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Abstract

We propose PAniC-3D, a system to reconstruct stylized
3D character heads directly from illustrated (p)ortraits of
(ani)me (c)haracters. Our anime-style domain poses unique
challenges to single-view reconstruction; compared to nat-
ural images of human heads, character portrait illustra-
tions have hair and accessories with more complex and
diverse geometry, and are shaded with non-photorealistic
contour lines. In addition, there is a lack of both 3D model
and portrait illustration data suitable to train and evaluate
this ambiguous stylized reconstruction task. Facing these
challenges, our proposed PAniC-3D architecture crosses
the illustration-to-3D domain gap with a line-filling model,
and represents sophisticated geometries with a volumetric
radiance field. We train our system with two large new
datasets (11.2k Vroid 3D models, 1k Vtuber portrait illus-
trations), and evaluate on a novel AnimeRecon benchmark
of illustration-to-3D pairs. PAniC-3D significantly outper-
forms baseline methods, and provides data to establish the
task of stylized reconstruction from portrait illustrations.

1. Introduction & Related Work
With the rise of AR/VR applications, there is increased

demand for not only high-fidelity human avatars, but also
non-photorealistic 3D characters, especially in the “anime”
style. Most character designers typically create concept
illustrations first, allowing them to express complex and
highly diverse characteristics like hair, accessories, eyes,
skins, headshapes, etc. Unfortunately, the process of de-
veloping illustrated concept art into an AR/VR-ready 3D
asset is expensive, requiring professional 3D artists trained
to use expert modeling software. While template-based cre-
ators democratize 3D avatars to an extent, they are often re-
stricted to 3D assets compatible with a specific body model.

We propose PAniC-3D, a system to automatically recon-

struct a stylized 3D character head directly from illustrated
(p)ortraits of (ani)me (c)haracters. We formulate our prob-
lem in two parts: 1) implicit single-view head reconstruc-
tion, 2) from across an illustration-3D domain gap. To sum-
marize our contributions:

• PAniC-3D: a system to reconstruct the 3D radiance
field of a stylized character head from a single line-
based portrait illustration.

• The Vroid 3D dataset of 11.2k character models and
renders, the first such dataset in the anime-style do-
main to provide 3D assets with multiview renders.

• The Vtuber dataset of 1.0k reconstruction-friendly
portraits (aligned, front-facing, neutral-expression)
that bridges the illustration-render domain gap through
the novel task of line removal from drawings.

• The AnimeRecon benchmark with 68 pairs of
aligned 3D models and corresponding illustrations, en-
abling quantitative evaluation of both image and geom-
etry metrics for stylized reconstruction.

1.1. Implicit 3D Reconstruction

While there has been much work on mesh-based recon-
struction from images [23], these systems are not expres-
sive enough to capture the extreme complexity and diver-
sity of topology of our 3D characters. Inspired by the re-
cent successes in generating high-quality 3D radiance fields
[4, 5, 25, 39], we instead turn to implicit representations.
However, to achieve high-quality results, recent implicit re-
construction work such as PixelNerf [40] tend to operate
solely from 2D images, due to the lack of publicly-available
high-quality 3D data. Some implicit reconstruction systems
like Pifu [31] employing complex 3D assets have shown
reasonable success using point-based supervision, but re-
quire careful point sampling techniques and loss balancing.
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Figure 1. Overview of contributions. Our (A) PAniC-3D system is able to reconstruct a 3D radiance field directly from a line-based portrait
illustration. We gather a new (B) Vtuber illustration dataset and (C) Vroid 3D models dataset in order to cross the illustration-render
domain gap and supervise reconstruction. To evaluate, we provide a new (D) AnimeRecon benchmark of paired illustrations and 3D
models, establishing the novel task of stylized single-view reconstruction of anime characters. (Art attributions in suppl.)

There is also a body of work on sketch-based model-
ing, where 3D representations are recovered from contour
images. For example, Rui et al. [24] use a multi-view de-
coder to predict sketch-to-depth and normals, which are
then used for surface reconstruction. Song et al. [44] ad-
ditionally try to compensate multi-view drawing discrepan-
cies by learning to realign the inputs. While related to our
single-view portrait reconstruction problem, these methods
require multi-view sketches that are difficult for character
artists to draw consistently, and cannot handle color input.

For our case with complex high-quality 3D assets, we
demonstrate the superiority of differentiable volumetric ren-
dering for reconstruction. We build off of recent uncondi-
tional generative work (EG3D [4]), formulating the prob-
lem of reconstruction as a conditional generation, propos-
ing several architecture improvements, and applying direct
2.5D supervision signal as afforded by our 3D dataset.

1.2. Anime-style 3D Avatars and Illustrations

It is a fairly common task for 3D character artists to pro-
duce a 3D model from a portrait illustration; however from
the computer graphics standpoint, this stylized reconstruc-
tion setup adds additional ambiguity to an already ill-posed
problem. In addition, while there’s work in the popular
anime/manga domain using 3D character assets (for pose
estimation [18], re-targetting [17, 20], and reposing [22],

etc.), there’s a lack of publicly-available 3D character as-
sets with multi-view renders that allow scalable training
(Tab. 1). In light of these issues, we propose AnimeRe-
con (Fig. 1d) to formalize the stylization task with a paired
illustration-to-3D benchmark, and provide the Vroid dataset
(Fig. 1c) of 3D assets to enable large-scale training.

Within the problem of stylized reconstruction, we solve
the task of contour removal from illustrations. There is
much work on line extraction [21, 38], sketch simplifica-
tion [33, 34], reconstruction from lines [11, 24], line ex-
ploits for artistic imagery [6, 41], and scratch-line removal
[8, 27, 29, 32, 35]; however, the removal of lines from line-
based illustration has seen little focus. We examine this
contour deletion task in the context of adapting drawings
to render-like images more conducive to 3D reconstruction;
we find that naive image-to-image translation [19,45] is un-
suited to the task, and propose a simple yet effective adver-
sarial training setup with facial feature awareness. Lastly,
we provide a Vtuber dataset (Fig. 1b) of portraits to train
and evaluate contour removal for 3D reconstruction.

2. Methodology

PAniC-3D is composed of two major components
(Fig. 1a): a 3D reconstructor directly supervised to predict a
radiance field from a given front render, and an illustration-
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3D datasets Vroid AniRec. AC CoNR ADD
3D avail. Y Y - - -
renders avail. Y Y Y - -
multiview Y Y - Y Y
paired illustr. - Y - - -

Table 1. 3D anime datasets comparison. Our new Vroid dataset
is the first to make 3D anime models and multiview renders avail-
able. The AniRecon benchmark allows quantitative evaluation of
both 2D image and 3D geometry metrics. Others left-to-right:
AnimeCeleb [20], CoNR [22], Anime Drawings Dataset [18].

Portraits Vtuber AC AP iCF BP
illustrations Y - Y Y Y
aligned face Y Y Y Y -
front-facing Y Y - - -
neutral expr. Y Y - - -
segmented Y Y - - Y
face kpts. Y - - - Y

Table 2. Anime image datasets comparison. Our new Vtuber
dataset allows us to examine the domain gap between line-based il-
lustrations and 3D renders, and is filtered/standardized specifically
for characteristics desirable in 3D head reconstruction. Others left-
to-right: AnimeCeleb [20], AnimePortraits [3], iCartoonFace [43],
BizarrePose [7].

to-render module that translates images to the reconstruc-
tor’s training distribution. The two parts are trained inde-
pendently, but are used sequentially at inference.

2.1. 3D Reconstruction Module

The 3D reconstruction module Fig. 3 is trained with di-
rect supervision to invert a frontal render into a volumetric
radiance field. We build off of recent unconditional gener-
ative work (EG3D [4]), formulating the problem of recon-
struction as that of conditional generation, proposing sev-
eral architecture improvements, and applying direct 2.5D
supervision signal as afforded by our 3D dataset.

Conditional input: The given front orthographic view
to reconstruct is resized and appended to the intermediate
feature maps of the Stylegan2 backbone used in EG3D [4].
In addition, at the earliest feature map we give the model
high-level domain-specific semantic information about the
input by concatenating the penultimate features of a pre-
trained Resnet-50 anime tagger. The tagger provides high-
level semantic features appropriate for conditioning the
generator; it was pretrained by prior work [7] on 1062 rele-
vant classes such as blue hair, cat ears, twin braids, etc.

Feature pooling: As the spatial feature maps are to be
reshaped into a 3D triplane as in EG3D [4], we found it
beneficial to pool a fraction of each feature map’s channels

along the image axes (see Fig. 3 left). This simple technique
helps distribute information along common triplane axes,
improving performance on geometry metrics.

Multi-layer triplane: As proposed in concurrent work
[1], we improve the EG3D triplane by stacking more chan-
nels along each plane (see Fig. 3 center). The method may
be interpreted as a hybrid between a triplane and a voxel
grid (they are equivalent if the number of layers equals the
spatial size). Setting three layers per plane allows better
spatial disambiguation when bilinearly sampling the vol-
ume, and particularly helps our model generate more plau-
sible backs of heads (a challenge not faced by EG3D).

Losses: We take full advantage of the ground-truth 2.5D
representations afforded to us by our available 3D assets.
Our reconstruction losses include: RGB L1, LPIPS [42],
silhouette L1, and depth L2; these are applied to the front,
back, right, and left orthographic views, as shown in Fig. 3.
A discriminative loss is applied to improve the detail qual-
ity, in addition to maintaining the generation orientation.
We also keep the R1 and density regularization losses from
EG3D training. Our 2.5D representations and adversarial
setup allow us to surpass similar single-view reconstructors
such as PixelNerf [40] which work only with color losses.

Post-processing: We leverage our assumption that front-
orthographic views are given as input, by stitching the given
input onto the generated radiance field at inference. The xy-
coordinates of each pixel’s intersection within the volume
are used to sample the input as a uv-texture map; we cast
few additional rays from each intersection to test for visi-
bility from the front, and apply the retexturing accordingly.
This simple yet effective method improves detail preserva-
tion from the input at negligible cost.

2.2. Illustration-to-Render Module

In order to remove non-realistic contour lines present in
the input illustration, but absent in a diffusely-lit radiance
field, we design an illustration-to-render module (Fig. 4).
Assuming access to unpaired illustrations and renders (our
Vtuber and Vroid datasets, respectively), the shallow net-
work re-generates pixel colors near lines in the drawing in
order to adversarially match the render image distribution.

Similar to unpaired image-to-image models like Cycle-
GAN and UGATIT [19,45], we also impose a small identity
loss; while this may seem counter-productive for our infill-
ing case where identity is preserved in non-generated re-
gions, we found that this stabilizes the GAN training. Note
that our setup also differs from other infilling models, in that
we inpaint to match a distribution different from the input.

Following prior work extracting sketches from line-
based animations [6], we use the simple difference of gaus-
sians (DoG) operator in order to prevent double-line extrac-
tion around each stroke.

While most lines present in the drawing should be re-
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Figure 2. (a) No-line diffuse render, (b) real-lined illustration, (c)
Blender Freestyle [14], (d) RTSC suggestive contours [9]. Toon
shaders over-draw (c, cheeks) or miss lines (d, bowtie); it is non-
trivial to model the artistic line placement in real drawings (b).
Thus, we train our Illustration-to-Render module on real lines
drawn by artists instead of synthetically-added lines.

moved, certain lines around key facial features must be pre-
served as they indeed appear in renderings (eyes, mouth,
nose, etc.). We employ an off-the-shelf anime facial land-
mark detector [16] to create convex hulls around critical
structures, where infilling is disallowed.

We show that this line removal module indeed achieves
a more render-like look; it performs image translation more
accurately than baseline methods when evaluated over our
AnimeRecon pairs (Tab. 4), and removes line artifacts from
the ultimate radiance field renders (Fig. 6).

3. Data

Unless otherwise mentioned, we use 80-10-10 splits for
training, validation, and testing.

3.1. Vroid 3D Dataset

We collect a large dataset of 11.2k 3D anime characters
from VroidHub, in order to train both the reconstruction and
image-to-image translation modules of PAniC-3D. Unlike
previous work in the 3D anime domain using MikuMiku-
Dance PMD/PMX models [17, 18, 20], Vroid VRM models
conform to the GLTF2 standard [15] with several extensions
[37], allowing us to render using ModernGL [10,12]. As the
data is crowd-sourced, we filter against a variety of undesir-
able properties, such as: texture corruption, too much or too
little transparency, extreme character sizes, missing bones,
etc. The 11.2k renders we use represent 70% retension of
our original 16.0k scraped models.

All our image data are rendered with unit ambient light-
ing (e.g. using diffuse surface color only), unit distance
away from the “neck” bone common to VRMs [37]. Our
choice to model only diffuse lighting is motivated by the fre-
quent artistic decision to paint speculars as textures (Tab. 4
row 2, hair and eye highlights on diffuse renders). Adding
specular renderering to painted highlights would introduce
inconsistent lighting effects. Linear blend skinning is used
to lower characters’ arms 60-degrees from their resting T-
pose position. We supersample at 1024px resolution, before
bilinear downsampling to 512px for training and testing.

The dataset for PAniC-3D’s reconstruction module con-
sists of both random perspective views for adversarial train-
ing, and fixed orthographic views for the input and re-
construction losses. Each 3D model is rendered from 8
random perspective views (with uniformly-sampled 360-
degree azimuth, normally-sampled elevation of 20-degree
standard deviation, and fixed 30-degree full field-of-view);
this yields a total of 89.6k perspective images, each with
known camera parameters. The four orthographic views are
taken at fixed 90-degree angles from the front, sides, and
back. The unpaired 3D data for our image-to-image trans-
lation module is simply the front orthographic view of each
character identity.

3.2. Vtuber Portraits Dataset

We gather 1004 portraits from the VirtualYoutuber Fan-
dom Wiki as the unpaired illustration dataset for our image-
to-image module. These portraits were manually filtered
from 15.2k scraped images for desired properties, e.g. high-
resolution, front-facing, neutral-expression, uncropped, etc.
In order to mimic the image distribution of the orthographic
front-view Vroid renders, we white out the backgrounds us-
ing the character segmenter from Chen et al. [7] and select
the largest connected component. In addition, we align the
facial keypoints of each illustration (extracted with a pre-
trained YOLOv3 [16,28]) to match the height and scale dis-
tributions of keypoint detections on the Vroid renders.

While we could add lines artificially, we found toon
shaders [9, 14] to poorly model artistic judgements needed
to place lines on intricate characters (Fig. 2). To avoid these
artifacts, we designed a data-driven Illustr2Render module
to train on real lines drawn by artists.

3.3. AnimeRecon Benchmark

We collect a benchmark set for stylized reconstruction
by finding 68 characters with both 3D models and closely-
aligned illustrations. Specifically, we source from the 3D
mobile game Genshin Impact (for which we can match
character portraits from the Fandom Wiki) and the virtual
talent agency Hololive (from which several members have
both 3D avatars and a Fandom Wiki portrait). As the raw
3D data from both sources comes in MMD format, we con-
vert to VRM using the DanSingSing converter; the render-
ing process is the same as that of Vroid.

The portraits are aligned to their corresponding front-
view orthographic renders by a manually-decided mixture
of YOLOv3 facial keypoints [16, 28] and ORB detections.
We segment out backgrounds using the same model [7] and
procedure as with Vtuber portraits. In order to maintain sep-
aration from training data, we remove all Hololive identities
present in this benchmark set from the Vtuber portraits set.

Inevitably, the illustrations do not all align perfectly with
their corresponding renders, and many Genshin illustrations
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Figure 3. Schematic of the 3D reconstruction module. The front-orthographic input rendering is fed to a series of upsampling convolutions,
with intermediate feature pooling to help distribute information along common triplane axes. The final feature stack is reshaped into a multi-
layer triplane, which is volumetrically rendered and super-resolutioned to the final output. Reconstruction losses are applied to front, left,
right, and back views (right view omitted in figure), and adversarial loss is applied to a random perspective view. (Art attributions in suppl.)

Figure 4. Schematic of the illustration-to-render module. We de-
sign a simple yet effective network to cross the domain gap by
removing illustration contour lines absent in a diffuse 3D render,
while retaining lines present around facial features like the eyes
and mouth. (Art attributions in suppl.)

are cropped when aligned. In order to perform more reason-
able evaluation, we additionally label a rectangular region
of interest (ROI) for each aligned pair, within which the
alignment is appropriate; all 2D image and 3D geometry
metrics reported are restricted to the ROI when calculated.

4. Results & Evaluation

In this section, we provide a breakdown of reconstruc-
tion and image-to-image translation performance, with both

qualitative and quantitative comparison to other baselines.

4.1. 3D Reconstruction Results

4.1.1 Metrics

As shown in Tab. 3, we evaluate over our new AnimeRecon
benchmark using both 2D image and 3D geometry metrics.
All the illustration inputs went through our illustration-to-
render module before being fed to the respective method;
we believe this is a fairer comparison, as all the reconstruc-
tors were trained on renders.

Image metrics are measured by comparing the predicted
radiance field’s integrated image with the ground-truth ren-
der from the same camera viewpoint. We show such mea-
sures for the front orthographic view (which should match
the input), the back orthographic view, and an average of 12
perspective cameras circling the character at 30-degree in-
tervals. For the front and back views, we restrict evaluation
to our AnimeRecon ROI (Fig. 1d); for the 12 circling views,
we crop to the horizontal bounding box strip.

We show standard color metrics like PSNR for complete-
ness, but as there are inevitably imperfections on the Ani-
meRecon illustration-render pairs (even within the ROI),
perceptual metrics like CLIP image cosine similarity [26]
and LPIPS [42] are generally more relevant to quality.

The geometry metrics are on the right of Tab. 3. We
extract meshes from both the ground-truth 3D asset and
the predicted radiance field (through marching cubes), and
delete faces with vertices outside the rectangular prism de-
fined by the ROI annotation (see Fig. 1d top). We then sam-
ple 10k points randomly from each mesh subset, to com-
pute the point-cloud chamfer distance and F-1 scores at
5cm and 10cm [13]. To put F-1 in perspective, the aver-
age Vroid head width is 25.5cm (real heads are 14cm). The
F-1 are low overall, due to larger proportions and protruding
hair/accessories with large surface area.
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Figure 5. Qualitative comparison of baselines. Illustrations with lines removed by our illustration-to-render module are fed to various
reconstruction frameworks; our PAniC-3D system delivers plausible reconstructions, while other methods struggle to preserve identity
and predict reasonable geometry. Note that metrics (Tab. 3) between the displayed ground-truth and prediction are restricted to an ROI
bounding box/rectangular prism (unshown) during evaluation. (Art attributions in suppl.)

front back 360 geom.
CLIP LPIPS PSNR CLIP LPIPS PSNR CLIP LPIPS PSNR CD F-1@5 F-1@10

PAniC-3D (full) 94.66 19.37 16.91 85.08 30.02 15.51 84.68 25.25 15.98 1.33 37.73 65.50
no feature pooling 94.64 19.26 16.95 84.06 30.23 15.53 84.30 25.42 15.96 1.38 35.26 65.51
no multi-layer triplane 94.39 19.99 16.94 84.28 30.37 15.41 84.49 26.13 15.82 1.44 34.55 65.95
no side/back loss 94.54 19.93 16.86 85.50 32.18 14.73 83.98 27.34 15.39 1.56 36.82 58.67
no 2.5D loss 94.10 20.76 17.72 83.27 32.51 15.11 84.58 26.19 15.65 1.37 36.42 63.88
PixelNerf [40] 91.07 22.96 16.76 81.02 32.01 15.74 80.42 24.86 16.31 1.45 35.07 65.50
EG3D+Img2SG [2] 85.90 30.78 13.92 77.78 39.84 12.68 79.78 31.10 13.86 2.05 11.88 23.55
EG3D+PTI [30] 89.90 25.93 15.50 77.37 39.16 13.37 79.78 32.62 14.32 2.19 11.38 23.54
Pifu [31] 75.12 41.62 11.94 75.01 43.63 12.51 73.62 32.45 13.81 1.35 37.37 68.13

Table 3. Ablations and baselines. We evaluate and compare our system using our new AnimeRecon benchmark of illustrations with
their ground-truth 3D reconstructions. Image reconstruction metrics are listed for the front (reconstruction of the given input) and back
orthographic views, as well as averaged over twelve perspective spin-around views. On the right, chamfer distances and F-1 scores [13]
capture the correctness of reconstructed meshes. For fair comparison, lines are preprocessed out of all input images using our illustration-
to-render model, and evaluation is performed within our annotated ROIs. The top two of each category are bolded.
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Figure 6. The effect of our illustration-to-render module on re-
construction. Without our proposed line-infilling method, the re-
construction module trained on contour-less renders is unable to
cross the illustration domain gap. Notice the line artifacts along
the shoulders, and improper contours along the chins. (Art attribu-
tions in suppl.)

Figure 7. 3D reconstruction module ablations. Row 1: feature
pooling helps distribute information across the triplane, and cor-
rectly structures the hair as short. Rows 2+3: the multi-layer
triplane helps disambiguate the front/back, and side/back-view
losses significantly improve both geometry and texture. (Art at-
tributions in suppl.)

Though Mesh R-CNN also proposes the normal consis-
tency metric [13], it is difficult to obtain for our data, as
there are assets with broken ground truth normals (zero val-
ues, inverted meshes). We can calculate rough consistency
by re-estimating all normals, resulting in: Ours 75.6, Pixel-

Nerf 77.5, Img2SG 73.0, PTI 72.7, Pifu 77.3. We observed
that these approximate measures don’t match well with vi-
sual quality, but include them here for completeness.

4.1.2 Baselines

Comparisons are shown between our method and several
other implicit reconstruction methods (Fig. 5). Of the meth-
ods shown, only Pifu [31] receives point-wise signals for
optimization; we see that this works to its detriment, as
the near-surface point sampling strategies bias the model to-
wards certain geometric structures (such as black eyelashes
that often protrude from the face). The other methods us-
ing volumetric rendering inherently weigh the supervision
signal such that the final rendered product is consistent.

Image2stylegan [2] and Pivotal Tuning Inversion [30]
are optimization-based methods of performing single-view
reconstruction, the latter of which was used in EG3D to
demonstrate reconstruction by projection [4]. We train an
EG3D with similar hyperparameters as the Stylegan2 back-
bone used in our reconstruction module, and allow the
two respective baselines to optimize features/weights in the
prior to match the given input. Unfortunately, the EG3D
prior is not sufficient to regularize the optimization, leading
to implausible results; while PTI worked reasonably well
for EG3D, it may not work as well on our setup where the
back of the head must also be projected.

Lastly we compare to our model with the PixelNerf [40]
single-view setup. The key difference in this comparison
is that PixelNerf does not use adversarial nor 2.5D recon-
struction losses (for fairer comparison with us, we trained
PixelNerf with LPIPS in addition to L1, resulting in signifi-
cantly less blurry results). We see that without these signals
provided by our available 3D assets, the quality of details
and geometry does not match up to PAniC-3D.

4.1.3 Ablations

From Tab. 3 and Fig. 7, we conclude that our architec-
ture decisions improve both the qualitative and quantita-
tive performance of our reconstruction system. It is shown
that feature pooling is able to propagate information along
triplane axes to improve generated geometries, the multi-
layer triplane adds additional model capacity to further dis-
ambiguate locations for features, and the addition of fixed
side/back-view losses significantly improves geometry and
texture. Expectedly, removing 2.5D supervision also dete-
riorates performance.

4.2. Illustration-to-Render Results

As shown in Tab. 4 and Fig. 6, our illustration-to-render
model was able to effectively remove contours that would
not appear in renders. We evaluate in Tab. 4 how closely
the translated illustrations match their rendered counterpart
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from the AnimeRecon benchmark (restricted to the ROI an-
notation), and find that we are able to significantly outper-
form naive inpainting [36] as well as off-the-shelf image-to-
image translation systems [19, 45]. The others struggled to
retain key semantic structures like eyes/mouths, and often
failed to retain the original identity.

In Fig. 6, it is shown that removing lines indeed alleviates
the effects of domain transfer between illustrations and their
output predicted radiance field; artifacts like extra contours
and bands along shoulders are significantly reduced using
our line removal strategy.

5. Limitations & Future Work

From the figures comparing the ground-truth 3D model
renders and generated radiance fields, it is evident that this
task is incredibly difficult. Although PAniC-3D performs
better than other baseline methods, there is still a large gap
in quality between our reconstructions and real character
assets; this is still particularly evident for the hind occluded
regions, as well as the areas around the ears connecting the
front and back. Our model is usually able to prevent faces
from appearing on the backside, but still largely relies on
copying the visible portions of accessories to cover the oc-
cluded parts. In the future, we may look into ways of de-
composing the radiance field in an object-centric manner,
and generate accessories through a separate more expres-
sive process. An obvious extension of this work would be to
model full-body characters and exploit more opportunities
given by the Vroid dataset, which supports blendshape fa-
cial expressions, hair physics, full-body rigging, and more.

In conclusion, we propose PAniC-3D, a system to re-
construct stylized 3D character heads directly from illus-
trated portraits of anime characters. Our anime-style do-
main poses unique challenges to single-view reconstruc-
tion when compared to natural images of human heads,
such as hair and accessories with more complex and di-
verse geometry, and non-photorealistic contour lines. Fur-
thermore, there is a lack of both 3D model and portrait il-
lustration data suitable to train and evaluate this ambiguous
stylized reconstruction task. Facing these challenges, our
proposed PAniC-3D architecture crosses the illustration-to-
3D domain gap with a line-filling model, and represents so-
phisticated geometries with a volumetric radiance field. We
train our system with two large new datasets (11.2k Vroid
3D models, 1k Vtuber portrait illustrations), and evaluate
on a novel AnimeRecon benchmark of illustration-to-3D
pairs. PAniC-3D significantly outperforms baseline meth-
ods, and can generate plausible fully-textured geometries
from a single input drawing. We hope that our proposed
system and provided datasets may help establish the styl-
ized reconstruction task.

LPIPS↓ CLIP↑ PSNR↑
Ours 18.26 94.97 16.96
Telea [36] 23.91 93.88 16.67
CycleGAN [45] 21.39 93.81 15.23
UGATIT [19] 39.64 85.48 13.18

Table 4. Illustration-to-render results. Over our AnimeRe-
con benchmark, we calculate perceptual and color metrics be-
tween translated illustrations and their corresponding 3D ren-
ders, restricted to the ROI annotations. Our method crosses the
illustration-render domain gap better than both naive inpainting
(which struggles to retain facial features) and deep image2image
models (which fail to retain identity). LPIPS is scaled by 1e2.
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