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Abstract

The task of Visual Question Answering (VQA) is known
to be plagued by the issue of VOA models exploiting bi-
ases within the dataset to make its final prediction. Various
previous ensemble based debiasing methods have been pro-
posed where an additional model is purposefully trained to
be biased in order to train a robust target model. How-
ever, these methods compute the bias for a model simply
from the label statistics of the training data or from single
modal branches. In this work, in order to better learn the
bias a target VQA model suffers from, we propose a gener-
ative method to train the bias model directly from the target
model, called GenB. In particular, GenB employs a gener-
ative network to learn the bias in the target model through
a combination of the adversarial objective and knowledge
distillation. We then debias our target model with GenB as
a bias model, and show through extensive experiments the
effects of our method on various VQA bias datasets includ-
ing VOA-CP2, VQA-CP1, GQA-OOD, and VQA-CE, and
show state-of-the-art results with the LXMERT architecture
on VQA-CP2.

1. Introduction

Visual Question Answering (VQA) [5] is a challenging
multi-modal task that requires a model to correctly under-
stand and predict an answer given an input pair of image and
question. Various studies have shown that VQA is prone to
biases within the dataset and tend to rely heavily on lan-
guage biases that exists within the dataset [2, 17,51], and
VQA models tend to predict similar answers only depend-
ing on the question regardless of the image. In response
to this, recent works have developed various bias reduction
techniques, and recent methods have exploited ensemble
based debiasing methods [7, 13, 19,4 1] extensively.

Among ensemble based methods, additional models are
introduced to concurrently learn biases that might exist
within each modality or dataset. For example, in works
such as [7, 19], the Question-Answer model is utilized to
determine the language prior biases that exist when a model
is asked to give an answer based solely off of the question.
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Figure 1. Given a Question Type (“What color is...”), we show all
of the averaged answers within the training dataset. The answer
computed from the entire training dataset is the known dataset
label average or dataset bias as in [13, 19]. We see that the
averaged model predictions of the Question-Answer Model and
Visual-Question-Answer Model are significantly different.

This Question-Answer model is then utilized to train a ro-
bust “target” model, which is used for inference. The key
purpose of an ensemble “bias” model is to capture the biases
that are formed with its given inputs (i.e., language prior bi-
ases from the Question-Answer model). In doing so, if this
model is able to represent the bias well, this bias model can
be used to teach the target model to avoid such biased an-
swers. In other words, the better the bias model can learn
the biases, the better the target model can avoid such biases.

Existing ensemble based methods either use pre-
computed label statistics of training data (GGE-D [19] and
LMH [13]), or single modal branches that compute the an-
swer from either the question or image [7,13,19,37]. How-
ever, we conjecture that there is a limit to the bias repre-
sentation that can be obtained from such methods, as the
model’s representative capacity is limited by its inputs. In
addition, pre-computed label statistics represents only part
of the bias [19]. As shown in Fig. 1, given a question type,
the pre-computed label statistics (or known dataset bias) are
noticeably different to the predictions of a model trained
with the question or with the image and question. This dis-
crepancy signifies that there is a part of the bias that we can-
not fully model simply with the previous methods. There-
fore, we propose a novel stochastic bias model that learns
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the bias directly from the target model.

More specifically, to directly learn the bias distribution
of the rarget model, we model the bias model as a Gen-
erative Adversarial Network (GAN) [16] to stochastically
mimic the target model’s answer distribution given the same
question input by introducing a random noise vector. As
seen through literature, most biases are held within the
question [2], so we use questions as the main bias modal-
ity. To further enforce this, we utilize knowledge distil-
lation [20] on top of adversarial training to force the bias
model to be as close as possible to the target model, so
that the target model learns from harder negative supervi-
sion from the bias model. Finally, with our generative bias
model, we then use our modified debiasing loss function to
train our target model. Our final bias model is able to train
the target model that outperforms previous uni-modal and
multi-modal ensemble based debiasing methods by a large
margin. To the best of our knowledge, we are the first to
train the bias model by directly leveraging the behavior of
the target model using a generative model for VQA.

To show the efficacy and robustness of our method, we
perform extensive experiments on commonly used robust-
ness testing VQA datasets and various different VQA ar-
chitectures. Our method show the state-of-the-art results on
all settings without the use of external human annotations
or dataset reshuffling methods.

Our contributions are as follows:

* We propose a novel bias model for ensemble based
debiasing for VQA by directly leveraging the target
model that we name GenB.

* In order to effectively train GenB, we employ a Gener-
ative Adversarial Network and knowledge distillation
loss to capture both the dataset distribution bias and
the bias from the target model.

* We achieve state-of-the-art performance on VQA-
CP2, VQA-CP1 as well as the more challenging GQA-
OOD dataset and VQA-CE using the simple UpDn
baseline without extra annotations or dataset reshuf-
fling and state-of-the-art VQA-CP2 peformance on the
LXMERT backbone.

2. Related Work

VQA [5, 18, 25] has been actively studied in recent
years with performance reaching close to human perfor-
mance [11, 34, 36,44, 45] in the most recent works. Even
still, the VQA dataset has been notorious for its reliance
on language biases as shown by [3]. To this date, many
VQA datasets and evaluation protocols have been derived
from the original VQA dataset and have been released to
the public as a means to test and understand the biases and

robustness of VQA models such as VQA-CP2 and CP1 [3],
GQA-OOD [26], and VQA-CE [14].

In light of this, many methods have been proposed. One
line of work strives to improve visual attention through vi-
sual grounding by including additional human annotations
or explanations [42,48], which show limited improvements.
Another line of work changes the distribution of the train-
ing set by either randomly or systematically replacing the
images and questions [10,46,47,49,52] or by augmenting
the dataset through counterfactual samples [9] or through
the use of an external inpainting network [15]. Although
powerful, according to [37], changing the distribution of
the training set does not agree with the philosophy of the
creation of this dataset. Therefore, we do not directly com-
pare experimentally with this line of works. Most recently,
another line of work has been released where an additional
objective of Visual Entailment is added to further boost per-
formance [43], which we do not compare for fairness. An-
other recent work focuses on distilling knowledge from the
some of the aforementioned methods to train a robust stu-
dent model [38]. As this method is built upon other meth-
ods, we compare to this method where possible.

One of the most effective line of work is ensemble
based methods [1,7, 19,37] and we place our line of work
here. Within ensemble based methods, AReg [ 1], RUBIi [7],
LMH [13], GGE [19] tackle the language prior directly and
only use a question-only model. Unlike these methods,
GGE [19] shows the possibility of using the same model as
the target model to learn biases but to a limited extent. On
the other hand, CF-VQA [37] uses both question and im-
age, but uses the modalities individually without combining
them. Our work is distinct from all previous ensemble based
methods as we use a generative network with a noise input
to aid the bias model in learning the bias directly from the
target model. We also believe that our work can be applied
to other multi-modal [6, 22, 23, 28, 31-33] and uni-modal
research [39] tasks in the future.

3. Methodology

In this section, we explain VQA briefly and describe in
detail our method GenB.

3.1. Visual Question Answering Baseline

With an image and question as a pair of inputs, a VQA
model learns to correctly predict an answer from the whole
answer set \A. A typical VQA model F(-,-) takes both
a visual representation v € R"*% (a set of feature vec-
tors computed from a Convolutional Neural Network given
an image where n is the number of objects in an image
and d, being the vector dimension) and a question rep-
resentation ¢ € R% (a single vector computed from a
GloVe [40] word embedding followed by a Recurrent Neu-
ral Network given a question) as input. Then, an atten-
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Figure 2. (a) shows how we train our Bias Model and Discriminator. The Bias Model is trained with 3 different losses including the ground
truth BCE (Eq. (1)), knowledge distillation (Eq. (3)), and adversarial Eq. (2)) losses. (b) shows how our Target Model is trained with the
Bias model with debiasing loss functions (refer to existing works). Note, steps (a) and (b) happen concurrently and note that we only use

the Target Model during inference.

tion module followed by a multi-layer perceptron classifier
F :R™dv x R% — RIAl which generates an answer logit
vectory € Rl (i.e.,y = F(V,Q)). Then, after applying a
sigmoid function o (+), our goal is to make an answer prob-
ability prediction o (y) € [0, 1]! close to the ground truth
answer probability y,; € [0, 1]/, In this work, we adopt
one of the popular state-of-the-art architectures UpDn [4]
that is widely used in VQA debiasing research.

3.2. Ensembling with Bias Models

In this work, our scope is bias mitigation through en-
sembling bias models similar to previous works [7, 13, 19].
In ensemble based methods, there exist a “bias” model that
generates y, € RIMI, which we define as Fy(-,-), and a
“target” model, defined as F'(-,-). Note that, we discard
Fy(-,-) during testing and only use F'(-,-). As previously
mentioned, the goal of the existing bias models is to overfit
to the bias as much as possible. Then, given the overfitted
bias model, the target model is trained with a debiasing loss
function [7, 13, 19] to improve the robustness of the target
model. Ultimately, the target model learns to predict an un-
biased answer by avoiding the biased answer from the bias
model. The bias model Fj(-, -) can either be the same or dif-
ferent from the original F'(-, -) and there could be multiple
models as well [37]. Although previous works try to lever-
age the bias from the individual modalities [7, 13, 19, 37],
we propose that this limits the ability of the model to repre-
sent biases. Hence, in order to represent the biases similar
to the target model, we set the architecture of Fy(-,-) to be
the same as F'(-, -) and we use the UpDn [4] model.

3.3. Generative Bias

As mentioned in the Sec. 1, as our goal is to train a
bias model that can generate stochastic bias representations,
we use a random noise vector in conjunction with a given
modality to learn both the dataset bias and the bias that
the target model could exhibit. As the question is known
to be prone to bias, we keep the question modality and
use it as the input to our bias model Fj(,-). But instead
of using the image features, we introduce a random noise

vector z € R"*12® in addition to a generator network
G : Rx128 _ Rnxdv (o generate the corresponding in-
put to the bias model Fy(-,-). Formally, given a random
Gaussian noise vector z ~ N(0, 1), a generator network
G(-) synthesizes a vector that has the same dimension as
the image feature representation, i.e., v = G(z) € R"*%,
Ultimately, our model takes in the question q and G(z)
as its input and generates the bias logit y}, in the form
F,(G(z),q) = yb. Note, this can be done on another
modality, (i.e., F;(G(z),v) = yb), but we found this is
unhelpful. For simplicity, we consider generator and bias
model as one network and rewrite F},(G(z), q) in the form
Fy.c(z,q) and call our “Generative Bias” method GenB.

3.4. Training the Bias Model

In order for our bias model GenB to learn the biases
given the question, we use the traditional VQA loss, the
Binary Cross Entropy Loss:

Lor(Fr) = Lpop(o(Fra(2,9)),Ygt)- 1)

However, unlike existing works, we want the bias model to
also capture the biases in the target model. Hence, in order
to mimic the bias of the target model as a random distri-
bution of the answers, we propose adversarial training [16]
similar to [29] to train our bias model. In particular, we in-
troduce a discriminator that distinguishes the answers from
the target model and the bias model as “real” and “fake”
answers respectively. The discriminator is formulated as
D(F(v,q)) and D(F}, ¢(z,q)) or rewritten as D(y) and
D(ys). The objective of our adversarial network with gen-
erator F}, (-, -) and D(-) can be expressed as follows:

minmax Lgan (Fy.q, D), where
Fb,G D ’

Laan(Fy,a, D)

:vﬂjjq {log (D(F(V7q)))} 2)
+ gz []og (1 — D(FbﬂG(ZaQ)))}

=Ey [ log (D(y))| + By, [log (1 - D(v1))]
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The generator (I} ) tries to minimize the objective
(Lcan) against an adversarial discriminator (D) that tries
to maximize it. Through alternative training of D and F}, ¢,
the distribution of the answer vector from the bias model
(yp) should be close to that from the target model (y).

In addition, to further enforce bias model to capture
the intricate biases present in the target model, we add
an additional knowledge distillation objective [20] similar
to [12,27,30,32,33] to ensure that the model bias model
is able to follow the behavior of the target model with only
the q given to it. We empirically find that it is beneficial
to include a sample-wise distance based metric such as KL
divergence. This method is similar to the approaches in the
image to image translation task [21]. Then, the goal of the
generator is not only to fool the discriminator but also to try
to imitate the answer output of the target model in order to
give the target model more challenging supervision in the
form of hard negative sample synthesis. We add another
objective to our adversarial training for F}, (-, -):

Laistin(Fy,a) = ](Ei [DKL (F(V»Q)HFb,G(Z»Q))}' 3)
Ultimately, the final training loss for the bias model, or
GenB, is as follows:

min max Lgens(Fy., D), where
Fb.,G D ’

EGenB (Fb,Ga D) =
Lean(Fy.c, D) + M Laistin(Fp.c) + NoLar(Fra),
€]

where A1 and Ao are the loss weight hyper-parameters.

3.5. Debiasing the Target Model

Given a generated biased answer yy, there are several de-
biasing loss functions that can be used such as [7, 13, 19],
and we show the effects of each one in Table 5. The
GGE [19] loss is one of the best performing losses without
the use of label distribution. The GGE loss takes the bias
predictions/distributions and generates a gradient in the op-
posite direction to train the target model. With this starting
point, we modify this equation with the ensemble of the bi-
ased model GenB in this work as follows:

£target(F) = LBCE(Y) YDL)a (5)

where the i-th element of the pseudo-label ypy, is defined
as follows:

Ypr =min (1, 2-y;, -o(=2-yi,-y3)), (6

where y?, and y; are the i-th element of the ground truth
and the output of the biased model respectively. The key
point of difference is that unlike [19] that suppresses the
output of the biased model with the sigmoid function, we

use y, without using the sigmoid function. In this case,
as the value of ypy, can exceed 1, we additionally clip the
value so that the value of y o, is bounded in [0, 1]. We em-
pirically find these simple modifications on the loss function
significantly improves the performance. We conjecture the
unsuppressed biased output y; allows our target model to
better consider the intensity of the bias, leading to a more
robust target model. In addition, when we train the target
model, we empirically find a trend trend where instead of
using the noise inputs as in F} (2, q), using the real im-
ages as such Fj(v,q), is more effective, hence we use the
output of F,(v, q) to train our target model. When the bias
model is trained, it is trained with a noise vector to halluci-
nate the possible biases when only given the question, how-
ever, when we give it the real image, we find from Fig. 3
that the output changes more drastically.

4. Experiments

In this section, we explain our experimental setting and
show our quantitative and qualitative experimental results.

4.1. Setup

Dataset and evaluation metric. We conduct our experi-
ments within the VQA datasets that are commonly used for
diagnosing bias in VQA models. In particular, we test on
the VQA-CP2 and VQA-CP1 datasets [3] and the GQA-
OOD dataset [26]. For evaluation on all datasets, we take
the standard VQA evaluation metric [5]. In addition to this,
we also evaluate our method on the VQA-CE [14], which
is based on the VQA v2 dataset, and is a newly introduced
VQA evaluation protocol for diagnosing how reliant VQA
models are on shortcuts.

Baseline architecture. Unless otherwise stated, we adopt
a popular VQA baseline architecture UpDn [4] as both our
ensemble bias model F}, and our target model F'. We list the
details of the generator and discriminator in the supplemen-
tary material. During training, we train both the bias model
and target model together, then we use the target model only
for inference.

4.2. Results on VQA-CP2 and VQA-CP1

We compare how our method GenB performs in rela-
tion to the recent state-of-the-art methods that focus on bias
reduction as shown in Table 1. For VQA-CP2, we first
list the baseline architectures in the first section. Then,
we compare our method to the methods that modify lan-
guage modules (DLR [24], VGQE [35]), strengthen visual
attention (HINT [42], SCR [48]), ensemble based meth-
ods, (AReg [41], RUBIi [7], LMH [13], CF-VQA [37],
GGE [19]) and balance training data by changeing the
training distribution (CVL [1], Randlmg [46], SSL [52],
CSS [9], Mutant [15], D-VQA [47], KDDAug [10]) in
the respective sections. Among the balancing training data
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VQA-CP2 test

VQA-CPI test

Method Base

All Yes/No Num  Other All Yes/No Num  Other
SAN [50] - 2496  38.35 11.14 21.74 3250 3686 1247 36.22
GVQA [3] - 31.30 5799 13.68 22.14 3923 6472 11.87 24.86
S-MRL [7] - 38.46  42.85 12.81 43.20 36.38 4272 12.59 40.35
UpDn [4] - 3994 4246 1193 45.09 36.38 4272 42.14 40.35
Methods based on modifying language modules
DLR [24] UpDn 48.87 7099 18.72 45.57 - - - -
VGQE [35] UpDn  48.75 - - - - - - -
VGQE [35] S-MRL 50.11 66.35 27.08 46.77 - - - -
Methods based on strengthening visual attention
HINT [42] UpDn 46.73  67.27 10.61 45.88 - - - -
SCR [48] UpDn 4945 7236 1093 48.02 - - - -
Methods based on ensemble models
AReg [41] UpDn 41.17 6549 1548 3548 4343 7416 1244 25.32
RUBI [7] UpDn 4423  67.05 17.48 39.61 5090 80.83 13.84 36.02
LMH [13] UpDn 5245 69.81 4446 4554 5527 7647  26.66 45.68
CF-VQA(SUM) [37] UpDn 5355 91.15 13.03 4497 57.03 89.02 17.08 41.27
CF-VQA(SUM) [37] S-MRL 55.05 90.61 2150 45.61 57.39 88.46 14.80 43.61
CF-VQA(SUM) [37] + IntroD [38] S-MRL 55.17 90.79 1792 46.73 - - - -
GGE [19] UpDn 57.32 87.04 27.75 49.59 - - - -
GenB (Ours) UpDn 59.15 88.03 40.05 49.25 62.74 86.18 43.85 47.03
Methods based on balancing training data
CVL [1] UpDn 42.12 4572 1245 48.34 - - -
RandImg [46] UpDn 5537 83.89 41.60 44.20 - - - -
SSL [52] UpDn 57.59 86.53 29.87 50.03 - - - -
CSS [9] UpDn 5895 8437 4942 4821 60.95 85.60 40.57 47.03
CSS [9] + IntroD [38] UpDn 60.17 89.17 4691 48.62 - - - -
MUTANT [15] UpDn 61.72 8890 49.68 50.78 - - - -
D-VQA [47] UpDn 6191 88.93 5232 50.39 - - - -
KDDAug [10] UpDn 60.24 86.13 55.08 48.08 - - - -

Table 1. Experimental results on VQA-CP2 and VQA-CPI test set. Best and second best results are styled in this manner within the
column. We do not directly compare to methods that change the distribution of the training data as it does not go with the philosophy of

VQA-CP [
shows the best performance by a noticeable margin.

methods, while some methods swap the image and ques-
tions from the supposed pairs [46, 47, 52], counterfactu-
als based methods generate counterfactual samples masking
critical words or objects [9] or by using an external inpaint-
ing network to create a new subset of data [ 5]. In addition,
as IntroD [38] is seen as a technique built on top of certain
previous methods, we include the scores in their respective
categories. Our model (GenB) is in line with the ensem-
ble models listed. Following previous works [37], we do
not compare to methods that change training distribution
as these methods conflict with the original intent of VQA-
CP (which is to test whether VQA models rely on prior
training data [3]) and are listed in the bottom of Table 1.

In Table 1, our method achieves state-of-the-art per-

] (which is to test whether VQA models rely on prior training data [3]). Among the compared baselines, our method GenB

formance on VQA-CP2, surpassing the second best
(GGE [19]) by 1.83%. The performance of our model on
all three categories (“Yes/No,” “Num,” “Other”) are within
top-3 consistently for the same backbone architecture. Our
method also performs highly favorably on “Other”.

We also show how our method performs on the VQA-
CP1 dataset, which is a subset of the VQA-CP2 dataset.
Note that not all of the baselines are listed as we only
list the scores that are available in the respective pa-
pers. Our method also shows the state-of-the-art results
on this dataset with a significant performance improvement
over the second best among the methods compared, CF-
VQA(SUM) [37]. Even when compared to the available
method CSS [8], that we do not compare as it is considered
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GQA-OOD Test

Method

All Tail Head Avg
UpDn [4] 46.87 42.13 49.16 45.65
RUBI [7] 45.85 4337 4737 4537
LMH [13] 4396 40.73 4593 43.33
CSS [9] 4424 4120 46.11 43.66

GenB (Ours) 4943 45.63 51.76 48.70

Table 2. Experimental results on the GQA-OOD dataset. Our
method shows the best performance in all the metrics compared
to the state-of-the-art methods by a significant margin. The results
show that our method robust on GQA-OOD as well.

Method VQA-CE

Overall Counter Easy
UpDn [4] 63.52 3391  76.69
RUBI [7] 61.88 3225  75.03
LMH [13] 61.15 3426  73.13
RandImg [46]  63.34 3441  76.21
CSS [9] 53.55 3436  62.08

GenB (Ours)  57.87 3480  68.15

Table 3. Evaluation on the VQA-CE protocol. Ours shows the best
performance in counterexamples (listed as Counter) which is the
main scope of the VQA-CE.

unfair according to [37], our method shows a significant gap
in performance. Compared to the second best method, CF-
VQA(Sum) [37] on UpDn, our method improves the overall
performance by 5.60% while also having the best perfor-
mance in both “Num” and “Other” category, by 3.28% and
2.41% performance improvements respectively.

4.3. Results on GQA-OOD

Recently, a new dataset for VQA debiasing, the GQA-
OOD [26] dataset, has been released and to test the de-
biasing ability of our method, we show our results in Ta-
ble 2. We compare our method to available recent state-
of-the-art ensemble based methods RUBIi [7], LMH [13],
and CSS [9]. Our method shows the best performance in
all metrics compared to the state-of-the-art methods by a
significant margin. Even when compared to methods that
show similar performance to GenB in VQA-CP2 like CSS,
GenB significantly outperforms it in GQA-OOD by 5.19%
in Overall. Interestingly, although all of the listed pre-
vious methods outperform the base UpDn model in other
datasets, they show a performance degradation on GQA-
OOD. Unlike these methods, our method GenB is able to
increase performance on GQA-OOD, showing the robust-
ness of GenB.

4.4. Results on VQA-CE

We further evaluate our method on the newly intro-
duced evaluation protocol that measures how much a VQA

VQA-CP2 test

Training Loss Bias Model

All Yes/No Num Other
BCE UpDn 39.94 4246 1193 45.09
BCE GenB 5698 88.82 19.39 49.86
BCE + DSC GenB 56.54  89.06 2129 49.79
BCE + Distill GenB 57.06 8891 2324 49.65
BCE + DSC + Distill GenB 59.15 88.03  40.05 49.25

Table 4. We ablate the different losses we use to train the GenB
bias model. All inferences scores are based on the target model
except the first row. BCE loss is Eq. (1), which is the ground truth
VQA loss. DSC refers to the discriminator loss Eq. (4) and Distill
refers to the KL Divergence loss Eq. (3). Although the DSC and
Distill losses independently do not show large improvement, our
final model with all losses show a large margin of improvement.

model depends on shortcuts called VQA-CounterExamples
(VQA-CE) [14] in Table 3. This dataset is based on the
VQA v2 dataset and lists three categories: Overall, Easy,
and Counter; which are the total score on VQA v2 valida-
tion set, the subset of samples where the shortcuts of im-
age/question give the correct answer, and the subset of sam-
ples where the shortcuts of image/question give incorrect
answers respectively. Although the overall score for VQA-
CE is dependent on the VQA v2 performance, we show that
our model shows the best performance on Counter, which is
the main point of interest in this dataset.

4.5. Ablation Studies

Our method (GenB) includes several different compo-
nents as shown from Sec. 3.3 to Sec. 3.5. To understand the
effects of each component, we run an ablation study on the
VQA-CP2 dataset. For all experiments, the results are of
the target model and as the purpose of the bias model is to
capture bias instead of correctly predicting the answers, we
do not consider the predictions of the bias model. For all our
ablation tables, we also add the UpDn baseline in the first
row, the model in which our target model and bias model
is based on for comparison. To further understand whether
GenB can be applied to other networks, we further include
an ablation study of GenB on other VQA architectures.
Bias model training analysis. We ablate on the different
losses we use to train the bias model from the target model
and list our findings in Table 4 with BCE denoting the
ground truth VQA loss Eq. (1), DSC denoting the discrim-
inator loss Eq. (4), and Distill denoting the KL Divergence
distillation loss Eq. (3). GenB trained on the BCE loss is
already significantly helpful in debiasing the target model.
Adding the DSC and Distill losses individually show simi-
lar performance to the GenB trained with BCE loss. How-
ever, by doubling down on the two losses, DSC and Distill,
the model is better able to capture the biases held within
the model, hence giving the significant performance boost.
In addition, as the bias model and target model are trained
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Ensemble Debias Loss  Bias Model VQA-CP2 test

All Yes/No Num  Other
- UpDn 3994 4246 1193 45.09
GGE [19] UpDn 4740 6445 1396 47.64
Our Loss UpDn 5247 88.20 30.09 40.38
RUBI [7] GenB 30.77 7278  12.15 13.87
LMH [13] GenB 5399 75.89 44.62 45.08
GGE [19] GenB 49.51  70.63  14.08 48.16
Ours Loss GenB 59.15 88.03 40.05 49.25

Table 5. Ablation of ensemble debiasing loss functions and our
debiasing loss function Eq. (5). Note that our loss improves the
score of using the vanilla UpDn model when compared to GGE
by a large margin. Note that GenB works best with our loss and
shows a large performance improvement from GGE + GenB.

VQA-CP2 test

Bias Model

All Yes/No Num  Other
UpDn 3994 4246 1193 45.09
UpDn 5247 8820 30.09 40.38
Visual-Answer 41.03  42.69 12.66 47.93
Question-Answer 56.68 89.30 20.78 49.43
GenB Visual 49.54  72.05 12.58 47.89

GenB Question (Ours) 59.15 88.03  40.05 49.25

Table 6. Ablation of different bias models with our modified
loss. We fix the target model architecture to be the UpDn model
and show the performance of the target model by changing the
bias model architecture between UpDn, Question-Answer model,
Visual-Answer model, our GenB model but with image and gen-
erated noise, and our GenB model, which has question and gener-
ated noise. We show that our loss works with other networks, and
although other networks can be helpful in debiasing, our model,
GenB with question and noise is the best performing model by far.

concurrently, without a ground truth anchor (BCE loss), the
model performs extremely poorly, and we conjecture that
the bias model struggles to learn any meaningful bias. Note
that BCE + DSC shows the best Yes/No score while our
final model shows the best score in Num score. We conjec-
ture that the bias model trained with our adversarial training
framework is good at modeling the bias for simple answers
like Yes/No while the bias with more complex answers like
counting is hard to learn only with the adversarial training.
We conclude that combining our knowledge distillation loss
to the adversarial training is essential to learn the bias with
complex answers including the Num category.
Debiasing loss function analysis. We list in Sec. 3.5 the
different losses we can use for debiasing and we show our
results in Table 5. We also list our new debiasing loss
function Eq. (5) and how it performs when a vanilla UpDn
model is used instead of the GenB.

We analyze how GGE’s loss function fairs when the
vanilla UpDn model is used as a bias model. In the second
and third row, although the GGE loss improves the score

VQA-CP2 test

Architecture A Gap
All Yes/No Num  Other
UpDn [4] 3994 4246 11.93  45.09 +19.21
UpDn [4] + GenB 59.15 88.03 40.05 49.25 -
BANT [34] 37.35 4196 12.08 41.71 +20.02
BAN' [34] + GenB 57.37 89.11 29.52 4837 .
SANT [50] 38.65 40.59 1298 44.67 +18.07
SANT [50] + GenB 56.72 88.84 19.04 50.22 .
LXMERT [45] 46.23 4284 1891 5551 +24.93

LXMERT [45] + GenB (Ours Best) 71.16 9224 6471 61.89
Reported LXMERT Performance

LXMERT [45] + MUTANT [15] 69.52  93.15 67.17 57.78
LXMERT [45] + D-VQA [47] 69.75 8043 5857 67.23
LXMERT [45] + SAR [43] 62.12  85.14 41.63 55.68

Table 7. Ablation of GenB on different architectures. ' signi-
fies our re-implementation. We find that adding GenB to other
backbones show consistent improvement, showing that GenB is
applicable on other baselines. Note that we include the reported
LXMERT based performance in the last 4 rows. LXMERT +
GenB is state-of-the-art among all reported VQA-CP2 [15,43,47].

from the baseline by introducing a bias model, our loss ex-
ceeds the performance by 5.07%. In the last two sections,
we show the debiasing losses with the full GenB model with
all training losses and other debiasing losses. Compared to
GGE with GenB, our loss with GenB shows a 9.64% perfor-
mance gap. Given the GGE loss, the performance increase
from the bias model is only 2.11%, whereas our debias-
ing loss function is able to boost the score from the vanilla
UpDn to GenB by 6.68%. We conjecture that as our loss
function accounts for the amount of bias a model captures,
and the generative bias model is able to stochastically model
the bias, our loss function captures the bias in a much more
dynamic and helpful manner.

Effect of different bias models. We run an ablation ex-
periment to understand the effects of different bias models
and the addition of the Generator G(-) and its effects on the
performance of the target model in Table 6. We fix the tar-
get model as the UpDn model and show the performance of
the target model by changing the bias model. Note that the
results are from the predictions of the target model, not the
bias model, and the top row is the UpDn baseline. We in-
clude the UpDn model as a bias model, the Visual-Answer
model, which is a model that takes an image in as its in-
put and predicts the answer, the Question-Answer model,
which takes in a question and predicts the answer, GenB
Visual model, which takes in an image together with noise
to predict the answer, and our model GenB Question, which
is the model we have shown up until this point. These mod-
els are used to debias the target model with our modified
debiasing loss function. We show that even adding noise
to the image can be helpful, however, we find that our fi-
nal model, the model with question and noise, outperforms
other methods significantly.

Effect on different backbones. We further experiment
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Bias Model with Noise 1  Bias Model with Noise 2
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Ground Truth

Bias Model with Noise 3 Bias Model with V Target Model

Q: What color is the balloon?

pink: 0.77 pink: 0.79 pink: 0.80 pink: 0.94 white: 0.66
purple: 0.67 purple: 0.68 purple: 0.68 purple: 0.84 clear: 0.08
. blue: 0.59 blue: 0.59 blue: 0.59 orange: 0.76 pink: 0.03
GT: white: 1.0
orange: 0.59 orange: 0.58 orange: 0.59 yellow: 0.69 cream: 0.03
red: 0.56 red: 0.56 red: 0.57 blue: 0.67 beige: 0.02
w >,
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& k !
Q: What color is the man’s black: 0.65 black: 0.65 black: 0.65 black: 0.78 gray: 0.67
shirt? brown: 0.64 brown: 0.64 brown: 0.64 brown: 0.72 white: 0.09
white: 0.61 white: 0.61 white: 0.61 white: 0.70 tan: 0.02
GT: gray: 1.0 green: 0.60 green: 0.60 green: 0.60 green: 0.70 blue: 0.01
g yellow: 0.58 yellow: 0.57 yellow: 0.57 yellow: 0.68 green: 0.01

e
. oy
v |

no: 0.99

yes: 0.47
unknown: 0.00
not sure: 0.00
can’t tell: 0.00

no: 0.99

yes: 0.48
unknown: 0.00
not sure: 0.00
can’t tell: 0.00

l Q: Is this a cheese pizza? I

GT:yes: 1.0

no: 0.99

yes: 0.47
unknown: 0.00
not sure: 0.00
can’t tell: 0.00

no: 0.99

yes: 0.47
unknown: 0.00
not sure: 0.00
can’t tell: 0.00

yes: 0.48
pizza: 0.01
unknown: 0.00
not sure: 0.00
can’t tell: 0.00

Figure 3. Qualitative results showing the predictions and attention scores of our target model and the bias model. We show the attention
of the bias model with different noise to see where it would attend to. We also input the real image into the bias model to visualize the
attention. The bias model’s attention changes each time and does not attend to the critical areas of the image.

on the robustness of our method GenB and its applicabil-
ity to other VQA backbones (SAN [50], BAN [34], and
LXMERT [45]) as shown in Table 7. For each architecture,
we set both the target model and GenB model to be the same
architecture. We show that GenB consistently shows signif-
icant performance improvements on all backbones, signify-
ing that GenB is not simply limited to the UpDn setting.
Note that LXMERT + GenB shows the highest LXMERT
performance as reported in [15, 43, 47], which is the ab-
solute state-of-the-art VQA-CP2 score so far. We believe
this opens up a possibility for future works where different
backbones can be mixed and matched for further debiasing.

4.6. Qualitative Results

We visualize the attention and predictions of our target
and bias models in Fig. 3. We run the bias model three
times with different noise to show the varying attention and
biased predictions. We also input the corresponding image
with the question to see where the model would attend, and
find that the attention is once again random as the image is
previously unseen. As expected, the bias model’s predic-
tions change each time. Even with the same question type
(e.g., what color), we find the biased model’s predictions
are noticeably different. We find the target model is able

to correctly attend to the salient region while predicting the
correct answer by virtue of the bias model.

5. Conclusion

In this paper, we started with the intuition “the better
the bias model, the better we can debias the target model.
Then how can we best model the bias?” In response, we
present a simple, effective, and novel generative bias model
that we call GenB. We use this generative model to learn
the bias that may be inhibited by both the distribution and
target model with the aid of generative networks, adver-
sarial training, and knowledge distillation. In addition, in
conjunction with our modified loss function, our novel bias
model is able to debias our target model, and our target
model achieves state-of-the-art performance on various bias
diagnosing datasets and architectures.
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