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Abstract

Labeling objects with pixel-wise segmentation requires a
huge amount of human labor compared to bounding boxes.
Most existing methods for weakly supervised instance seg-
mentation focus on designing heuristic losses with priors
from bounding boxes. While, we find that box-supervised
methods can produce some fine segmentation masks and we
wonder whether the detectors could learn from these fine
masks while ignoring low-quality masks. To answer this
question, we present BoxTeacher, an efficient and end-to-
end training framework for high-performance weakly su-
pervised instance segmentation, which leverages a sophis-
ticated teacher to generate high-quality masks as pseudo
labels. Considering the massive noisy masks hurt the train-
ing, we present a mask-aware confidence score to esti-
mate the quality of pseudo masks, and propose the noise-
aware pixel loss and noise-reduced affinity loss to adap-
tively optimize the student with pseudo masks. Extensive
experiments can demonstrate effectiveness of the proposed
BoxTeacher. Without bells and whistles, BoxTeacher re-
markably achieves 35.0 mask AP and 36.5 mask AP with
ResNet-50 and ResNet-101 respectively on the challenging
COCO dataset, which outperforms the previous state-of-
the-art methods by a significant margin and bridges the gap
between box-supervised and mask-supervised methods.

1. Introduction
Instance segmentation, aiming at recognizing and seg-

menting objects in images, is a fairly challenging task in
computer vision. Fortunately, the rapid development of
object detection methods [7, 40, 50] has greatly advanced
the emergence of numbers of successful methods [5, 6, 23,
49, 54, 55] for effective and efficient instance segmenta-
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Figure 1. (a) Segmentation Masks from BoxInst. BoxInst
(ResNet-50 [24]) can produce some fine segmentation masks with
weak supervisions from bounding boxes and images. (b) Self-
Training with Pseudo Masks on COCO val. We explore the
self-training to train a CondInst [49] with the pseudo labels gener-
ated by BoxInst. However, the improvements are limited

tion. With the fine-grained human annotations, recent in-
stance segmentation methods can achieve impressive re-
sults on challenging the COCO dataset [34]. Nevertheless,
labeling instance-level segmentation is much complicated
and time-consuming, e.g., labeling an object with polygon-
based masks requires 10.3× more time than that with a 4-
point bounding box [11].

Recently, a few works [25,31–33,51,53] explore weakly
supervised instance segmentation with box annotations or
low-level colors. These weakly supervised methods can ef-
fectively train instance segmentation methods [23, 49, 55]
without pixel-wise or polygon-based annotations and ob-
tain fine segmentation masks. As shown in Fig. 1(a), Box-
Inst [51] can output a few high-quality segmentation masks
and segment well on the object boundary, e.g., the person,
even performs better than the ground-truth mask in details
though other objects may be badly segmented. Naturally,
we wonder if the generated masks of box-supervised meth-
ods, especially the high-quality masks, could be qualified
as pseudo segmentation labels to further improve the per-
formance of weakly supervised instance segmentation.

To answer this question, we first employ the naive
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self-training to evaluate the performance of using box-
supervised pseudo masks. Given the generated instance
masks from BoxInst, we propose a simple yet effective box-
based pseudo mask assignment to assign pseudo masks to
ground-truth boxes. And then we train the CondInst [49]
with the pseudo masks, which has the same architecture
with BoxInst and consists of a detector [50] and a dynamic
mask head. Fig. 1(b) shows that using self-training brings
minor improvements and fails to unleash the power of high-
quality pseudo masks, which can be attributed to two obsta-
cles, i.e., (1) the naive self-training fails to filter low-quality
masks, and (2) the noisy pseudo masks hurt the training
using fully-supervised pixel-wise loss. Besides, the multi-
stage self-training is inefficient.

To address these problems, we present BoxTeacher, an
end-to-end training framework, which takes advantage of
high-quality pseudo masks produced by box supervision.
BoxTeacher is composed of a sophisticated Teacher and
a perturbed Student, in which the teacher generates high-
quality pseudo instance masks along with the mask-aware
confidence scores to estimate the quality of masks. Then the
proposed box-based pseudo mask assignment will assign
the pseudo masks to the ground-truth boxes. The student is
normally optimized with the ground-truth boxes and pseudo
masks through box-based loss and noise-aware pseudo
mask loss, and then progressively updates the teacher via
Exponential Moving Average (EMA). In contrast to the
naive multi-stage self-training, BoxTeacher is more simple
and efficient. The proposed mask-aware confidence score
effectively reduces the impact of low-quality masks. More
importantly, pseudo labeling can mutually improve the stu-
dent and further enforce the teacher to generate higher-
quality masks, hence pushing the limits of the box supervi-
sion. BoxTeacher can serve as a general training paradigm
and is agnostic to the methods for instance segmentation.

To benchmark the proposed BoxTeacher, we adopt
CondInst [49] as the basic segmentation method. On the
challenging COCO dataset [34], BoxTeacher surprisingly
achieves 35.0 and 36.5 mask AP based on ResNet-50 [24]
and ResNet-101 respectively, which remarkably outper-
forms the counterparts. We provide extensive experiments
on PASCAL VOC and Cityscapes to demonstrate its ef-
fectiveness and generalization ability. Furthermore, Box-
Teacher with Swin Transformer [37] obtains 40.6 mask AP
as a weakly approach for instance segmentation.

Overall, the contribution can be summarized as follows:

• We solve the box-supervised instance segmentation
problem from a new perspective, i.e., self-training with
pseudo masks, and illustrate its effectiveness.

• We present BoxTeacher, a simple yet effective frame-
work, which leverages pseudo masks with the mask-
aware confidence score and noise-aware pseudo masks

loss. Besides, we propose a pseudo mask assignment
to assign pseudo masks to ground-truth boxes.

• We improve the weakly supervised instance segmenta-
tion by large margins and bridge the gap between box-
supervised and mask-supervised methods, e.g., Box-
Teacher achieves 36.5 mask AP on COCO compared
to 39.1 AP obtained by CondInst.

2. Related Work
Instance Segmentation. Methods for instance segmenta-
tion can be roughly divided into two groups, i.e., single-
stage methods and two-stage methods. Single-stage meth-
ods [5, 49, 58, 62] tend to adopt single-stage object detec-
tors [35, 50], to localize and recognize objects, and then
generate segmentation masks through object enmbeddings
or dynamic convolution [9]. Wang et al. present box-free
SOLO [54] and SOLOv2 [55], which are independent of ob-
ject detectors. SparseInst [13] and YOLACT [5], aiming for
real-time inference, achieve great trade-off between speed
and accuracy. Two-stage methods [14, 23, 27, 29] adopt
bounding boxes from object detectors and RoIAlign [23] to
extract the RoI (region-of-interest) features for object seg-
mentation, e.g., Mask R-CNN [23]. Several methods [14,
27, 29] based on Mask R-CNN are proposed to refine the
segmentation masks for high-quality instance segmentation.
Recently, many approaches [7, 10, 12, 17, 20, 63] based on
transformers [18, 52] or the Hungarian algorithm [46] have
made great progress in instance segmentation.

Weakly Supervised Instance Segmentation. Considering
the huge cost of labeling instance segmentation, weakly
supervised instance segmentation using image-level labels
or bounding boxes gets lots of attention. Several meth-
ods [1, 2, 64, 66] exploit image-level labels to generate
pseudo masks from activation maps. Khoreva et.al. [28]
propose to generate pseudo masks with GrabCut [42] from
given bounding boxes. BoxCaseg [53] leverages a saliency
model to generate pseudo object masks for training Mask R-
CNN along with the multiple instance learning (MIL) loss.
Recently, many box-supervised methods [25, 31, 33, 51]
combines the MIL loss or pairwise relation loss from low-
level features obtain impressing results with box annota-
tions. In comparison with BoxInst [51], BoxTeacher inher-
its the box supervision [51] but concentrates more on the
novel training paradigm and exploiting noisy pseudo masks
for high-performance box-supervised instance segmenta-
tion with box annotations. Different from DiscoBox [31]
based on mean teacher [48], BoxTeacher aims at a simple
yet effective training framework with obtaining high-quality
pseudo masks and learning from noisy masks.

Semi-supervised Learning. Pseudo labeling [3,21,41] and
consistency regularization [4, 30, 43, 44, 59] have greatly
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advanced the semi-supervised learning, which enables the
training on large-scale unlabeled datasets. Recently, semi-
supervised learning has been widely used in object de-
tection [36, 45, 60] and semantic segmentation [8, 56, 61]
and demonstrated its effectiveness. Motivated by high-
quality masks from box supervision, we adopt the success-
ful pseudo labeling and consistency regularization to de-
velop a new training framework for weakly supervised in-
stance segmentation. Compared to [22] which has simi-
lar motivation but aims for semi-supervised object detec-
tion with labeled images and extra point annotations, Box-
Teacher addresses box-supervised instance segmentation
with box-only annotations. Compared to [26, 47] which
adopt multi-stage training and combine weakly supervised
and semi-supervised learning, BoxTeacher is a one-stage
framework without pre-trained labelers.

3. Naive Self-Training with Pseudo Masks

Revisiting Box-supervised Methods. Note that box-only
annotations is sufficient to train an object detector, which
can accurately localize and recognize objects. Box-
supervised methods [31, 33, 51] based on object detectors
mainly exploit two exquisite losses to supervise mask pre-
dictions, i.e., the multiple instance learning (MIL) loss and
the pairwise relation loss. Concretely, according to the
bounding boxes, the MIL loss can determine the positive
and negative bags of pixels of the predicted masks. Pair-
wise relation loss concentrates on the local relations of pix-
els from low-level colors or features, in which neighboring
pixels have the similar color will be regarded as a positive
pair and should output similar probabilities. The MIL loss
and pairwise relation loss enables the box-supervised meth-
ods to produce the complete segmentation masks, and even
some high-quality masks with fine details.

Naive Self-Training. Considering that the box-supervised
methods can produce some high-quality masks without
mask annotations, we adopt self-training to utilize the high-
quality masks as pseudo labels to train an instance seg-
mentation method with full supervision. Specifically, we
adopt the successful BoxInst [51] to generate pseudo in-
stance masks on the given dataset X = {X ,Bg}, which
only contains the box annotations. For each input image
X , let {Bp, Cp,Mp} denote the predicted bounding boxes,
confidence scores, and predicted instance masks, respec-
tively. We propose a simple yet effective Box-based Pseudo
Mask Assignment algorithm in Alg. 1 to assign the pre-
dicted instance masks to the box annotations via the con-
fidence scores and intersection-over-union (IoU) between
ground-truth boxes Bg and predicted boxes Bp. The hyper-
parameters τiou and τc are set to 0.5 and 0.05, respectively.
The assigned instance masks will be rectified by removing
the parts beyond the bounding boxes. Then, we adopt the

dataset X̂ = {X ,Bg,Mg} with pseudo instance masks to
train an approach, e.g., CondInst [49].

Naive Self-Training is Limited. Fig. 1(b) and Tab. 7 pro-
vide the experimental results of using naive self-training
pseudo masks. Compared to the pseudo labeler, using self-
training brings minor improvements and even fails to sur-
pass the pseudo labeler. We attribute the limited perfor-
mance to two issues, i.e., the naive self-training fails to
exclude low-quality masks and the fully-supervised loss is
sensitive to the noisy pseudo masks.

Algorithm 1: Box-based Pseudo Mask Assignment

Input: predicted boxes Bp∈RN×4, predicted masks
Mp∈RN×H×W , confidence score Cp∈RN ,
ground-truth boxes Bg∈RK×4.

Parameter: IoU threshold τiou, confidence
threshold τc.

Output: assigned pseudo masksMg∈RK×H×W .
1 Initialize output masksMg with empty (0),

assignment index A∈RK with −1;
2 Filter the predictions by the confidence threshold τc;
3 Sort the confidence score Cp in descending order

with output indices S ∈ NN ;
4 foreach prediction i in S do
5 Initialize u← −1, v ← −1;
6 for j = 1 to K do
7 iouij = ComputeIoU(Bpi ,B

g
j );

8 if Aj > 0 then
9 continue;

10 end
11 if iouij ≥ τiou and iouij ≥ u then
12 u← iouij , v ← i;
13 end
14 if v > 0 then
15 Assign maskMp

i to maskMg
v ;

16 Aj ← i;
17 end
18 end
19 end

4. BoxTeacher

In this section, we present BoxTeacher, an end-to-end
training framework, which aims to unleash the power of
pseudo masks. In contrast to multi-stage self-training, Box-
Teacher, consisting of a teacher and a student, simultane-
ously facilitates the training of the student and pseudo la-
beling of the teacher. The mutual optimization is beneficial
to both the teacher and the student, thus leading to higher
performance for box-supervised instance segmentation.

3147



Teacher 
!!

Student 
!"

EMA

Pseudo
Labeling

Scoring

0.89

0.65

0.44

Box-based 
Mask Assignment

Boxes, Pseudo Masks

ℒpseudo

box sup. mask sup.

Box Annotations

ℒ!"#

ℒ$%&'()*
ℒ+,(-'()*

filter & assign

Strong Aug

Figure 2. The Architecture of BoxTeacher. Images are firstly fed into the Teacher to obtain the pseudo masks and estimate the quality
of masks. Then the box-based mask assignment filters and assigns pseudo masks to box annotations. The Student adopt the augmented
images (i.e., random scale or color jittering) and pseudo masks to update the parameters by gradient descent and then update the Teacher
with exponential moving average (EMA).

4.1. Architecture

The overall architecture of BoxTeacher is depicted in
Fig. 2. BoxTeacher is composed of a teacher and a stu-
dent, which shares the same model. Given the input im-
age, the teacher fθ straightforwardly generates the predic-
tions, including the bounding boxes, segmentation masks,
and mask-aware confidence scores. Similarly, we apply
the box-based pseudo mask assignment in Alg. 1 to as-
sign the predicted masks to the ground-truth annotations.
Inspired by consistency regularization [36, 44, 45, 59], we
adopt strong augmentation for images (e.g., color jittering)
fed into the student fξ and the student is optimized under the
box supervision and the mask supervision. To acquire high-
quality pseudo masks, we adopt the exponential moving av-
erage to gradually update the teacher from student [48], i.e.,
fθ ← α · fθ + (1− α) · fξ (α is empirically set 0.999).

Mask-aware Confidence Score. Considering that the gen-
erated pseudo masks are noisy and unreliable, which may
hurt the performance, we define the mask-aware confidence
score to estimate the quality of the pseudo masks. Inspired
by [54], we denote mb

i ∈ RH×W and mi ∈ RH×W as the
box-based binary masks and sigmoid probabilities of the i-
th pseudo mask with the detection confidence ci, the mask-
aware confidence score si is defined as follows:

si =

√√√√ci ·
∑H,W

x,y 1(mi,x,y > τm) ·mi,x,y ·mb
i,x,y∑H,W

x,y 1(mi,x,y > τm) ·mb
i,x,y

, (1)

where 1(·) is the indicator function, τm is the threshold for
binary masks and set to 0.5. The mask-aware score cal-
culates the average probability score of the positive masks
inside the ground-truth boxes, and the higher average proba-
bility means more confident pixels in the mask. In addition,
we explore several kinds of quality scores and compare with
the mask-aware score in experiments.

Training Loss. BoxTeacher can be end-to-end optimized
with box annotations and the generated pseudo masks.
The overall loss is defined as: L = Ldet + Lbox-sup +
Lmask-sup, which consists of the standard detection loss Ldet,
the box-supervised loss Lbox-sup, and the mask-supervised
loss Lmask-sup. We inherit the detection loss defined in
FCOS [49], and we follow previous works [25, 31, 51] to
adopt the max-projection loss and the color-based pairwise
relation loss [51] for box-supervised mask loss Lbox-sup.

4.2. Noise-aware Pseudo Mask Loss

The goal of BoxTeacher is to take advantage of high-
quality pseudo masks in a fully supervised manner while re-
duce the impact of the noisy or low-quality instance masks.
To this end, we present the noise-aware pseudo mask loss
in Eq. (2). Ideally, BoxTeacher can leverage the pseudo
masks to calculate the fully-supervised pixel-wise segmen-
tation loss, e.g., dice loss [38]. Besides, we also pro-
pose a novel noise-reduced mask affinity loss Laffinity to en-
hance the pixel-wise segmentation with neighboring pixels.
Further, we employ the proposed mask-aware confidence
scores {si} as weights for the pseudo mask loss, which
adaptively scales the weights for pseudo masks of different
qualities. The total pseudo mask loss is defined as follows:

Lmask-sup=
1

Np

Np∑
i=1

si·(λpLpixel(m
p
i ,m

g
i )+λaLaffinity(m

p
i ,m

g
i )),

(2)
where mp

i and mg
i denotes the i-th predicted masks and

pseudo masks, Np denotes the number of valid pseudo
masks, λpixel and λaffinity are set to 0.5 and 0.1 respectively.
To stabilize the training, we adopt a linear warmup strategy
for pseudo mask loss at the beginning of the training, i.e.,
the first 10k iterations.
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Noise-reduced Mask Affinity Loss. considering pseudo
masks contain much noise while neighboring pixels in lo-
cal regions (e.g., 3×3) tend to have similar semantics or
labels, we exploit label affinities among pixels within local
regions to alleviate label noise. Given the i-th pixel sigmoid
probability gi of the pseudo segmentation, we first calculate
the refined pixel probability g̃i with its neighboring pixels,
which is defined as follows:

g̃i =
1

2
(gi +

1

|P|
∑
j∈P

gj), (3)

where P denotes the set of neighboring pixels, e.g., a 3× 3
region. This refinement can reduce the outliers and enhance
the pixels with local context. Then, We present a simple
noise-reduced mask affinity loss and define the affinity µij

between i-th and j-th pixels as follows:

µij = g̃i · g̃j + (1− g̃i) · (1− g̃j), (4)

where g̃i and g̃j are refined pixels which encode the local
context. Then the noise-reduced mask affinity loss for i-th
pixel is defined as follows:

Laffinity=−

∑
j∈P

1(µij >τa)(log(pi · pj)+log((1−pi)·(1−pj)))∑
j∈P

1(µij > τa)
,

(5)
where j ∈ P are the neighboring pixels of the i-th pixel and
τa is set to 0.5 as default. pi denotes the i-th pixel of the
predicted mask.

5. Experiments
In this section, we mainly evaluate the proposed

BoxTeacher on the COCO dataset [34], the Cityscapes
dataset [15], and the PASCAL VOC 2012 dataset [19], and
provide extensive ablations to analyze the proposed method.

Datasets. The COCO dataset contains 80 categories and
110k images for training, 5k images for validation, and 20k
images for testing. The Cityscapes dataset, aiming for per-
ception in driving scenes, consists of 5000 street-view high-
resolution images, in which 2975, 500, and 1525 images are
used for training, validation, and testing, respectively. Fore-
ground objects in Cityscapes are categorized into 8 classes
and fine-annotated with pixel-wise segmentation labels in-
stead of polygons adopted in COCO, thus making the label-
ing process much costly. The PASCAL VOC 2012 dataset
has 20 categories and and consists of 10582 images for
training amd 1449 images for validation. For weakly su-
pervised instance segmentation, we only keep the bounding
boxes and ignore the segmentation masks during training.

Implementation Details. The proposed BoxTeacher is im-
plemented based on PyTorch [39] and we mainly adopt

CondInst [49] as the meta method for instance segmen-
tation. The backbone networks are initialized with the
ImageNet-pretrained weights and the BatchNorm layers are
frozen. All BoxTeacher models are trained over 8 GPUs.

Data Augmentation. For images input to the student, we
adopt random horizontal flip and the multi-scale augmenta-
tion which randomly resizes images from 640 to 800 as the
basic augmentation. In addition, we randomly apply color
jittering, grayscale, and Gaussian blur for stronger augmen-
tation. While the images fed into the teacher are fixed to
800× 1333 without perturbation.

5.1. Instance Segmentation on COCO

Experimental Setup. Following the training recipes [49–
51], BoxTeacher is trained with 16 images per batch. Un-
less specified, we adopt the standard 1× schedule (90k it-
erations) [23,57] with the SGD and the initial learning rate
0.01. For comparisons with the state-of-art methods, we
scale up the learning schedule to 3× (270k iterations).

Main Results. Tab. 1 shows the main results on COCO
test-dev. In comparison with other state-of-the art
methods, we evaluate the proposed BoxTeacher with differ-
ent backbone networks, i.e., ResNet [24] and Swin Trans-
former [37], and under different training schedules, i.e.,
1× and 3×. It’s clear that BoxTeacher with ResNet-
50 achieves 32.9 mask AP, which outperforms other box-
supervised methods [31, 51] even with longer schedules.
Compared to recent BoxInst [51], BoxLevelSet [33] and
DiscoBox [31], BoxTeacher significantly brings about 3.0
mask AP improvements based on ResNet-50 and ResNet-
101 under the same setting. Remarkably, BoxTeacher
also bridges the gap between mask-supervised methods
and box-supervised methods, e.g., the gap between Box-
Teacher based on ResNet-101 and CondInst is reduced to
2.6 AP. With the stronger backbones, e.g., Swin Trans-
former [37], BoxTeacher can surprisingly obtain 40.6 mask
AP on COCO dataset, which is highly competitive as a
weakly supervised method for instance segmentation.

5.2. Instance Segmentation on PASCAL VOC

Experimental Setup. BoxTeacher is trained for 15k it-
erations with 16 images per batch. Following previous
works [31–33], we report COCO-style AP and AP under
4 thresholds, i.e., {0.25, 0.5, 0.70, 0.75}.

Main Results. Tab. 2 shows the comparisons with the
state-of-the-art methods on PASCAL VOC 2012. Com-
pared to recent box-supervised methods [31, 33, 51], the
proposed BoxTeacher achieves better results under different
IoU thresholds, which remarkably outperforms BoxInst and
DiscoBox by large margins. Notably, BoxTeacher obtains
significant improvements under higher IoU thresholds.
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Table 1. Results on COCO Instance Segmentation. Comparisons with state-of-the-art methods on COCO test-dev. With the same
backbone or learning schedule, BoxTeacher surprisingly surpasses the counterparts by large margins (more than 2.0 mask AP). †: trained
without strong augmentation. ‘R-50’ and ‘R-101’ denote ResNet-50 and ResNet-101, and ‘DCN’ denotes deformable convolution [16,65].

Method Backbone Schedule AP AP50 AP75 APs APm APl

Mask-supervised methods.
Mask R-CNN [23] R-50-FPN 1× 35.5 57.0 37.8 19.5 37.6 46.0

CondInst [49] R-50-FPN 1× 35.9 57.0 38.2 19.0 38.6 46.7

CondInst [49] R-50-FPN 3× 37.7 58.9 40.3 20.4 40.2 48.9

CondInst [49] R-101-FPN 3× 39.1 60.9 42.0 21.5 41.7 50.9

SOLO [54] R-101-FPN 6× 37.8 59.5 40.4 16.4 40.6 54.2

SOLOv2 [54] R-101-FPN 6× 39.7 60.7 42.9 17.3 42.9 57.4

Box-supervised methods.
BoxInst [51] R-50-FPN 3× 32.1 55.1 32.4 15.6 34.3 43.5

DiscoBox [31] R-50-FPN 3× 32.0 53.6 32.6 11.7 33.7 48.4

BoxTeacher† R-50-FPN 1× 32.9 54.1 34.2 17.4 36.3 43.7

BoxTeacher R-50-FPN 3× 35.0 56.8 36.7 19.0 38.5 45.9

BBTP [25] R-101-FPN 1× 21.1 45.5 17.2 11.2 22.0 29.8

BBAM [32] R-101-FPN 1× 25.7 50.0 23.3 - - -
BoxCaseg [53] R-101-FPN 1× 30.9 54.3 30.8 12.1 32.8 46.3

BoxInst [51] R-101-FPN 3× 33.2 56.5 33.6 16.2 35.3 45.1

BoxLevelSet [33] R-101-FPN 3× 33.4 56.8 34.1 15.2 36.8 46.8

BoxLevelSet [33] R-101-DCN-FPN 3× 35.4 59.1 36.7 16.8 38.5 51.3

DiscoBox [31] R-101-DCN-FPN 3× 35.8 59.8 36.4 16.9 38.7 52.1

BoxTeacher R-101-FPN 3× 36.5 59.1 38.4 20.1 40.2 47.9

BoxTeacher R-101-DCN-FPN 3× 37.6 60.3 39.7 21.0 41.8 49.3

BoxTeacher Swin-Base-FPN 3× 40.6 65.0 42.5 23.4 44.9 54.2

Table 2. Results on PASCAL VOC. Comparisons with the state-
of-the-art methods on PASCAL VOC 2012 val. All methods
adopt box-only annotations.

Method Backbone AP AP25 AP50 AP70 AP75

SDI [28] VGG-16 - - 44.8 - 16.3

BoxInst [51] R-50 34.3 - 59.1 - 34.2

DiscoBox [31] R-50 - 71.4 59.8 41.7 35.5

BoxLevelSet [33] R-50 36.3 76.3 64.2 43.9 35.9

BoxTeacher R-50 38.6 77.6 66.4 46.1 38.7

BBTP [25] R-101 - 75.0 58.9 30.4 21.6

Arun et al. [2] R-101 - 73.1 57.7 33.5 31.2

BBAM [32] R-101 - 76.8 63.7 39.5 31.8

BoxInst [51] R-101 36.4 - 61.4 - 37.0

DiscoBox [31] R-101 - 72.8 62.2 45.5 37.5

BoxLevelSet [33] R-101 38.3 77.9 66.3 46.4 38.7

BoxTeacher R-101 40.3 78.4 67.8 48.0 41.3

5.3. Instance Segmentation on Cityscapes

Experimental Setup. Following previous methods [23,
49], we train all models for 24k iterations with 8 images per
batch. The initial learning rate is 0.005. Cityscapes contains
high-resolution images (2048×1024), and we randomly re-
size images from 800 to 1024 for the student and keep the
original size for the teacher during training. In addition, we

also adopt the COCO pre-trained models (1× schedule) to
initialize the weights for higher performance.

Main Results. Tab. 3 shows the evaluation results on
Cityscapes val. BoxTeacher outperforms previous box-
supervised methods significantly, especially with the
COCO pre-trained weights. Though performance gap be-
tween fully supervised methods and weakly supervised
methods become larger than that in COCO, the human
labour of labeling pixel-wise segmentation for a high-
resolution Cityscapes image is much costly (90 minutes per
image). And we hope future research can bridge the gap be-
tween box-supervised methods and mask-supervised meth-
ods for high-resolution images.

5.4. Ablation Experiments

Effects of Pseudo Mask Loss. In Tab. 4, we explore the
different pseudo mask loss for BoxTeacher. Firstly, we ap-
ply the box-supervised loss proposed in [51] achieves 30.7
mask AP (gray row). As shown in Tab. 4, directly applying
binary cross entropy (bce) loss with pseudo masks leads to
severe performance degradation, which can be attributed to
the foreground/background imbalance and noise in pseudo
masks. Using dice loss to supervise the training with pseudo
masks can bring significant improvements in comparison to
the baseline. Adding mask affinity loss Laffinity provides 0.4
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Figure 3. Visualization Results. We provide the visualization results of BoxTeacher with ResNet-101 on the COCO test-dev. The
proposed BoxTeacher can produce the high-quality segmentation results, even in some complicated scenes.

Table 3. Results on Cityscapes Instance Segmentation. Com-
parisons with state-of-the-art methods for mask AP on Cityscapes
val. †: our re-produced results on Cityscapes based on the public
code.‘fine’ denotes the Cityscapes train with fine annotations
while ‘fine+COCO’ denotes using COCO pre-trained weights.
For box-supervised methods, we remove the fine-grained mask an-
notations in Cityscapes.

Method Data AP AP50

Mask-supervised methods.
Mask R-CNN [23] fine 31.5 -
CondInst [49] fine 33.0 59.3

CondInst [49] fine + COCO 37.8 63.4

Box-supervised methods.
BoxInst† [51] fine 19.0 41.8

BoxInst† [51] fine + COCO 24.0 51.0

BoxLevelSet† [33] fine 20.7 43.3

BoxLevelSet† [33] fine + COCO 22.7 46.6

BoxTeacher fine 21.7 47.5

BoxTeacher fine + COCO 26.8 54.2

AP gain based on the dice loss. Moreover, we ablate the
loss weights in pseudo mask loss in Tab. 5.

Effects of Mask-aware Confidence Score. Tab. 6 explores
several different scores to estimate the quality of pseudo
masks in an unsupervised manner, i.e., (1) classification
scores (cls), (2) matched IoU between predicted boxes and
ground-truth boxes (iou), (3) mean entropy of the pixel
probabilities of pseudo masks (mean-entropy: s = 1 +

1
HW

∑H,W
i,j (pij log pij+(1−pij) log(1−pi,j))), (4) the pro-

posed mask-aware score (mask-aware). As Tab. 6 shows,
using the proposed mask-aware confidence score leads to
better performance for BoxTeacher. Notably, measuring the
quality of predicted masks is critical but challenging for
leverage pseudo masks. Accurate quality estimation can ef-
fectively reduce the impact of noisy masks

Comparisons with Self-Training Paradigm. We adopt
the box-supervised approach, i.e., BoxInst [51], to gener-
ate pseudo masks, which is pre-trained on COCO with box-
only annotations. And then we assign the pseudo masks
to the ground-truth boxes through the assignment Alg. 1.
As shown in Tab. 7, the improvements provided by self-
training are much limited and the naive self-training even
performs worse than the training with box-only annotations,
e.g., CondInst with R-50 and 3× schedule obtains 31.3 AP
with pseudo masks, but inferior to the box-supervised ver-
sion (31.8 AP). Though the self-training scheme enables the
supervised training with pseudo masks and achieves com-
parable performance, we believe the high-quality pseudo
masks are not well exploited. Significantly, BoxTeacher
achieves higher mask AP compared to both self-training,
in an end-to-end manner without complicated steps or pro-
cedures for label generation.

Effects of the Strong Data Augmentation. In this study,
we explore the effect of strong augmentation on the pro-
posed BoxTeacher, and apply augmentation to the input
images of the student. Specifically, we defined two lev-
els of data augmentation in A.1 (in Appendix), i.e., strong
augmentation and weak augmentation. As Tab. 8 shows,
both strong and weak augmentation hurt the performance
of CondInst and BoxTeacher under the 1× training sched-
ule. Differently, BoxTeacher is more robust to the augmen-
tations as the mask AP drops 0.4 compared to CondInst.
However, BoxTeacher remarkably benefits more from the
strong data augmentation when increasing the schedule to
3×. In comparison to CondInst, BoxTeacher with strong
augmentation will enforce the consistency between the stu-
dent and teacher. Interestingly, Tab. 8 indicates that using
strong augmentation is merely beneficial to the weakly su-
pervised instance segmentation (+0.6 AP), but has no ef-
fect to the fully supervised object detection (+0.1AP), sug-
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Table 4. Pseudo Mask Loss. We eval-
uate the effects of different loss for Box-
Teacher.

Lpixel Laffinity AP AP50 AP75

✗ - 30.7 52.5 31.2

bce - 28.9 49.2 29.5

dice - 31.8 53.1 32.8

dice ✓ 32.2 53.5 33.2

Table 5. Effect of the Weights of Pseudo
Mask Loss. We adopt λpixel = 0.5 and
λaffinity =0.1 as the default setting.

λpixel λaffinity AP AP50 AP75

0.1 - 31.4 53.0 32.4

0.5 - 31.8 53.1 32.8

1.0 - 31.5 52.8 32.3

0.5 0.1 32.2 53.5 33.2

0.5 0.5 31.7 52.8 32.8

Table 6. Effects of Mask Score. We evalu-
ate different mask scores, and it shows that the
mask-aware confidence performs better.

Mask Score AP AP50 AP75

✗ 32.2 53.5 33.2

cls 32.0 53.5 33.1

iou 32.2 53.5 33.4

mean-entropy 31.8 53.3 32.6

mask-aware 32.6 53.5 33.8

Table 7. Comparison with Naive Self-Training. As discussed in Sec. 3, we leverage the pre-trained BoxInst to generate pseudo mask
labels and assign the pseudo masks to the ground-truth boxes. Then we adopt the pseudo masks and train the CondInst with different
schedules and backbones. †: the mask AP achieved by the pseudo labeler, i.e., BoxInst, with box-only annotations. ‡: the ideal mask AP
could be achieved by CondInst if trained with box annotations following BoxInst.

Method Backbone Schedule Pseudo Label AP† AP‡ AP AP50 AP75

CondInst R-50 1× BoxInst, R-50 30.7 30.7 31.0 53.1 31.6

CondInst R-50 3× BoxInst, R-50 30.7 31.8 31.3 53.8 31.7

CondInst R-50 3× BoxInst, R-101 33.0 31.8 32.5 54.9 33.2

CondInst R-101 3× BoxInst, R-101 33.0 33.0 32.9 55.4 33.7

BoxTeacher R-50 1× End-to-End - - 32.6 53.5 33.8

BoxTeacher R-50 3× End-to-End - - 34.2 56.0 35.4

BoxTeacher R-101 3× End-to-End - - 35.2 57.1 36.8

Table 8. The Effects of Data Augmentation. We explore whether
strong data augmentation will be beneficial to BoxTeacher, which
has been widely exploited in semi-supervised methods. We apply
weak and strong augmentation to both CondInst and the proposed
BoxTeacher. APb and APm denote the AP for box and mask.

Method Schd. weak strong APb APm

CondInst 1× 39.6 36.2

CondInst 1× ✓ 39.6 35.6−0.6

CondInst 1× ✓ 39.2 35.3−0.9

BoxTeacher 1× 39.4 32.6

BoxTeacher 1× ✓ 39.1 32.4−0.2

BoxTeacher 1× ✓ 38.8 32.2−0.4

CondInst 3× 41.9 37.5

CondInst 3× ✓ 42.0 37.6+0.1

BoxTeacher 3× 41.7 34.2

BoxTeacher 3× ✓ 41.8 34.8+0.6

Table 9. Ablations on Exponential Moving Average. We eval-
uate the performance of BoxInst w/ or w/o EMA to make it clear
whether the improvements are brought by EMA in BoxTeacher.

Method w/ EMA APbbox AP AP50 AP75

BoxInst ✗ 39.3 30.6 52.2 31.0

BoxInst ✓ 39.4 30.7 52.5 31.2

gesting that consistency regularization might facilitate the
learning from noisy pseudo masks.

Effects of Exponential Moving Average. To see whether
EMA could partially bring some performance improve-

ments, we re-train BoxInst with EMA to obtain the aver-
aged model to evaluate the performance. Tab. 9 shows that
applying EMA has little impact to the final performance,
proving that the improvements of BoxTeacher are mainly
brought by the effects of pseudo masks.

Qualitative Comparisons. Fig. 3 provides visualization
results of the proposed BoxTeacher on the COCO test-dev.
Even with box-only annotations, BoxTeacher can output
high-quality segmentation masks with fine boundaries.

6. Conclusions

In this paper, we explore the naive self-training with
pseudo labeling for box-supervised instance segmentation,
which is much limited by the noisy pseudo masks. To ad-
dress this issue, we present an effective training framework,
namely BoxTeacher, which contains a collaborative teacher
and perturbed student for mutually generating high-quality
masks and training with pseudo masks. We adopt mask-
aware confidence scores to measure the quality of pseudo
masks and noise-aware mask loss to train the student with
pseudo masks. In the experiments, BoxTeacher achieves
promising improvements on COCO, PASCAL VOC, and
Cityscapes datasets, indicating that the proposed training
framework is effective and can achieve higher level of
weakly supervised instance segmentation.
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