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Figure 1. The first row depicts the tasks of object detection and attribute classification in a close-set setting, i.e., train and test on the same
vocabulary set. The second row gives qualitative results from our proposed OvarNet, which simultaneously localizes, categorizes, and
characterizes arbitrary objects in an open-vocabulary scenario. We only show one object per image for ease of visualization, red denotes
the base category/attribute i.e., seen in the training set, while blue represents the novel category/attribute unseen in the training set.

Abstract

In this paper, we consider the problem of simultaneously
detecting objects and inferring their visual attributes in an
image, even for those with no manual annotations provided
at the training stage, resembling an open-vocabulary sce-
nario. To achieve this goal, we make the following con-
tributions: (i) we start with a naı̈ve two-stage approach
for open-vocabulary object detection and attribute classi-
fication, termed CLIP-Attr. The candidate objects are first
proposed with an offline RPN and later classified for se-
mantic category and attributes; (ii) we combine all avail-
able datasets and train with a federated strategy to fine-
tune the CLIP model, aligning the visual representation
with attributes, additionally, we investigate the efficacy of
leveraging freely available online image-caption pairs un-
der weakly supervised learning; (iii) in pursuit of efficiency,
we train a Faster-RCNN type model end-to-end with knowl-
edge distillation, that performs class-agnostic object pro-
posals and classification on semantic categories and at-
tributes with classifiers generated from a text encoder; Fi-
nally, (iv) we conduct extensive experiments on VAW, MS-
COCO, LSA, and OVAD datasets, and show that recog-
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nition of semantic category and attributes is complemen-
tary for visual scene understanding, i.e., jointly training
object detection and attributes prediction largely outper-
form existing approaches that treat the two tasks indepen-
dently, demonstrating strong generalization ability to novel
attributes and categories.

1. Introduction

Understanding the visual scene in terms of objects has
been the main driving force for development in computer
vision [46], for example, in object detection, the goal is
to localise objects in an image and assign one of the pre-
defined semantic labels to them, such as a ‘car’, ‘person’
or ‘bus’, despite tremendous success has been made by the
community, such task definition has largely over-simplified
our understanding of the visual world, as a visual object can
often be characterised from many aspects other than seman-
tic category, for example, a bus can be ‘yellow’ or ‘black’,
a shirt can be ‘striped’ or ‘unpatterned’, learning attributes
can thus complement category-level recognition, acquiring
more comprehensive visual perception.

In the literature, numerous work has shown that under-
standing the objects’ attributes can greatly facilitate object
recognition and detection, even with few or no examples
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of visual objects [5, 16, 21, 36, 45], for example, Farhadi et
al. proposed to shift the goal of object recognition from
‘naming’ to ‘description’, which allows naming familiar
objects with attributes, but also to say something about
unfamiliar objects (“hairy and four-legged”, not just “un-
known”) [5]; Lampert et al. considered the open-set ob-
ject recognition, that aims to recognise objects by human-
specified high-level description, e.g., arbitrary semantic at-
tributes, like shape, color, or even geographic information,
instead of training images [16]. However, the problem con-
sidered in these seminal work tends to be a simplification
from today’s standard, for example, attribute classification
are often trained and evaluated on object-centric images
under the close-set scenario, i.e., assuming the bounding
boxes/segmentation masks are given [11, 25, 31], or some-
times even the object category are known as a prior [22,25].

In this paper, we consider the task of simultaneously
detecting objects and classifying the attributes in an open-
vocabulary scenario, i.e., the model is only trained on a set
of base object categories and attributes, while it is required
to generalise towards ones that are unseen at training time,
as shown in Fig. 1. Generally speaking, we observe three
major challenges: First, in the existing foundation mod-
els, e.g., CLIP [27] and ALIGN [13], the representation
learned from image-caption pairs tends to bias towards ob-
ject category, rather than attributes, which makes it suffer
from feature misalignment when used directly for attribute
recognition. We experimentally validate this conjecture by
showing a significant performance drop in attribute recog-
nition, compared to category classification; Second, there is
no ideal training dataset with three types of annotations, ob-
ject bounding boxes, semantic categories, and attributes; as
far as we know, only the COCO Attributes dataset [24] pro-
vides such a degree of annotations, but with a relatively lim-
ited vocabulary size (196 attributes, 29 categories); Third,
training all three tasks under a unified framework is chal-
lenging and yet remains unexplored, i.e., simultaneously lo-
calising (‘where’), classifying objects’ semantic categories
and attributes (‘what’) under the open-vocabulary scenario.

To address the aforementioned issues, we start with a
naı̈ve architecture, termed as CLIP-Attr, which first pro-
poses object candidates with an offline RPN [30], and then
performs open-vocabulary object attribute recognition by
comparing the similarity between the attribute word em-
bedding and the visual embedding of the proposal. To bet-
ter align the feature between attribute words and propos-
als, we introduce learnable prompt vectors with parent at-
tributes on the textual encoder side and finetune the orig-
inal CLIP model on a large corpus of the freely available
image-caption datasets. To further improve the model effi-
ciency, we present OvarNet, a unified framework that per-
forms detection and attributes recognition at once, which
is trained by leveraging datasets from both object detec-

tion and attribute prediction, as well as absorbing knowl-
edge from CLIP-Attr to improve the performance and ro-
bustness of unseen attributes. As a result, our proposed
OvarNet, being the first scalable pipeline, can simultane-
ously localize objects and infer their categories with visual
attributes in an open-vocabulary scenario. Experimental re-
sults demonstrate that despite only employing weakly su-
pervised image-caption pairs for distillation, OvarNet out-
performs previous the state-of-the-art on VAW [25], MS-
COCO [18], LSA [26] and OVAD [3] datasets, exhibiting
strong generalization ability on novel attributes and cate-
gories.

2. Related Work

Attribute Prediction. Visual attribute aims to describe one
object/scene from various aspects, for example, color, tex-
ture, shape, material, state, etc, allowing to represent object
categories in a combinatorial manner. However, annotating
attributes can be very time-consuming, early efforts only fo-
cus on specific domains such as fashion [39,40], face [9,41],
animals [1, 34], posing severe limitations for real-world de-
ployment. With the release of large-scale datasets including
COCO Attributes [24], Visual Genome [15], and VAW [25],
recent work considers building models for large-vocabulary
attributes classification [25, 37]. Nonetheless, these meth-
ods only perform multi-class classification on pre-computed
image patches, which not only fail to acquire object local-
ization ability but also endure extra computation overhead
due to redundant feature extraction passes. Additionally,
other methods such as SCoNE [25] require object cate-
gory as input to perform attribute prediction, leading to ex-
tra complexity in practice. In this work, we aim to build a
unified framework that can jointly settle object localization,
category prediction, and attribute prediction in an open-
vocabulary scenario, relieving the aforementioned practical
limitations.

Open-vocabulary Object Detection. Open-vocabulary
object detection strives to detect all objects, including
those that are unseen at the training stage. Existing ap-
proaches [2,6,8,44] achieve open-vocabulary capability by
replacing the detector’s classifier with object category word
embedding from the pre-trained visual-language model,
e.g., CLIP, and perform category classification via embed-
ding matching. In specific, OVR-CNN [38] proposes an
efficient training approach with image-caption pairs that
can be easily obtained from the website. ViLD [8] adopts
distillation to infuse open-vocabulary knowledge into a
two-stage detector, Detic [44] increases the size of de-
tector’s vocabulary to twenty-thousand by exploiting the
large dataset (ImageNet-21K) with image-level annotations.
PromptDet [6] leverages the pre-trained CLIP [27] and
aligns the detector’s visual embedding with text embedding
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Figure 2. An overview of the proposed method. Left: the two-step training procedure for finetuning the pre-trained CLIP to get CLIP-Attr
that better aligns the regional visual feature to attributes. Step-I: naı̈ve federate training by base attribute annotations. Step-II: training by
image-caption pairs. We first conduct RPN on the whole image to get box-level crops, parse the caption to get noun phrases, categories, and
attributes, and then match these fine-grained concepts for weakly supervised training. Right: the proposed one-stage framework OvarNet.
We inherit the CLIP-Attr for open-vocabulary object attribute recognition. Regional visual feature is learned from the attentional pooling of
proposals; while attribute concept embedding is extracted from the text encoder. Solid lines declare the standard federated training regime.
Dashed lines denote training by knowledge distillation with CLIP-Attr.

with learnable prompts. However, none of these models
considers simultaneously inferring attributes for detected
objects.
Zero-shot Learning. Zero-shot learning aims to extend
the model’s capability towards recognising objects beyond
those seen categories at training time [2, 8, 28, 29]. In the
context of object detection, early zero-shot solutions rely on
visual attributes to infer unseen categories [12, 17, 20, 36],
aiming to represent category by attributes, such that it can
generalize from seen to unseen category. Recent methods
adopt vision-language feature alignment to achieve zero-
shot learning, based on similarity computation between the
visual feature and text concepts.

3. Methodology
In this section, we start by introducing the problem sce-

nario (Sec. 3.1), followed by describing a naı̈ve architec-
ture for open-vocabulary attribute classification by steering
a pre-trained CLIP model, dubbed CLIP-Attr (Sec. 3.2),
and finally, we further distill the knowledge from CLIP-Attr
into a more efficient two-stage detection architecture called
OvarNet, which can perform detection and attribute predic-
tion in a unified framework (Sec. 3.3).

3.1. Problem Scenario
Assuming we are given a training dataset, i.e., Dtrain =

{(I1, y1), . . . , (IN , yN )}, where Ii ∈ RH×W×3 refers to

an image, and yi = {bi, ci, ai} denotes its corresponding
ground-truth annotations, with the coordinates for n object
bounding boxes (bi ∈ Rni×4), their corresponding semantic
categories (ci ∈ Rni×Cbase ), and a set of binary attributes for
each object (ai ∈ {0, 1}ni×Abase ). Our goal is to train a
model that can process any image from a test set (Ik ∼
Dtest), simultaneously localising the objects and inferring
their semantic categories, and visual attributes:

{b̂k, ĉk, âk} = ΦCLS ◦ ΦLOC(Ik)

where the image is progressively processed by a class-
agnostic object localization, and open-vocabulary attributes
classification, to produce the b̂k ∈ Rnk×4, ĉk ∈ Rnk×Ctest

and âk ∈ {0, 1}nk×Atest . Note that, at inference time, the
objects may be of unseen/novel semantic categories or at-
tributes, i.e., Ctest = Cbase ∪ Cnovel, Atest = Abase ∪ Anovel,
thus the considered problem falls into open-vocabulary ob-
ject attributes recognition. For simplicity, we will omit the
subscript k while describing the proposed models. To avoid
redundancies, we treat the category as a super-attribute for
modeling our pipeline unless otherwise specified.

3.2. Two-stage Object Attribute Recognition

In this section, we describe a two-stage open-vocabulary
attribute classification method, termed CLIP-Attr, that first
uses a class-agnostic region proposal network (RPN) to gen-
erate object candidates, then verifies the candidates with
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category and attributes using a finetuned CLIP:

{b̂k} = ΦLOC = Φcrpn(I)

{ĉk, âk} = ΦCLS = Φcls ◦ Φclip-v ◦ Φcrop(I, {b̂k})

where Φcrpn(I) is a class-agnostic RPN, Φcls(·) represents
attributes classification, Φclip-v(·) denotes the CLIP visual
encoder, and Φcrop(·) is an operation that crops b̂k the box
region from input image.

3.2.1 Object-centric Visual Encoding

Class-agnostic Region Proposal. To propose the can-
didate regions that potentially have objects situated, we
employ a Faster-RCNN [30] based region proposal net-
work that parametrises the anchor classification and bound-
ing box regression in a class-agnostic manner, i.e., Φcrpn(·)
shares parameters for all categories. Inspired by the obser-
vation in [6, 14, 44], we train the proposal network only on
base categories offline, and it shows sufficient generaliza-
tion ability towards unseen categories.
RoI Visual Pooling. Given the pre-defined object boxes,
we acquired the image crops (Φcrop(·)) and feed them into
the CLIP image encoder (Φclip-v(·)) to compute regional vi-
sual embeddings v̂i ∈ R1×D, i denotes the ith region.

3.2.2 Open-vocabulary Attributes Classification

Generating Attribute Embedding. To compute attribute
embeddings, we employ the pre-trained text encoder from
CLIP (Φclip-t(·)), and use two variants of prompts for bet-
ter aligning the attribute with the visual region features: (i)
for each attribute, we employ prior knowledge of ontolo-
gies, and encode their parent-class words along with the at-
tribute, for example, the embedding for the ‘wet’ attribute
can be expanded as: Φclip-t(wet, state) to better distinguish
from Φclip-t(water,material), or Φclip-t(in water, place); (ii)
we augment it with multiple learnable prompt vectors, as a
consequence, the attribute embeddings can be computed as:

t̂j = Φclip-t([p0, · · · , pi, g(attribute), pi+1, · · · , pj ,
g(parent-attribute), pj+1, · · · , pk])

(1)

where g(·) denotes the tokenisation procedure, and pi (i ∈
0, 1, · · · , k) has the same dimension with the attribute word
embeddings, denoting the learnable prompt vectors, that are
shared across all attributes, and can generalize towards un-
seen attributes at inference time.
Attribute Classification. Attribute prediction can be ob-
tained by computing the similarity between visual region
feature and attribute concept embedding as:

ŝij = Φcls(v̂i, t̂j) = σ(⟨v̂Ti , t̂j⟩/τ), (2)

where both vi and tj are L2 normalised, and ŝij denotes the
likelihood that the ith region contains the jth attribute. τ is
a temperature parameter and σ denotes sigmoid function.

3.2.3 Training Procedure

In this section, we describe the training procedure for open-
vocabulary attributes classification, which strives to better
align the regional visual feature to the attribute description.

Step-I: Federated Training. In order to align the regional
visual feature to attributes, an ideal training dataset should
contain three types of annotations, namely, object bound-
ing boxes, semantic categories, and attributes, as far as we
know, the COCO Attributes dataset [24] is the only one that
provides such a level of annotations, but with a very limited
vocabulary size (196 attributes, 29 categories).

To fully exploit the annotations in existing datasets, we
combine the detection dataset, e.g., COCO [18], and at-
tribute prediction dataset, e.g., VAW [25]. Specifically, we
follow standard procedure for training the class-agnostic
region proposal network with images from COCO, i.e.,
SmoothL1 loss and Binary Cross Entropy (BCE) are ap-
plied for box coordinates regression and objectness predic-
tion; while for training attribute/category classification, as
illustrated in the top-left part of Fig. 2, we employ ground-
truth bounding boxes to crop the objects, and compute their
visual embeddings with a pre-trained visual encoder from
CLIP, we finetune CLIP’s text encoder by optimising BCE
loss with multi-label attribute classification, as follows,

Lcls =
1

N

∑N

i=1
wi · BCE(ŝi, si) (3)

where N = |Cbase|+|Abase|, denotes the class number of cat-
egories and attributes, i denotes the i-th category/attribute,
ŝi is the predicted probability, and si ∈ {0, 1, unk} denotes
an attribute label being negative, positive or missing. By
default, for the missing attributes we treat them as nega-
tive with a re-weight factor, i.e., si = 0 during training.
wi ∝ 1/fi

γ ,
∑N

i=1 wi = N , where fi indicates the oc-
currence frequency of the i-th attribute in the training set,
γ = 0.25 is a smoothing factor. As a result, this step ends
up with a finetuned CLIP text encoder that better aligns the
regional visual feature to attributes, referred to ΦCLIP-Attr(·).
Step-II: Training with Image-caption Dataset. To fur-
ther improve the alignment, especially for novel attributes,
we also consider using freely available image-caption
datasets, e.g., Dimg-cap = {{I1, s1}, . . . , {IN , sN}}, where
the Ii, si refer to image and caption sentence respectively.
We detect all the objects in each image with a class-agnostic
object proposal as described in Sec. 3.2.1. We keep the
largest box proposal (b∗) and those with top-K objectness
scores (bk), and crop original images with the inferred
bounding boxes. We pass these crops through ΦCLIP-Attr(·),
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to get the predictions for semantic categories and attributes,
and keep those with confidence scores higher than 0.7 as
pseudo-positive labels. In addition, for caption sentences,
we use TextBlob [19] to parse all captions into ‘semantic
category’, ‘attribute’, and ‘noun phrases’ based on COCO
and VAW dictionaries. For example, the sentence “A striped
zebra is eating green grass” is processed and converted to
{category: ‘zebra’}, {attribute: ‘green’, ‘striped’}, {noun
phrase: ‘striped zebra’, ‘green grass’}.

To this end, we continue finetuning the alignment
model (ΦCLIP-Attr(·)) with the pseudo groundtruths obtained
from the pre-processing stage. In detail, we compute the
visual and textual embeddings as in Step-I, however, as
the labels obtained from captions or the model’s prediction
are not guaranteed to be correct, that requires special ac-
tions. We adopt multi-instance contrastive learning (MIL-
NCE) [23], that maximizes the accumulated similarity score
of positive matches between the visual and textual embed-
dings as follows:

LMIL-NCE = − log

∑
(v,t)∈P

exp( ⟨v
T, t⟩
τ )∑

(v,t)∈P
exp( ⟨v

T, t⟩
τ ) +

∑
(v′,t′)∼N

exp( ⟨v
′T, t′⟩
τ )

(4)

where P is a set of positive pairs with image crop fea-
ture and textual concept embeddings, N conversely refers
to an associated set of negative pairs. Here, we pair the
largest box (b∗) with the given caption, i.e., noun phrases,
attributes, and semantic categories. While for the other top-
K boxes (bk), we treat the model inferred categories and at-
tributes as positives. Here, we continue training both visual
and text encoders in ΦCLIP-Attr by optimising the following
loss:

Lcls = 1/K ·
K∑

k=0

Lk
MIL-NCE (5)

where Lk
MIL-NCE denotes MIL-NCE loss over the kth box

and the corresponding textual concepts (here, we treat the
largest box b∗ as the 0th). An overview is shown in the
bottom-left of Fig. 2.

3.3. Distilled Object Attribute Recognition

Although open-vocabulary object attribute prediction
can be realised by the above proposed ΦCLIP-Attr with the
pre-computed proposals, the inference procedure is time-
consuming, because every cropped region is fed into the vi-
sual encoder. In this section, we aim to address the slow
inference speed, and train a Faster-RCNN type model end-
to-end for object detection and attribute prediction, termed
as OvarNet (Open-vocabulary attribute recognition):

{b̂k, ĉk, âk} = ΦOvar = Φcls ◦ Φcrpn ◦ Φv-enc(I)

where the image is sequentially processed by a visual en-
coder, class-agnostic region proposal, and open-vocabulary
attributes classification, as illustrated in the right of Fig. 2.
Visual Encoder. To start with, the input image is fed into a
visual backbone, obtaining multi-scale feature maps:

F = {f1, . . . , f l} = Φv-enc(I) (6)

where f i refers to the feature map at i-th level, we adopt the
visual encoder from ΦCLIP-Attr.
Class-agnostic Region Encoding. To extract regional vi-
sual embeddings for candidate objects, we make the class-
agnostic region encoding as follows,

{v̂1, . . . , v̂n} = Φcrpn = Φattn-pool ◦ Φroi-align ◦ Φrpn(F) (7)

specifically, the feature pyramid is used in the region pro-
posal network to fuse multi-scale features. The ROI-align’s
output (R14×14×256) is firstly down-sampled with a con-
volutional layer (stride 2 and kernel size 2 × 2), and then
passed into a block with 4 Transformer encoder layers with
a learnable token, acting as attentional pooling. As a result,
v̂i ∈ R1×D refers to the feature embedding of the i-th can-
didate object. We train the proposal network only on base
categories as described in Sec. 3.2.1
Open-vocabulary Attributes Classification. We ex-
tracted attribute concept embeddings as in Sec. 3.2.2. After
obtaining the embeddings for each of the proposed objects,
we can classify them into arbitrary attributes or categories
by measuring the similarity between visual and attribute
embeddings (Eq. 2).
Federated Training. We combine both COCO and VAW,
and adopt a similar federated training strategy as in CLIP-
Attr, with the key difference being that we jointly supervise
localization for class-agnostic region proposal and classifi-
cation for attribute prediction. The overall loss function can
be formulated as: Ltotal = Lcls + λRPN · LRPN, λRPN is a
re-weighted parameter.

Intuitively, if the embedding spaces for visual and tex-
tual can be well-aligned by training on a limited number
of base categories/attributes, the model should enable open-
vocabulary object attribute recognition with the aforemen-
tioned training procedure, however, in practice, we observe
unsatisfactory performance on the novel categories and at-
tributes. We further incorporate additional knowledge dis-
tillation from the CLIP-Attr model described in Sec. 3.2.3 to
improve the model’s ability for handling unseen categories
and attributes.
Training via Knowledge Distillation. In addition to the
federated training loss Ltotal, we introduce an extra distilla-
tion item Ldist, that encourages similar prediction between
ΦCLIP-Attr(·) and ΦOvar(·):

Ldist(ŝ, s) =
1

N

∑N

i=1
KL(ŝi, si), (8)
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where ŝ is prediction probabilities over all attributes from
OvarNet and s is the prediction by using image crops from
the aligned ΦCLIP-Attr. KL denotes the Kullback-Leibler di-
vergence loss.

4. Experimental Setup

4.1. Datasets
Here, we introduce the datasets for training and evalua-

tion of our proposed models for open-vocabulary object at-
tribute recognition. Note that, while training the model, we
have to consider two aspects of the openness evaluation, one
is on semantic category, and the other is on the attributes.

MS-COCO [18]. We follow the setup for generalized zero-
shot detection as proposed in ZSD [2]: 48 classes are se-
lected as base classes (Cbase), and 17 classes are used as un-
seen/novel classes (Cnovel). The train and minival sets are the
same as standard MS-COCO 2017. At the training stage,
only the images with base category objects are used.

VAW [25]. For attributes recognition, VAW is constructed
with VGPhraseCut [35] and GQA [10], containing a large
vocabulary of 620 attributes, for example, color, material,
shape, size, texture, action, etc. Each instance is annotated
with positive, negative, and missing attributes. In our exper-
iments, we sample half of the ‘tail’ attributes and 15% of the
‘medium’ attributes as the novel set (Anovel, 79 attributes)
and the remaining as the base (Abase, 541 attributes). More
details are included in the supplementary material.

Image-Caption Datasets. Conceptual Captions 3M (CC-
3M) [32] contains 3 million image-text pairs harvested from
the web with wide diversities, and COCO Caption (COCO-
Cap) [4] comprises roughly 120k images and 5-way image-
caption curated style annotations. We only keep images
whose pairing captions have overlapped attributes or cat-
egories in the COCO and VAW dictionaries. We refer to the
two subsets as CC-3M-sub and COCO-Cap-sub.

Summary. We have constructed the COCO-base and VAW-
base datasets for training, and COCO-novel and VAW-novel
for evaluation purposes, with the former for object category
classification, and the latter for object attributes classifi-
cation. To align regional visual features with attributes in
CLIP-Attr, we use COCO-base and VAW-base for Step-I
training, and then use CC-3M-sub and COCO-Cap-sub for
Step-II finetuning. Later, COCO-base and VAW-base are
employed in distilling knowledge from CLIP-Attr to Ovar-
Net for efficiency. We refer the reader to a more detailed
table with dataset statistics in the supplementary material.

4.2. Evaluation Protocol and Metrics

Our considered open-vocabulary object attribute recog-
nition involves two sub-tasks: open-vocabulary object de-
tection and classifying the attributes for all detected objects.

We evaluate the two sub-tasks in both box-given and box-
free settings on COCO for category detection and VAW,
LSA, and OVAD for attribute prediction (evaluations of the
VAW and LSA are in the supplemental material). Specifi-
cally, the box-given setting is widely used in attribute pre-
diction and object recognition communities [7, 25, 31, 33],
where the ground-truth bounding box annotations are as-
sumed to be available for all objects, and the protocol only
evaluates object category classification and multi-label at-
tribute classification with mAP metric; In contrast, the box-
free setting favors a more challenging problem, as the model
is also required to simultaneously localise the objects, and
classify the semantic category and attributes.

Note that, the annotations on existing attribute datasets,
such as VAW, LSA, are not exhaustive or object-centric,
(i) not all the objects are labeled in an image, (ii) some anno-
tations are on stuffs, that represents uncountable amorphous
regions, such as sky and grass. We have to strike a balance
in the box-free setting for attributes by matching the pre-
dicted boxes to the ground-truth box with the largest IoU,
and then evaluate the attribute predictions using mAP. We
consider the aforementioned metrics over base set classes,
novel set classes, and all classes.

4.3. Implementation details

CLIP-Attr Training. We use the pre-trained R50-CLIP
as the visual backbone to get object-centric visual features;
all cropped regions are resized to 224 × 224 based on the
short side with the original aspect ratio kept. Similar to De-
tic [44], we use sigmoid activation and multi-label binary
cross-entropy loss for classification. We adopt the Stochas-
tic Gradient Descent (SGD) optimizer with a learning rate
of 0.001, a weight decay of 0.0001, and a momentum of
0.9. In Step-I training, we train the prompt vectors and text
encoder for 50 epochs. In Step-II training with the image-
caption dataset, we further finetune the entire model (both
visual and textual encoders) for another 40 epochs. We se-
lect 30 top-K proposals while pre-possessing COCO-Cap-
sub, and 15 for CC-3M-sub, as the images are often object-
centric in the latter case.

OvarNet Training. In OvarNet, we initialise its visual
backbone with the trained CLIP-Attr (Resnet50 without At-
tentionPool2d layer) and keep its text encoder frozen for
efficiency. We adopt the AdamW optimizer with a learning
rate of 0.0001. The models are trained for 30 epochs with
the distillation term, and 60 epochs without distillation. We
employ 640-800 scale jittering and horizontal flipping, and
the temperature parameter τ is configured to be trainable.
Following the observation and related prior, we empirically
set: γ = 0.25, and λRPN = 1. All the experiments are
conducted on 8 NVIDIA A100 GPUs.

Prompt Engineering. We have experimented with differ-
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Attribute Parent M/L VAW COCO
Attribute APnovel APall APnovel APall

✓ ✗ none 52.15 59.16 40.53 49.84
✓ ✗ M 53.64 62.22 41.65 52.35
✓ ✓ M 53.78 62.76 41.97 52.81
✓ ✗ L 55.73 64.54 42.77 53.80
✓ ✓ L 57.39 66.92 45.82 55.21

Table 1. Ablation study on prompt engineering with CLIP-
Attr model. M/L denotes whether manually designed
prompts or learnable prompts are used.

Method Training Data VAW COCO
APbase APnovel APall APbase APnovel APall

Plain CLIP none 47.69 46.15 47.53 38.56 41.13 39.45

ΦCLIP-Attr COCO-base 49.03 47.07 48.75 59.33 42.49 53.93
ΦCLIP-Attr VAW-base 67.71 57.28 66.82 38.90 42.54 39.98
ΦCLIP-Attr COCO-base + VAW-base 67.90 57.39 66.92 58.26 45.82 55.21

ΦCLIP-Attr + CC-3M-sub 69.79 59.16 68.87 65.79 48.90 61.36
ΦCLIP-Attr + COCO-Cap-sub 70.24 57.73 69.03 69.62 52.61 65.17

Table 2. Oracle test for Step-I and Step-II training with objects’ boxes given.
‘Plain CLIP’ directly classifies cropped images with a manual prompt.

MIL-NCE VAW COCO
b∗-cap. b∗-phr. b∗-attr. bk-attr. APnovel APall APnovel APall

57.39 66.92 45.82 55.21
✓ 57.45 66.94 45.87 55.36
✓ ✓ 57.42 67.87 48.29 57.92
✓ ✓ ✓ 57.61 69.33 51.83 63.80
✓ ✓ ✓ ✓ 57.73 69.03 52.61 65.17

Table 3. The effect of different weakly supervised loss terms in
Step-II training. We conduct ablation studies with COCO-Cap-
sub dataset. b∗ and bk refer to the largest object proposal and
top-K objectness proposals of an image respectively.

ent numbers of prompt vectors, empirically, we take 30 vec-
tors and divide them into 10 inserting before, between, and
after the attribute and the parent-class attributes. In terms of
prompts used for encoding noun phrases, we use 16 learn-
able vectors, i.e., 8 before and 8 after phrase embedding.

4.4. Ablation Study

We conduct ablation studies on VAW and COCO
datasets, to thoroughly validate the effectiveness of pro-
posed components, including prompt learning with the
parent-class attribute, different losses for training CLIP-
Attr, and the effect of Step-I and Step-II training. Finally,
we validate the effectiveness of knowledge distillation.

Prompt Learning with Parent-class Attribute. In at-
tribute embedding, we employ two variants of prompts
for better aligning the attribute with the visual region fea-
tures. We compare the learned prompt to the manual
prompt while training ΦCLIP-Attr with the pre-annotated ob-
ject boxes. As shown in Tab. 1, comparing to the re-
sults from only using plain attribute words, using carefully
designed prompt [8, 43], for example, “It is a photo of
[category]” and “The attribute of the object is [attribute]”
for the category and attribute words, indeed delivers im-
provements; While adding the parent-class word to the
prompt template, i.e., use the “The attribute of the object
is [attribute], and it is a [parent-attribute]”, the lexical ambi-
guity can be alleviated, leading to a considerable improve-
ment on novel categories and attributes. Finally, our pro-
posed prompt learning with parent-class attribute words fur-
ther brings a performance improvement by 3.61/3.85 AP on
novel attributes/categories, compared to the manual prompt
with parent-class words.

Effect of Step-I and Step-II Training. We first compare
the performance of attributes classification on regional vi-
sual feature (assuming ground-truth object boxes are given)
before and after Step-I training. As illustrated in Tab. 2,
the original plain CLIP model has certainly exhibited at-
tribute classification on an elementary level. We can see
a substantial improvement by further training on COCO-
base and VAW-base, for example, from 46.15 to 57.39 AP
for novel attribute classification, and 41.13 to 45.82 AP
for novel category classification. Furthermore, by incorpo-
rating image-caption datasets in Step-II training, the per-
formance has been improved to 69.03/65.17 AP on all at-
tributes/categories. In the following experiments, we em-
ploy the model ΦCLIP-Attr that exploits the COCO-Cap-Sub
for Step-II training.

Effect of Different Losses for Step-II Training. We in-
vestigate the performance variance by adjusting the dif-
ferent supervisions in Step-II training (Eq. 5). As illus-
trated in Tab. 3, performance tends to grow monotonically
with the increased supervision terms, from 66.92/55.21 to
69.03/65.17 AP on all attributes/categories, indicating that
all supervision signals count.

Knowledge Distillation. We validate the necessity for
knowledge distillation while training OvarNet. Specifically,
we experiment by training the model with federated loss
only, and two other knowledge distillation approaches, i.e.,
the regional visual features (Feat.) from the visual encoder
of ΦCLIP-Attr, like ViLD [8], and the prediction probabil-
ity (Prob.) over all attributes from the matching scores of
ΦCLIP-Attr. We achieve the distillation by constraining the
regional visual feature or prediction probability of OvarNet
to be the same as that of ΦCLIP-Attr, employing L2/L1 loss on
features, and KL loss on probability. As shown in Tab. 4, we
make two observations, first, knowledge distillation is es-
sential; second, knowledge gained from attribute prediction
probabilities is more beneficial to improving performance
on novel sets, e.g., from 51.87/33.17 to 56.43/54.10 AP
when compared to L2 loss on visual features, in particular
for semantic classification on COCO.

Different Architectures in ΦCLIP-Attr. We have evalu-
ated the performance on different pre-trained CLIP archi-
tectures for attribute classification, such as R50 and ViT-
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Distil. VAW COCO
APnovel APall APnovel APall

none 50.53 61.74 30.43 59.83
Feat. L2 51.87 63.34 33.17 59.16
Feat. L1 52.57 64.65 32.92 59.62
Prob. KL 56.43 68.52 54.10 67.23

Table 4. Ablation study on knowledge
distillation with boxes given.

Model Arch. VAW COCO
APnovel APall APnovel APall

ΦCLIP-Attr R50 57.73 69.03 52.61 65.17
ΦCLIP-Attr ViT-B/16 57.69 71.72 58.30 70.94

ΦOvar R50 56.43 68.52 54.10 67.23
ΦOvar ViT-B/16 56.41 68.79 55.70 68.02

Table 5. Experiments with different ΦCLIP-Attr

architectures in a box-given setting.

Initialisation Freeze VAW COCO
APnovel APall AP50novel AP50all

ImageNet ✗ 50.27 59.22 31.06 48.62
ΦCLIP-Attr ✗ 54.85 68.02 35.25 54.31
ΦCLIP-Attr ✓ 55.47 67.62 35.17 54.15

Table 6. Ablation study on finetuning the vi-
sual backbone of OvarNet with different initial-
izations under box-free setting.

Method Training Data VAW COCO
APbase APnovel APall AP50base AP50novel AP50all

SCoNE [25] fully supervised - - 68.30 - - -
TAP [26] fully supervised - - 65.40 - - -
OVR-RCNN [38] COCO Cap - - - 46.00 22.80 39.90
OVR-RCNN [38] CC 3M - - - - - 34.30
ViLD [8] CLIP400M - - - 59.50 27.60 51.30
Region CLIP [42] COCO Cap - - - 54.80 26.80 47.50
Region CLIP [42] CC 3M - - - 57.10 31.40 50.40
PromptDet [6] Web Images - - - - 26.60 50.60
Detic [44] COCO Cap - - - 47.10 27.80 45.00

OvarNet (box-given) COCO-base + VAW-base 68.27 53.75 66.85 60.94 41.44 55.85
OvarNet (box-given) +CC 3M-sub 69.30 55.44 67.96 68.35 52.34 64.18
OvarNet (box-given) +COCO Cap-sub 69.80 56.43 68.52 71.88 54.10 67.23

OvarNet (box-free) COCO-base + VAW-base 67.71 53.42 66.03 56.20 32.02 49.77
OvarNet (box-free) +CC 3M-sub 67.32 54.26 66.75 59.50 33.68 52.40
OvarNet (box-free) +COCO Cap-sub 68.93 55.47 67.62 60.35 35.17 54.15

Table 7. Comparison for open-vocabulary object detection and attribute prediction on the
VAW test set and COCO validation.
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Figure 3. Qualitative visualization from Ovar-
Net. Red: base category/attributes. Blue: cat-
egory/attributes.

B/16, and then conducted knowledge distillation from the
different ΦCLIP-Attr models. As seen in Tab. 5, both architec-
tures perform competitively, with transformer-based archi-
tectures consistently outperforming the ConvNet ones.

Updating OvarNet’s Visual Backbone. We experiment by
updating or freezing the OvarNet’s visual backbone from
different initializations at training. As shown in Tab. 6, ini-
tialising the visual backbone from aligned ΦCLIP-Attr is ad-
vantageous, whereas finetuning or freezing it makes little
difference. For efficiency, we opt to freeze the visual back-
bone in other experiments.

4.5. Comparison with the State-of-the-Art

Benchmark on COCO and VAW. In Tab. 7, we compare
OvarNet to other attribute prediction methods and open-
vocabulary object detectors on the VAW test set and COCO
validation set. As there is no open-vocabulary attribute pre-
diction method developed on the VAW dataset, we re-train
two models on the full VAW dataset as an oracle compar-
ison, namely, SCoNE [25] and TAP [26]. Our best model
achieves 68.52/67.62 AP across all attribute classes for the
box-given and box-free settings respectively. On COCO
open-vocabulary object detection, we compare with OVR-
RCNN [38], ViLD [8], Region CLIP [42], PromptDet [6],
and Detic [44], our best model obtains 54.10/35.17 AP
for novel categories, surpassing the recent state-of-the-art
ViLD-ens [8] and Detic [44] by a large margin, showing that
attributes understanding is beneficial for open-vocabulary

object recognition. Fig. 3 shows some prediction results of
OvarNet.

5. Conclusion
In the paper, we consider the problem of open-

vocabulary object detection and attribute recognition, i.e.,
simultaneously localising objects and inferring their seman-
tic categories and visual attributes. We start with a naı̈ve
two-stage framework (CLIP-Attr) that uses a pre-trained
CLIP to classify the object proposals, to better align the
object-centric visual feature with attribute concepts, we use
learnable prompt vectors on the textual encoder side. On the
training side, we adopt a federated training strategy to ex-
ploit both object detection and attribute prediction datasets,
and explore a weakly supervised training regime with exter-
nal image-text pairs to increase the robustness for recognis-
ing novel attributes. Finally, for computational efficiency,
we distill the knowledge of CLIP-Attr into a Faster-RCNN
type model (termed as OvarNet), while evaluating on four
different benchmarks, e.g., VAW, MS-COCO, LSA, and
OVAD, we show that jointly training object detection and
attributes prediction is beneficial for visual scene under-
standing, largely outperforming the existing approaches that
treat the two tasks independently, demonstrating strong gen-
eralization ability to novel attributes and categories.
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