate these vectors
over the interval to get an average normal vector ni. Such
information better characterizes the shape of point clouds
(scenes), which plays an important role in Phong-based ren-
dering and also implicitly facilitates optimizing the point
clouds (Sec. 3.3). Consistent with RefNeRF [37], we use
multiple multilayer perceptrons (MLPs) to model other at-
tributes, including volume density, tint, roughness, and dif-
fuse and specular color, and use the Phong formula to calcu-
late the final ci with these attributes. Finally, we aggregate
ci of all segments on the ray to obtain the final color:

cpixel =
∑
i≥1

τi · (1− exp(−(ri − li)σi) · ci,

τi = exp

(
−

i−1∑
i′=1

(ri′ − li′)σi′

)
.

(3)

3.3. Point Cloud Optimization

Point Cloud Initialization. To start training, we need a
coarse initial point cloud. Consistent with PointNeRF, we

12442

use a point generation network, which consists of a multi-
view stereo (MVS) model [12] based on a 3D convolutional
neural network (CNN), to generate the points’ coordinates
and confidence values, and another 2D CNN [46] to gener-
ate their initial features. This network was pre-trained on
the DTU training dataset [1], and can generalize to other
datasets and scenes. As shown in Fig. 4, the initial point
cloud generated by such a network is coarse and noisy.

Explicit Optimization via Pruning and Growing. We
perform a similar pruning and growing procedure as in
PointNeRF, to prune outliers with low confidence γj and fill
holes in the point clouds. We make several important modi-
fications over PointNeRF, and integrate this procedure with
our deterministic integration (details in the supplementary).

Implicit Optimization with Normal Vectors. In addi-
tion to the explicit optimization, the point cloud is also op-
timized implicitly during training through the adjustment of
point confidence γj . When computing the average normal
vector for rendering, we aggregate normal vectors of nearby
points weighted with their distance and confidence, where
the confidence of noisy or inaccurate points with potentially
abnormal normal vectors is adjusted accordingly. More-
over, we apply the normal vector regularization losses from
RefNeRF [37] to supervise the points’ confidence w.r.t.
their normal vectors. These strategies collectively provide
implicit but more tailored ways to optimize the point clouds.
With both explicit and implicit optimization, NeuralEditor
obtains very precise point clouds (Fig. 4).

4. Shape Editing with NeuralEditor
Formulation of General Shape Editing Tasks. We de-

fine the shape editing tasks based on indexed point clouds.
To this end, we first re-define an indexed point cloud P as
a mapping from a point index j to the corresponding point
pj ,

P : j → pj , where pj ∈ R3, j = 1, · · · , |P |. (4)

A shape editing task is defined as another indexed point
cloud Q(P),

Q(P) : j → qj , where qj ∈ R3∪{∅}, j = 1, · · · , |P |, (5)

describing a shape editing task whether the j-th point moves
from pj to qj or is deleted in the deformation if qj = ∅.
With this definition, Q(P) can be an arbitrary point cloud
with points properly matched to points in P by same in-
dices, regardless of connectivity or continuity.

Our formulation represents a broad range of shape edit-
ing tasks. The mesh editing tasks in NeRF-Editing [51],
Deforming-NeRF [44], and CageNeRF [30] can be more
simply and clearly defined here. For example, in NeRF-
Editing, a mesh is exported from a general NeRF model, de-
formed manually, and converted to an “offset” or a contin-
uous space deformation. We can depict such a task without

Figure 5. Infinitesimal surface transformation (IST). (a) As
the view-dependent colors are modeled as absolute viewing direc-
tions, they (solid arrows at the right) are different from the correct
colors (dashed arrows at the right) after deformation. We solve
this by (b) constructing a local coordinate system near the j-th
point and (c) modeling IST from the edited scene to the original
scene with the coordinate systems, so as to (d) redirect the view-
ing direction to the original scene when rendering the edited scene.

“offsets,” by recording only the final location for each point
without extra information. Notably, our formulation even
models those whose deformation is not continuous in the
space, e.g., cutting a scene into two parts, and thus cannot
be covered and solved by NeRF-Editing, Deforming-NeRF,
or CageNeRF, as shown in the supplementary.

Editing Shape by Moving Points. We design our shape
editing scheme with NeuralEditor. This is achieved by in-
terpreting NeRF rendering as “plotting” the sampled points
over the viewing ray. If we render the scene by naively
plotting the point cloud P , the shape editing task can be ad-
dressed by replacing each point’s coordinate from pj to qj .
For NeuralEditor, we similarly replace the underlying point
cloud from P to Q(P), while maintaining the confidence
values and features. This method is general and can also be
applied to any point-based NeRF model like PointNeRF.

Correcting View-Dependence with Infinitesimal Sur-
face Transformation (IST). The editing method above can
already obtain reasonable results. However, as illustrated in
Fig. 5, the modeled view-dependent colors record the abso-
lute viewing direction, making them incorrect after defor-
mations that change their orientation.

To solve this issue, we model the infinitesimal surface
transformation (IST) for each point to redirect the viewing
ray in the correct direction. We construct a local coordinate
system for each point to represent the orientation of the in-
finitesimal surface, using its normal vector and two point
indices that are neighbors of the j-th point in both P and
Q(P). By comparing these two coordinate systems, we can
obtain an affine transformation ISTj for the j-th point to
redirect the querying view direction (Fig. 5). This procedure
is different from modeling space deformation [30, 44, 51],
as we only need to model a simple affine transformation at
each point, while those methods model a complicated, con-
tinuous, and non-linear deformation in the whole space.

Our proposed method requires a precise point cloud with
normal vector-based color modeling. It is thus incompatible
with PointNeRF, as PointNeRF is unable to obtain a desired
point cloud to estimate the surface normal vectors.

12443

Fine-Tuning on Deformed Scene. Using the shape edit-
ing scheme introduced above, we can apply shape deforma-
tion on the scene modeled by our NeuralEditor without any
modification to the model architecture or rendering scheme,
which means that the resulting model is still a valid, fully
functional NeuralEditor. Therefore, we can further fine-
tune NeuralEditor on the deformed scene if the ground truth
is available. We can even fine-tune the infinitesimal surface
transformation with other parameters, to rapidly adjust to-
ward better ambient consistency. This makes NeuralEditor
desirable in practice, since in most applications, the final
goal is not a zero-shot inference, but to fit the deformed
scene well with reduced cost. By supporting fine-tuning,
our NeuralEditor aligns well with and achieves this goal.

As another point-based NeRF model, PointNeRF sup-
ports fine-tuning but cannot leverage infinitesimal surface
transformation fine-tuning to further optimize the perfor-
mance. On the other hand, mesh-based NeRF editing mod-
els [30, 44, 51] do not support fine-tuning well: With de-
forming the space instead of the scene, these models’ ren-
dering scheme has highly changed. In their rendering pro-
cess, a ray may go through a long, irregular way to reach
the scene’s surface. As the modeled space deformation
might not be precise, it could be hard to tune the irregular
space well, and even hurt other parts of the trained NeRF
model. Such issues occur especially for some spaces with
non-uniform density, since most of their model components
(e.g., positional encodings, voxels) are not designed to deal
with non-uniform spaces. Among all these methods, only
our NeuralEditor has complete support for fine-tuning.

5. Experiment
Point Cloud Generation. The underlying point cloud

is fundamental to all editing tasks. Fig. 6 first provides
a qualitative comparison of point clouds generated by our
NeuralEditor and PointNeRF [43] on NeRF Synthetic [27].
Ours are much more precise with sharper details, e.g., the
mayonnaise on the Hotdog’s sausage, the uneven texture on
the Chair’s cushion, the edge of the Mic’s stand, and the
Lego brick’s studs. By contrast, PointNeRF’s point clouds
are blurred and noisy, lose most of the details, and even
contain obvious shape deflects on the Hotdog’s plate and
Chair’s backrest. This shows that while the point cloud gen-
eration task is challenging, NeuralEditor generates a super-
precise point cloud which is crucial for shape editing tasks.

Experimental Settings. We mainly conduct experi-
ments based on scenes from the NeRF Synthetic (NS)
dataset. NS is a widely-used NeRF benchmark constructed
from Blender [7] scenes. Due to the lack of publicly
available benchmarks for shape editing, we use Blender to
construct a reproducible benchmark, including the ground
truth of edited scenes for evaluation and fine-tuning. Our
shape editing tasks cover all eight scenes in NS, while prior

Figure 6. NeuralEditor generates much more precise point clouds
than PointNeRF [43] in the four scenes of NeRF Synthetic [27].
The points are colored with their normal vectors.

Figure 7. With too coarse cages, DeformingNeRF [44] is unable
to perform the deformation faithfully, leading to poor results.

work [30,44,51] only picks a few scenes. The provided im-
ages for NS scenes are with opacity, and there is no require-
ment for the background color. We evaluate and visualize
the results on a black background, for better contrast and
clearer detail visualization. In the supplementary, we show
the results on a white background with same conclusions.

Shape Editing Tasks. We evaluate our model on two
types of shape editing tasks, as shown in Fig. 1:

(I) Shape (Mesh) Deformation Task. We consider the
shape deformation task as in [30, 44, 51]: deform the shape
of a scene in a human-guided way. To construct our de-
formation tasks from NS and obtain the ground truth, we
apply the shape deformation simultaneously to the scene
and our point cloud within the provided Blender file. We
perform both zero-shot inference and fine-tuning, and com-
pare our rendering results with the ground truth. As domen-
strated in Figs. 7 and 8, our deformation tasks are much
more precise and aggressive, compared with those in previ-
ous work [30,44,51]. In the supplementary, we also design a
non-continuous deformation task and deformation tasks on
the real-world dataset Tanks and Temples [17] (with zero-
shot inference only, as there is no ground truth available).

(II) Scene Morphing Task. We address a more challeng-
ing shape editing task that has not been investigated in prior
NeRF editing work: the scene morphing task. Given two
scenes A and B, we should construct a path to gradually

12444

Model Zero-Shot Inference, PSNR ↑ Fine-Tune for 1 Epoch, PSNR ↑
Chair Hotdog Lego Drums Ficus Materials Mic Ship Chair Hotdog Lego Drums Ficus Materials Mic Ship

DeformingNeRF [44] 18.84 - 13.10 - - - - - - - - - - - - -
PointNeRF [43] 22.21 25.95 24.56 21.00 24.24 21.21 26.77 21.19 30.11 36.08 31.45 27.16 31.48 27.55 34.34 28.90
Naive Plotting 24.91 27.01 25.64 21.29 26.22 21.65 27.63 22.29 32.01 36.38 31.72 28.09 33.21 30.31 35.15 30.01
NeuralEditor w/o IST 24.92 27.02 25.65 21.29 26.24 21.64 27.64 22.28 32.24 36.69 32.79 28.30 33.34 30.40 35.28 30.08
NeuralEditor (Ours) 25.85 27.49 27.46 21.84 27.19 23.18 27.75 24.16 32.53 37.22 32.95 28.35 33.53 30.82 35.46 30.44

Table 1. NeuralEditor significantly and consistently outperforms PointNeRF and Naive Plotting on all deformed scenes of NeRF Synthetic
in peak signal-to-noise ratio (PSNR), in both zero-shot inference and fine-tuning settings. Our infinitesimal surface transformation (IST)
effectively improves the results by correcting the view-dependent colors. With the precise point cloud generated by NeuralEditor, even
Naive Plotting consistently outperforms PointNeRF. Comparison results under other metrics are in the supplementary.

Figure 8. NeuralEditor produces superior rendering results to PointNeRF, with significantly fewer artifacts in zero-shot inference. Fine-
tuning further improves the consistency of rendering with the ambient environment. We use a black background for better visualization.

change one scene to the other, and the intermediate scenes
should have reasonable appearances. We are required to
render all intermediate scenes. For this task, we use the
point cloud diffusion model [24] to generate intermediate
point clouds with latent space interpolation between A and
B as in [24], and we introduce a K-D tree-based [4] match-
ing algorithm to match the adjacent points to fix the indices
of the intermediate scenes. To render an intermediate scene,
we apply the shape transformation to the NeuralEditor mod-
els trained for scenes A and B, and then interpolate the
rendering features to obtain the features of the intermedi-
ate scene for rendering.

NeuralEditor Variants. (1) Full NeuralEditor: Our
complete model with all components. (2) NeuralEdi-
tor without infinitesimal surface transformation (IST): We
remove the maintenance and optimization of infinitesimal
surface transformation in scene editing. This key variant of
NeuralEditor enables us to evaluate the importance of IST
as well as other components of our model. The full ablation
study of NeuralEditor is in the supplementary.

Baselines. We compare NeuralEditor against different
types of baselines as follows. (1) Naive Plotting: We use
the point cloud generated by NeuralEditor, computing each
point’s opacity and view-dependent colors with their point
features. We render the scene by directly plotting/projecting
the point cloud to the camera plane. (2) PointNeRF [43]:
For the shape deformation task, we apply the same defor-
mation to the point clouds generated by PointNeRF. For the
scene morphing task, we apply the matching algorithm to

the point clouds generated by PointNeRF and the same in-
termediate point clouds generated by the point cloud diffu-
sion model [24] for fairness. (3) DeformingNeRF [44]: De-
formingNeRF is not compatible with the scene morphing
task. For the shape deformation task, we perform the same
deformation on vertices of given cages. Note that Deform-
ingNeRF only released trained models for Lego and Chair,
so we can only evaluate it on these two scenes. While other
models [30,51] support NeRF-based shape deformation via
cages or exported meshes, we were unable to use them as
baselines – they did not provide executable code nor their
deformed scenes for us to evaluate on their tasks.

Shape (Mesh) Deformation Results. The qualitative
comparison is shown in Fig. 8. Both PointNeRF and Naive
Plotting have many artifacts, like blur, wrong color, black
or white shadows, noise, etc., whereas our powerful Neu-
ralEditor produces clean and realistic rendering results. Af-
ter fine-tuning, NeuralEditor shows a significant improve-
ment with better rendering results than PointNeRF, indicat-
ing that NeuralEditor is able to achieve higher consistency
with the surrounding ambient environment. Notably, in the
Materials scene (the 6th scene from left), only our Neu-
ralEditor generates reasonable reflection, while both base-
lines show blurry and visually messy results. Also in the
Drums scene, the bottom face of the gong is not visible in
any of the training views in the original scene, so all mod-
els render poor results in zero-shot inference. However, af-
ter only fast fine-tuning, NeuralEditor is able to precisely
model the previously unknown surface and generate a sub-

12445

Figure 9. Our NeuralEditor produces smooth morphing results between Chair, Hotdog, Lego, and Mic in the NeRF Synthetic dataset, while
PointNeRF produces results with blurry textures, black shadows, and gloomy, non-smooth colors. The rendering results in the looped
morphing process are arranged in the shape of the numerical digit “3,” indicated by the dividing lines and arrows.

stantially better result than PointNeRF, highlighting Neu-
ralEditor’s strength in fast-fitting. All these results demon-
strate that NeuralEditor can handle various visual effects
and make them consistent in the deformed scene. We pro-
vide the figure with higher resolution in the supplementary.

The quantitative comparison is summarized in Table 1.
We observe that: (1) Our NeuralEditor consistently outper-
forms all the baselines and variants for both zero-shot in-
ference and fine-tuning settings. (2) With the precise point
cloud generated by NeuralEditor, the Naive Plotting base-
line even consistently outperforms PointNeRF. (3) Our ‘w/o
IST’ variant has a comparable performance to Naive Plot-
ting with the same point cloud and features in the zero-shot
inference setting, but after fine-tuning its performance is
significantly higher than Naive Plotting, validating the ca-
pability of NeuralEditor in NeRF modeling.

Notably, DeformingNeRF [44] performs poorly in our
benchmark with significantly lower metric values. As
shown in Fig. 7, the cages provided by DeformingNeRF are
too coarse, and cannot even cover the whole scene. There-
fore, DeformingNeRF cannot faithfully perform the precise
deformation in our benchmark, leading to poor rendering
results. On the contrary, both PointNeRF and our NeuralEd-
itor at least faithfully perform the deformation, showing that
point cloud is necessary for precise shape editing.

Scene Morphing Results. The morphing results be-
tween 4 NeRF Synthetic scenes are shown in Fig. 9. The

morphing process starts from Chair, morphs to Hotdog,
Lego, Mic, and at last turns back to Chair. NeuralEditor pro-
duces smooth rendering results on the point cloud diffusion-
guided [24] intermediate scenes, mixing the textures of the
two scenes in a reasonable way. In comparison, the render-
ing results produced by PointNeRF are unsatisfactory, with
blurry textures, black shadows, and gloomy, non-smooth
colors. These results show that our NeuralEditor can ren-
der challenging intermediate morphing scenes and achieve
decent results with only the input of moved points.

6. Conclusion
This paper proposes NeuralEditor, a point cloud-guided

NeRF model that supports general shape editing tasks by
manipulating the underlying point clouds. Empirical evalu-
ation shows NeuralEditor to produce rendering results of
much higher quality than baselines in a zero-shot infer-
ence manner, further significantly improving after fast fine-
tuning. NeuralEditor even supports smooth scene morphing
between multiple scenes, which is difficult for prior work.
We hope that our work can inspire more research on point
cloud-guided NeRFs and 3D shape and scene editing tasks.
Acknowledgement. This work was supported in part by NSF Grant
2106825, NIFA Award 2020-67021-32799, the Jump ARCHES endow-
ment, the NCSA Fellows program, the IBM-Illinois Discovery Acceler-
ator Institute, the Illinois-Insper Partnership, and the Amazon Research
Award. This work used NVIDIA GPUs at NCSA Delta through alloca-
tion CIS220014 from the ACCESS program. We thank the authors of
NeRF [27] for their help in processing Blender files of the NS dataset.

12446

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. International Journal of Computer
Vision, 120(2):153–168, 2016. 5

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas J. Guibas. Learning representations and generative
models for 3D point clouds. In ICML, 2018. 2

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Pe-
ter Hedman, Ricardo Martin-Brualla, and Pratul P. Srini-
vasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. In ICCV, 2021. 1, 2

[4] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517, 1975. 2, 3, 7

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF: Fast
generalizable radiance field reconstruction from multi-view
stereo. In ICCV, 2021. 2

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[7] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 6

[8] Frank Dellaert and Lin Yen-Chen. Neural volume rendering:
NeRF and beyond. arXiv:2101.05204, 2021. 2

[9] Kyle Gao, Yina Gao, Hongjie He, Denning Lu, Linlin Xu,
and Jonathan Li. NeRF: Neural radiance field in 3D vision,
a comprehensive review. arXiv:2101.05204, 2021. 2

[10] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. NeRFReN: Neural radiance fields with reflec-
tions. In CVPR, 2022. 2

[11] Peter Hedman, Tobias Ritschel, George Drettakis, and
Gabriel Brostow. Scalable inside-out image-based render-
ing. ACM Trans. Graph., 35(6):231:1–231:11, 2016. 2

[12] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view
stereopsis. In CVPR, 2018. 5

[13] Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović,
and Olga Sorkine. Fast automatic skinning transformations.
ACM Trans. Graph., 31(4), 2012. 3

[14] Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu,
Noah Snavely, and Angjoo Kanazawa. Keypointdeformer:
Unsupervised 3D keypoint discovery for shape control. In
CVPR, 2021. 3

[15] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu
Fang. Surfacenet: An end-to-end 3D neural network for mul-
tiview stereopsis. In ICCV, 2017. 2

[16] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coor-
dinates for closed triangular meshes. ACM Trans. Graph.,
24(3):561–566, 2005. 3

[17] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and Temples: Benchmarking large-scale
scene reconstruction. ACM Trans. Graph., 36(4), 2017. 6

[18] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing NeRF for editing via feature field dis-
tillation. In NeurIPS, 2022. 2

[19] Marc Levoy and Pat Hanrahan. Light field rendering. In
SIGGRAPH, 1996. 2

[20] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 38(10):2024–2039,
2015. 2

[21] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 2

[22] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Junyan Zhu, and Bryan C. Russell. Editing condi-
tional radiance fields. In ICCV, 2021. 2

[23] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3D surface construction algorithm. In SIG-
GRAPH, 1987. 3

[24] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3D point cloud generation. In CVPR, 2021. 2, 7, 8

[25] Bruce Merry, Patrick Marais, and James Gain. Animation
space: A truly linear framework for character animation.
ACM Trans. Graph., 25(4):1400–1423, 2006. 3

[26] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019. 2

[27] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 4, 6, 8

[28] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision. In
CVPR, 2020. 2

[29] Jesús Nieto and Toni Susin. Cage based deformations: A
survey. Lecture Notes in Computational Vision and Biome-
chanics, 7:75–99, 2013. 3

[30] Yicong Peng, Yichao Yan, Shengqi Liu, Yuhao Cheng,
Shanyan Guan, Bowen Pan, Guangtao Zhai, and Xiaokang
Yang. CageNeRF: Cage-based neural radiance field for gen-
eralized 3D deformation and animation. In NeurIPS, 2022.
2, 3, 5, 6, 7

[31] Bui Tuong Phong. Illumination for computer generated pic-
tures. Commun. ACM, 18(6):311–317, 1975. 2, 4

[32] Yi-Ling Qiao, Alexander Gao, and Ming C. Lin. Neu-
Physics: Editable neural geometry and physics from monoc-
ular videos. In NeurIPS, 2022. 2

[33] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 1,
2

[34] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
tourism: Exploring photo collections in 3D. ACM Trans.
Graph., 25(3):835–846, 2006. 2

[35] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang
Zeng. Compressible-composable NeRF via rank-residual de-
composition. In NeurIPS, 2022. 2

12447

[36] Jean-Marc Thiery, Julien Tierny, and Tamy Boubekeur. Jaco-
bians and hessians of mean value coordinates for closed tri-
angular meshes. The Visual Computer, 30(9):981–995, 2014.
3

[37] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. In CVPR, 2022. 1, 2, 4, 5

[38] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, 2018. 2

[39] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning multi-view image-based rendering. In CVPR, 2021.
1, 2

[40] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. NeX: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
2

[41] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David Forsyth. DIVeR: Real-time and accurate neural
radiance fields with deterministic integration for volume ren-
dering. In CVPR, 2022. 2, 4

[42] Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and
Zhangyang Wang. Signal processing for implicit neural rep-
resentations. In NeurIPS, 2022. 2

[43] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-NeRF:
Point-based neural radiance fields. In CVPR, 2021. 2, 3, 6, 7

[44] Tianhan Xu and Tatsuya Harada. Deforming radiance fields
with cages. In ECCV, 2022. 2, 3, 5, 6, 7, 8

[45] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In ICCV, 2021. 2

[46] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long
Quan. MVSNet: Depth inference for unstructured multi-
view stereo. In ECCV, 2018. 5

[47] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3D deformations. In CVPR, 2020. 3

[48] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2

[49] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[50] Yu-Jie Yuan, Yu-Kun Lai, Tong Wu, Lin Gao, and Ligang
Liu. A revisit of shape editing techniques: From the geo-
metric to the neural viewpoint. Journal of Computer Science
and Technology, 36(3):520–554, 2021. 3

[51] Yu-Jie Yuan, Yang tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. NeRF-Editing: Geometry edit-
ing of neural radiance fields. In CVPR, 2022. 2, 3, 5, 6,
7

[52] Yuzhe Zhang, Jianmin Zheng, and Yiyu Cai. Proxy-driven
free-form deformation by topology-adjustable control lat-
tice. Computers & Graphics, 89:167–177, 2020. 3

[53] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 4

12448

