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Abstract

Weakly-supervised Video Anomaly Detection is the task
of detecting frame-level anomalies using video-level labeled
training data. It is difficult to explore class representative
features using minimal supervision of weak labels with a
single backbone branch. Furthermore, in real-world sce-
narios, the boundary between normal and abnormal is am-
biguous and varies depending on the situation. For exam-
ple, even for the same motion of running person, the ab-
normality varies depending on whether the surroundings
are a playground or a roadway. Therefore, our aim is
to extract discriminative features by widening the relative
gap between classes’ features from a single branch. In the
proposed Class-Activate Feature Learning (CLAV), the fea-
tures are extracted as per the weights that are implicitly
activated depending on the class, and the gap is then en-
larged through relative distance learning. Furthermore, as
the relationship between context and motion is important
in order to identify the anomalies in complex and diverse
scenes, we propose a Context–Motion Interrelation Mod-
ule (CoMo), which models the relationship between the ap-
pearance of the surroundings and motion, rather than uti-
lizing only temporal dependencies or motion information.
The proposed method shows SOTA performance on four
benchmarks including large-scale real-world datasets, and
we demonstrate the importance of relational information by
analyzing the qualitative results and generalization ability.

1. Introduction
Video anomaly detection (VAD) in surveillance systems

refers to the identification of undefined, unusual, or unseen

abnormal events (e.g., traffic accidents, robberies, and other

unforeseeable events) from amongst normal situations with

temporal intervals. Currently, numerous CCTVs installed

in public places such as banks, streets, and buildings record
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Re-identification and masked face recognition based on CCTV camera)

Figure 1. Concept of proposed method. We extract discrimina-

tive features that (a) are activated according to normal or abnormal

classes, and (b) enlarge their gaps using relative distance learning.

Furthermore, by projecting features into an interaction space, we

(c) explore relationships between the context and motion informa-

tion of the scene. For detecting anomalies, the proposed method

considers not only motion but also its relationship with the context.

For example, (d) shows a normal video with a physical fighting in

a basketball game while (e) shows an abnormal fighting video. The

red highlighted ranges are ground-truth abnormal frames and ours

(red line) accurately detects anomalies without false alarms.

our daily life and play an important role in public safety.

However, because it is time-consuming and laborious for

humans to pinpoint anomalies in petabytes of surveillance

videos or to monitor constantly, the VAD task, which pro-

vides automatic and instantaneous responses, is a hot topic

in the field of deep learning [5, 26].

Weakly-supervised VAD (WVAD) utilizes minimal

knowledge about abnormal events through video-level la-

beled training data that only has a label stating whether an

abnormal event exists in each video clip or not. WVAD

faces several challenges. First, it is difficult for the network

to learn to classify anomalies at the frame-level through

weak labeled training data. Therefore, most WVAD meth-

ods [13,20,31,35] learn through a Multiple Instance Learn-

ing (MIL)-based approach. When normal and abnormal

video clips are divided into multiple snippets and each is
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contained in a negative and positive bag, there is at least one
abnormal snippet in the positive bag. Therefore, the MIL
approach assumes that the highest abnormality score in the
positive bag derives from the abnormal snippet, and forces
it to be 1 while the highest score in the negative bag is set to
0. However, given that 1) the boundary between normal
and abnormal is ambiguous in the real world, there is a
limit to regression learning that forces the predicted score of
snippets to a fixed values. Tian et al. [33] and Wu et al. [37]
forced the gap between classes through feature learning by
enlarging the feature magnitude and adjusting the distance
of the feature with the center feature, respectively. How-
ever, 2) it is difficult to extract the discrepancy of fea-
tures from a single-branch model for enlarging the gap
(shown in Fig. 7). Another challenging issue neglected in
previous studies is that in real-world scenarios, for a com-
plex and diverse scene, the definition of ‘abnormal event’
can differ depending on the context and motion relation-
ship. Zhu et al. [47] extracted appearance-invariant features
by utilizing only optical flow data to focus on moving parts,
while [24,33,42] focused on temporal dependencies to con-
sider multi-scale temporal information. However, 3) focus-
ing only on motion or temporal information and even
excluding appearance information leads to an incomplete
understanding of complex scenes.

In complex scenes, the boundary between normal and
abnormal is ambiguous, and the distinction sometimes dif-
fers depending on the situation. That is, rather than having
a fixed explicit prior to the abnormal class, it is necessary
to implicitly learn class representative features by relatively
comparing each class. Furthermore, abnormal events oc-
curring in the real world vary depending on the relationship
between context and motion. For example, in Fig. 1, (d)
a physical skirmish during a basketball game is a normal
and acceptable event; but (e) a physical fight on the street
is an abnormal event. Thus, the same motion has a differ-
ent class depending on the relationship between motion and
surrounding or appearance. Therefore, our motivation is to
extract class-activated features by considering the relative
boundary between classes and to understand the reciprocal
relationship between context and motion information.

To overcome the aforementioned challenges, we propose
distance learning that adjusts the interval between normal
and abnormal through 1) relative feature distance rather
than individual values such as magnitude or score. This
adjusts the relative distance between the hard-negative nor-
mal sample and the abnormal sample based on the intra-
class variance of normal samples. In addition, 2) Class-
Activate Feature Learning (CLAV) is proposed with an
add-on Implicit Class-Activate (ICA) module to implicitly
activate representative features from a single branch for
each class with Class-Specific (CS) loss function as an aux-
iliary task to explore each normal or abnormal pattern. Fur-

thermore, for the first time in WVAD, we address the impor-
tance of the relationship between static and dynamic infor-
mation for WVAD and propose 3) a Context-Motion In-
terrelation Module (CoMo) that has a dynamic path and a
context path focusing on motion and appearance, respec-
tively, in the scene, for modeling the relationship between
these two information. Then, each feature is projected from
the temporal space to the interaction space and correlate
propagation is performed by the graph convolution module.
As shown in Fig. 1, (a) the CLAV feature enlarged the gap
by (b) distance learning and explored relational information
through (c) CoMo, and has no false alarm in (d) the basket-
ball game scene with physical fighting, and shows accurate
temporal localization in (e) the abnormal scene with fight-
ing. We evaluate and discuss the effectiveness of the pro-
posed method on four weak-labeled benchmarks, including
large-scale real-world dataset UCF-Crimes [31] and XD-
Violence [38], and it showed SOTA results.

2. Related Works
Weakly-supervised Video Anomaly Detection. As abnor-
mal data are difficult to acquire and annotate for training
owing to their rarity in the real world, many studies have
been conducted in an unsupervised manner using recon-
structive autoencoders [1, 12, 14, 28, 46] and frame predict-
ing networks [22, 32] that model normal patterns through a
training set consisting of a large number of normal videos
without labels and estimate the abnormal regions through
out-of-distribution. Although this approach has the advan-
tages of easy data acquisition and no labeling cost, it detects
patterns other than the training data as anomalies, which
results in high false-positives and a severe bias in normal
training data. To alleviate this issue, WVAD methods using
weakly-labeled training data (annotated normal or abnor-
mal in video-level) aim to differentiate between normal and
anomalous through minimal supervision of abnormal events
in order to avoid overfitting on prior information. WVAD
approaches [9, 19, 30, 31, 43, 45] have shown substantially
improved performance compared to labeling cost. Zhong et
al. [45] proposed a label correcting method by propagating
supervision signals from high-confidence video snippets to
the low-confidence ones based on the feature similarity and
temporal consistency. Zhang et al. [41] proposed a robust
method on the unseen patterns, which learns to determine
unseen open data. Sapkota et al. [30] used the dynamic non-
parametric hierarchical clustering technique to efficiently
group temporally and semantically similar segments.
MIL-based Methods on WVAD. Many WVAD stud-
ies [31, 33, 35, 37, 44] have attempted to detect anoma-
lies based on the MIL framework. Maximum score-based
MIL method [31] have shown promising result by maxi-
mizing the highest score gap between two classes. Further-
more, score distance learning approaches [35,44] have been
proposed, which leverage the highest and lowest anomaly
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Figure 2. Overall proposed framework. Weakly-labeled training videos are split into snippets and input into the backbone. In (1) CLAV,

feature F from the ICA is used for predicting abnormal score S through FC layers and class-specific auxiliary learning with CSA and

CSN. F is adjusted by (2) relative distance learning, and is input to (3) CoMo for relational feature FR and relational score SR.

scores to reduce the intra-class and enlarge the inter-class

scores. Although these methods have shown notewor-

thy performance, MIL approaches still have limitations in

learning using few or a single highest snippet and relying

only on the regression output, without feature-based deci-

sion. For feature learning, Tian et al. [33] enlarged the fea-

ture magnitude value between classes, and Wu et al. [37]

adjusted the feature distance through the center feature.

However, it is difficult to enlarge the gap of features with

weak-labels through a single-branched backbone.

Feature Aggregation on WVAD. The feature extraction

procedures of the existing WVAD methods [3,24,43,47] are

mostly focused on information regarding the motion, tem-

poral relation, and temporal dependency. Li et al. [19] used

sequences of multiple video instances as units in order to

consider the temporal relations. Wu et al. [37] developed

the MIL method by capturing the temporal cues between

video snippets, and Zhang et al. [42] focused on multi-scale

temporal dependencies. However, these methods neglect

the relationship between the surroundings and the motion,

which is crucial in real-world scenarios.

3. Proposed Methods
Overview. In WVAD, as training data for detecting

anomaly event in frame-level, there are the normal clip V n

and abnormal clip V a with a video-level label Y = {0, 1}.

While training, each normal and abnormal input clip is di-

vided into T snippets, which are included in the negative

bag and positive bag. As shown in Fig. 2, first, the input

snippets become a backbone feature B focused on tem-

poral dependency and motion information through a pre-

trained backbone, then CLAV is performed through the ICA

to create a class-representative feature F through CS fea-

ture learning. To consider complex real-world scenarios,

F passes through a CoMo and becomes a relational fea-

ture FR that focuses on the interrelation between context

and motion information. In CoMo, by predicting the mo-

tion information of the snippet through the dynamic path,

a static feature with low motion intensity is selected and

passed through a context path to extract F cont containing

context information. After that, to consider the interrelation

between the context feature F cont and the class representa-

tive feature F containing motion information, features are

projected into an interaction space, and the final feature FR

is output by propagating relations through a graph-based

reasoning network. Each feature F and FR is adjusted us-

ing the inter- and intra-class gap with proposed relative dis-

tance loss, and scores S and SR predicted through features

are trained using top-K MIL loss.

3.1. Class-Activate Feature Learning (CLAV)
3.1.1 Implicit class-activate (ICA) module
To find the anomalous event among all snippets through the

weak label, it is important to learn the discriminant char-

acteristic for the normal/abnormal class. Similar to previ-

ous methods [9, 19, 30, 31], we extract the features of each

snippet through the backbone, which is pretrained on the

large-scale action recognition dataset. Therefore, the back-

bone feature B contains motion information, but it is dif-

ficult to capture representative normal and abnormal infor-

mation. In addition, features from the single backbone have

a limit with regard to having a distinguishing inter-class

difference, and it is difficult to explicitly divide the net-

work into two streams in a class-specific manner. There-

fore, inspired by [39], which performed effective cross-

domain face recognition by differentially activating weights

depending on the domain, we suggest the Implicit Class-
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Activation module to make the features of normal and ab-

normal snippets have discrepancies. The T snippets passing

through the backbone become D-dim feature B ∈ R
T×D

and are input to the ICA which operates temporal-wisely.

As in Eq. 1, the channel size of B is expanded by the num-

ber of classes to become B̂ ∈ R
T×2D where f ICA is the

ICA module with parameters φ and B̂ = {b̂1, b̂2, · · · b̂T }.

Then, in Eq. 2, each feature vector b̂i channel is split into

b̂1i and b̂2i for the max activation.

B̂ = f ICA
φ (B) (1)

b̂1i = b̂
0 :D

i , b̂2i = b̂
D:2D

i (2)

f i = max[b̂1
d

i , b̂2
d

i ]
D
d=0, (i = 1, · · · , T ) (3)

Through the max operation in Eq. 3, the class-representative

information is implicitly aggregated from the backbone fea-

ture B, and only the weight for the activated element is

propagated to the gradient
∂fd

i

∂b̂1
d
i

where b̂1
d

i ≥ b̂2
d

i and
∂fd

i

∂b̂2
d
i

otherwise. This activation according to the specific char-

acteristics of individual classes showed a powerful effect

with a simple configuration of a single Conv1D layer. In

addition, the ICA module brings about considerable per-

formance improvement when added onto another VAD net-

work in Section. 4.3, which shows that ICA is effective in

distinguishing inter-classes from the backbone features. For

the first time, we suggest to extract discrepancy features

which are suitable for VAD in single backbone. From the

ICA module, we obtain F n = {fn
1 , · · · ,fn

T } or F a for

normal or abnormal input snippets, respectively. Please re-

fer to the supplementary material for details.

3.1.2 Class-Specific (CS) learning
The feature F (F n, F a) implicitly activated by the ICA

module passes through the FC layers, and the anomality

score S (Sn,Sa ∈ R
T ) is predicted. During the feature

extraction process, we propose a class-specific loss func-

tion Lcs to represent the features of each class in a similar

pattern. The reconstruction-based method used in the un-

supervised VAD [6, 8, 10, 17, 25, 27] reconstructs the train-

ing data composed of a single class (normal class) through

the encoding–decoding process, and learns the training data

pattern or distribution by minimizing the difference be-

tween input and reconstructed output data. Using this ap-

proach, shown in Fig. 2, we propose the CS modules, CSN

and CSA, to reconstruct D-dim feature F with the d-dim

(d = 128) embedded features F FC2 encoded by FC lay-

ers FC1 and FC2. Only the normal and abnormal features

corresponding to the top-K index of the anomality score S
are input to the corresponding CS module: {fn

FC2 i}i=topk

for CSN and {fa
FC2 i}i=topk for CSA, which each mod-

ule uses for reconstruction for a single class as F
′n
topk and

F
′a
topk, respectively. In Eq. 4, the class-specific loss Lcs

Figure 3. Illustration of loss functions. (a) MMIL [31] is an MIL-

based score regression loss, (b) RTFM [33] is a feature magnitude

learning loss, and (c) CTR [37] and (d) ours are a feature distance

learning loss. To enlarge the class gap, RTFM and CTR adjust

individual features by utilizing magnitude and center of feature,

respectively. Ours, relative distance loss, intends that the distance

between normal features Cn be narrower than the distance be-

tween hard negatives (normal) and positives (abnormal) Ctop.

uses an L1 loss that minimizes the gap between the pre-

dicted output feature and the class discriminant feature

F n
topk = {fn

i}i=topk and F a
topk = {fa

i}i=topk, which

forces each class feature to contain predictable representa-

tive information. These CS modules with Lcs are auxiliary

branches that are removed in the test phase.

Lcs = L1(F n
topk,F

′n
topk) + L1(F a

topk,F
′a
topk) (4)

3.2. Relative Distance Learning
The feature F extracted through CLAV is from the same

backbone, but infer to be implicitly activated for each class.

As normal and abnormal have ambiguous boundaries and

are difficult to define, it is necessary to learn in consid-

eration of relativity. Contrary to the previous methods

where only top-k snippets were used for training, most nor-

mal snippets are ignored, and the relative difference be-

tween normal and abnormal is not considered, we pro-

pose distance learning that adjust feature distance with re-

gard to the overall normality. In Eq. 5, where F n =
{fn

1 , · · · ,fn
T },F a = {fa

1 , · · · ,fa
T } and cosine similarity

is indicated by cos, the similarity of overall normal snippet

features is Cn, and between top-K F n and F a is Ctop.

Cn =
1

T 2

T∑

i,j

cos(fn
i ,f

n
j ) (5)

Ctop = cos(fn
top,f

a
top)

where f top =
1

K

K∑
f i, i = top-K score index

In Eq. 6, the relative similarity Ctop between the hard

negatives (normal top-K snippets) and the positives (abnor-

mal top-K snippets) is decreased based on Cn, the simi-

larity of all normal features, rather than a fixed value; con-

currently, normal feature similarity Cn is increased as per

Eq. 7. In Fig. 3, (a) simply regresses the score into fixed val-

ues 0 or 1, (b) enlarges the magnitude value of the feature,

and (c) adjusts the feature distance of each class based on
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the center feature. However, even if the center feature and
normal features are closer than the abnormal features in (c),
there are still samples with a low distance between the nor-
mal and the abnormal (in green dash circles). In contrast,
(d) our relative distance learning considers normal-aware
relative distances using all normal snippets.

Ctop < Cn − margin (6)
Ldist = max(Ctop + margin − Cn, 0) + (1− Cn) (7)

3.3. Context-Motion Interrelation (CoMo) Module
While the previous method utilizes features focused on

temporal dependency or motion information, we propose a
novel CoMo module that extracts context information and
explores relation propagation for the interrelation between
context and motion. Feature F is used as an input, final rela-
tional feature FR ∈ RT×st and relational score SR ∈ RT

are the output, and CoMo performs relation modeling be-
tween context and motion by mapping the feature to the
interaction space invariant to the temporal axis. Through
CoMo, we ensure that not only superior performance but
also relational information is robust to generalizability (Sec-
tion. 4.4), which is important in real-world VAD.

3.3.1 Context and dynamic path
To extract the context information of a scene, we first es-
timate the motion information through the dynamic path,
and use this prediction to filter features that have relatively
low motion intensity. Then, in the context path, we focus
on the surroundings and instances of a static scene with
low motion intensity. Conv1D(k, s, c) denotes a 1D con-
volution layer, where k, s, and c are the kernel, strides and
channel size, respectively. The dynamic path consists of
Conv1D(1, 1, 512)–Conv1D(1, 1, 1), and motion intensity
score Sint ∈ RT becomes the output. The higher the mo-
tion score, the more dynamically the scene is moving and
vice versa (please refer to the supplementary material for
intensity score). In Eq. 8, the loss function is an L1 loss
between the optical flow [40] intensity I and Sint to make
the dynamic path output the score for motion information.

Lint = L1(Sint, I), Lobj = L1(Sobj ,O) (8)

Like methods [2, 11] that learn appearance via knowl-
edge distilling with object or mask prediction as a proxy
task, context path predicts the object class score by fo-
cusing on the appearance rather than motion. For a con-
text feature representing the appearance, we select the fea-
tures of static scenes with low motion intensity. Therefore,
{F i}i=bottomN , where i is the bottom-N index of the mo-
tion intensity score Sint, is input to the context path. The
path consists of Conv1D(3, 1, D) followed by FC layers and
predicts object C class scores Sobj ∈ RN×C of N snippets,
which is intended to explore the appearance in the scene.
As in Eq. 8, the context path is trained by Lobj , utilizing the
O ∈ RN×C mean value of each object class score within
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Figure 4. Architecture of CoMo graph module. Through projec-
tion matrix P , F and FR are each mapped to the node and state
matrix of the interaction space. Then, through relation propaga-
tion of nodes and updation of state, each relation of context and
motion is explored. Finally, R is obtained through interrelation by
fusing the two pieces of information and reprojected into the final
relational feature FR in temporal space.

the snippet predicted by the MS COCO [21] pretrained ob-
ject detector YOLOv5 [15] as a pseudo label. As a con-
straint of Lobj , the aggregated features from Conv1D layer
become appearance-aware of the scene, and the mean of
these is the context feature F cont as shown in Fig. 2. The
sum of both loss functions Laux = Lint + Lobj is used for
the auxiliary task, and the layers that predict object class
score are removed during testing.
3.3.2 Graph relation propagation
In Fig. 4, the features F and F cont are embedded into the
interaction space to understand the scene through relational
information, which is independent from temporal consis-
tencies. F and F cont are mapped to n and st number
of nodes and states, respectively, as V ,V cont ∈ Rn×st

through the P bi-projection matrix. Then, using Graph
Convolutional Networks (GCNs) [7], we propagate the edge
representing the relationship with each node with adjacent
matrix A and update the state with W . After that, the
two relation-propagated matrices V

′
and V

′

cont are con-
catenated and fused node-wise and state-wise to explore the
interrelations. Relational information R is reprojected into
temporal space, with the projection matrix P , and becomes
the final relational feature FR of st-dim. Then, FR passes
through the FC layer to obtain relational anomaly score SR.
3.4. Training and Testing Phase

Lmil =
∑

s∈Ωk(S,SR)

−(ylog(s) + (1− y)log(1− s)) (9)

L = Lmil + λcsLcs + λdLdist + Laux (10)

The overall framework described above learns from video-
level weak-labeled data. In Eq. 9, Lmil is obtained through
the cross-entropy loss of Ωk(S) and Ωk(SR), which are
the top-K score sets of the abnormality score S and the re-
lational abnormality score SR. In Eq. 10, Ldist indicates
Ldist(F ) +Ldist(FR), and the final loss function is L. We
use the same temporal smoothness (

∑T
i=1(si − si−1)

2) and
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Table 1. Comparison Result with Other Methods

Methods
UCF XD ST AV
[31] [38] [22] [23]

Binary SVM - - - - 69.1
150FPS [23] ICCV13’ 65.5 - 72.9 62.1
SMIL [20] CVPR15’ 78.0 - 90.4 72.2
AMIL [13] ICML18’ 76.5 - 85.8 72.4
MMIL [31] CVPR18’ 75.4 - 92.2 70.4

MMIL* CVPR18’ 82.4 73.1 93.5 -
Noise-C [45] CVPR19’ 82.1 - 84.4 -

IBL [44] ICIP19’ 78.7 - - -
DMIL [35] ICME19’ - - 91.2 -
MA [47] BMVC19’ 79.0 - - -
MIST [9] CVPR21’ 82.3 - 94.8 -

RTFM [33] ICCV21’ 84.0 77.8 97.2 -
CTR [37] TIP21’ 84.9 75.9 97.5 -

Transformer [19] AAAI22’ 85.6 78.6 97.3 -
Openness [41] ITS22’ 85.5 - 97.5 -

WSTR [42] SP22’ 83.2 - 97.6 -
WAGCN [3] Arxiv22’ 83.1 - 95.9 -

Bayesian [30] CVPR22’ 83.4 - 96.0 80.9
S3R [36] ECCV22’ 86.0 80.3 97.5 -

SSRL [18] ECCV22’ 87.4 - 98.0 -
Ours 86.1 81.3 97.6 89.8

∗

denotes reproduced results with I3D backbone feature.

sparsity ( 1
T

∑T
i=1 |si|) regularization terms as [31, 33]. Af-

ter the training phase, the anomaly score is S+λSR, and the
CS branch and FC layers of the context path are removed.

4. Experimental Results
We conduct experiments and analyze our proposed

method on four video anomaly detection benchmarks.
UCF-Crimes [31] and XD-Violence (XD-Vio.) [38] are
large-scale WVAD datasets containing normal and abnor-
mal training data with video-level labels, while Shang-
haiTech (ST) [22] and CUHK Avenue (AV) [23] are datasets
for unsupervised VAD in which the training set only con-
tains normal videos. Following the previous studies, we use
the Area Under Curve of the Receiver Operating Character-
istic, and for XD-Vio., we use Average Precision.

UCF-Crimes is large-scale WVAD database that con-
tains untrimmed videos of real world safety-related anoma-
lies acquired through various conditions such as illumina-
tion, resolution, and weather. The training set consists of
800 and 810 and the test set consists of 150 and 140 nor-
mal and abnormal videos, respectively. XD-Violence is
the largest and most diverse dataset with 4,754 untrimmed
sports, movie, and surveillance videos, and the number
of training and testing sets is 3,954 and 800 videos, re-
spectively. ShanghaiTech consists of 437 videos with 13
scenes. To utilize these for the weakly supervised ap-
proach, we reorganize them as 238 training videos and 199
testing videos that contain normal and abnormal videos in
each training and test set. We use exactly the same splits
as [19, 33, 45]. CUHK Avenue consists of 16 normal train-
ing sets and 21 abnormal test sets, and we reorganize 80:20
split of normal and abnormal video following [30].

Table 2. Ablation Studies of Proposed Module and Loss Function
on UCF-Crimes Database [31]

(a) Module
AUC

(b) Loss Function
AUCICA CS CoMo Lmil+ Ldist LcsLaux

82.84 ✓ 84.63
✓ 83.75 ✓ ✓ 83.83
✓ ✓ 85.22 ✓ ✓ 85.07
✓ ✓ ✓ 86.07 ✓ ✓ ✓ 86.07

Table 3. Results of Add-on ICA Module

Database
Methods

MMIL [31] MMIL w ICA Ours-w/o ICA Ours
UCF-Crimes [31] 82.43 82.73 83.26 86.07

XD-Vio. [38] 73.10 76.85 75.40 81.31
ST [22] 93.46 95.04 96.19 97.59

4.1. Implementations
We extract D = 2048-dim or 1024-dim RGB fea-

tures from the ‘mix 5c’ layer of the ResNet-50 I3D and
Inception-v1 I3D [4], respectively, pretrained on the Ki-
netics [4] dataset. For UCF-Crimes, XD-Vio., ST, and AV
datasets, the batch consists of half normal and half abnor-
mal videos which size is used 64, 16, 64, 2 and T is 16, 16,
8, 8, respectively. For all experiments, we experimentally
set the margin = 0.3 between [0, 1], K=3 between [1, 3, 5,
7], λcs = 1, and λd = 10. We set number of nodes n = 32,
state st = 128, and N = 0.8 × T . For training, an Adam
optimizer [16] with a weight decay of 0.0005 and learning
rate of 0.001 is used in an end-to-end manner. For testing,
we set λ as 0.1, 1, 0.4, and 0.1. For a fair comparison, we
use the same benchmark setup as [30, 33]. Please refer to
the supplements for details including experimental results
of hyper-parameters.

4.2. Comparison Results
Table 1 presents comparison results on four benchmarks

using SOTA methods. As 150FPS [23], an unsupervised
approach, has only normal videos in the training set, it is
difficult to directly compare the result because the train-
ing/test set is different from WVAD approaches, but the
performance gap with these methods is large. This shows
the effectiveness of weak labeling, which achieves high per-
formance with low labeling cost. The proposed method,
considering the interrelation of context and motion, showed
superior performance in all datasets compared to when the
network focused on temporal dependency [3, 43] or motion
information [47]; Congqi et al. [3] utilize GCNs to cap-
ture temporal dependencies, WSTR [42] aggregates multi-
head relation through a stack of transformer encoder for
temporal relations, and MA [47] focuses only on motion
features. Compared with the temporal relational-focused
WAGCN [3] and WSTR [42], the proposed method shows
better results in the UCF-Crimes of a complex real-world
scene than the ST composed of simple abnormal events,
demonstrating the effectiveness of context and motion in-
terrelations. SSRL [18] exhibits good result in UCF and ST
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Table 4. Cross-database Experimental Results on Three Benchmarks

Source UCF-Crimes XD-Vio. XD-Vio. UCF-Crimes ST UCF-Crimes XD-Vio.
Target UCF-Crimes [31] XD-Vio. [38] ST [22]

RTFM [33] 84.48 68.59 (↓ 18.81%) 76.62 37.30 (↓ 51.32%) 97.20 45.49 (↓ 53.2%) 40.18 (↓ 58.66%)
Ours 86.07 69.89 (↓ 18.80%) 81.31 46.74 (↓ 42.52%) 97.59 52.02 (↓ 46.7%) 38.03 (↓ 61.03%)

Table 5. Results of Relational Modeling Module

Database
Relation Modeling

- RN [29] CoMo
UCF-Crimes 85.22 84.67 86.07

XD-Vio. 76.99 78.33 81.31
ST 96.39 96.73 97.30

but compared to others, its input passes the backbone four
times to utilize multi-scale patches and the multi-branches
are trained with 8 GPUs (light version costs twice complex-
ity but only gains 0.8 and 0.2 AUC than ours).

Compared to an MIL-based method performing abnor-
mality score regression [13, 20, 31], DMIL [35] to which
center score loss is applied, and IBL [44] that adjusts the
score gap in the inner bag, better result is shown by fea-
ture learning methods [33, 37] including ours. In particu-
lar, when compared with RTFM, which proposed feature
magnitude learning and multi-scale temporal module, our
CoMo with distance learning performs 2.1%, 3.5%, and
0.4% higher in UCF-Crimes, XD-Vio., and ST, respectively.

4.3. Ablation Studies
We conduct ablation studies on proposed modules and

loss functions. In Table 2 (a), the loss functions are the
same, and when only modules are added, the highest perfor-
mance improvement is shown when the ICA and CS mod-
ules of CLAV are together, which shows that CLAV helps to
extract representative features of normality and abnormality
within a single branch. With features from CLAV, the high-
est performance is achieved through relational learning. For
the loss function ablation experiment with the entire frame-
work, in Table 2 (b), when only Ldist is applied, the perfor-
mance is lower than the baseline with Lmil and Laux, which
shows that distance learning has limitations when widening
the gap of features from a single-branch model in the em-
bedding space. However, it shows good results using fea-
tures that have discrepancy through Lcs of CLAV.

In Table 3, we evaluate the effect of aggregating back-
bone features through the CLAV of the ICA module. As
F obtained through ICA is used for relative distance learn-
ing and as the input of the CS and CoMo module, ICA
module plays a very important role in the proposed frame-
work, which leads to a substantial performance improve-
ment. ICA is designed to implicitly activate features de-
pending on whether normal and abnormal classes are being
considered. When added-on to MMIL, the results are mean-
ingful and show the biggest performance boost in the large
and diverse XD-Vio. dataset. ICA with a simple structure
can be applied to any other VAD networks to improve the
class representation capability of features.

(a) (b)
Figure 5. False alarm samples on UCF-Crime dataset [31]. A high
anomaly score is shown (a) when a person passes by the road and
(b) when the video is paused and cars are stopped on the road.

Figure 6. Comparison class-wise AUC on UCF-Crimes
dataset [31] with other methods.

4.4. Discussions
Cross-database quantitative results. For a video anomaly
detector to be applied to real life, the generalization ability
of the trained model is very important because operating in
various environments in a real-world situation is different
from the training/test data. To demonstrate that the rela-
tional information between context and motion is robust to
the data domain, we conducted an experiment for the ver-
ification of generalization ability in Table 4. We show the
adaptability to differences in the domain gap through the
performance of the model trained on the source dataset and
evaluate it on the target dataset. As some abnormal events
in ST such as running or jumping on a sidewalk are included
as normal situations on UCF-Crimes and XD-Vio., it is dif-
ficult to evaluate the generalization ability. In particular,
as most normal scenes (e.g., a movie scene running or rid-
ing bike on a sidewalk) in XD-Vio. are anomalies in ST,
ours which narrowed the gap of normal features by distance
learning, showed more severe degradation than RTFM.

The UCF-Crimes and XD-Vio. datasets have similar def-
initions for abnormal events, but compared to UCF-Crimes,
which contains surveillance videos, XD-Vio. is a larger-
scale dataset with a variety of videos such as sports, surveil-
lance, and movies. Therefore, when XD-Vio. is the source
and UCF-Crimes is the target, the performance degradation
is small. The opposite case is most suitable for validating
the generalizability to the real-world, where the proposed
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(a) I3D [4] (b) RTFM [33]

: Normal : Abnormal

(c) Ours
Figure 7. Visualization of final features on UCF-Crimes [31].

method shows lower performance degradation than RTFM.
This demonstrates that relational modeling between context
and motion is more suitable to adapt to domain discrepancy
than considering only temporal dependency as RTFM.
Interrelation modeling. Table 5 presents a comparison be-
tween the CoMo and RN [29] used in relational reasoning.
RN is a method of concatenating each feature pair-wisely
and embedding a relations through a shared FC layer to
model the relationship between them. With RN, we extract
each relation vector by creating a pair set between motion
features and context features. As a method to explore the
relationship, there is no significant difference in the results
of (a) baseline (overall framework without CoMo) and us-
ing (b) RN, but in the case of (c) CoMo, there are 0.44%,
0.97%, and 0.73%, performance improvements in UCF-
Crimes, ST, and XD-Vio., respectively. This shows that it
is more effective to explore interrelation between separately
relation-propagated context and motion features, rather than
simply performing pair-wise concatenate reasoning.
Failure scenarios. Fig. 5 shows examples of cases where
false alarms occurred in the normal videos. In (a), when a
person passed by the roadway, the walking behavior is nor-
mal, but shows a high anomaly score through the relation
of the surroundings. This scene is an ambiguous case that
can be viewed as an abnormal event (jaywalking) depend-
ing on the definition; this problem of ambiguity boundaries
is a limitation to be solved from the point of view of ap-
plicability to the real world. In (b), there is an error that
the frames of the first certain interval of the video stopped,
which results in a high abnormal score owing to the relation
with the stopped motion of cars although the appearance of
the car on the road is normal. In contrast, in Fig. 8 (c), the
normal video in which a still scene where objects are placed
in a room and a person appears, has a low score through the
relationship between the object and motion. By focusing on
relational information, there is a limitation of a false alarm
for a paused video, which may occur in the real-world, but
this issue can be solved by simple preprocessing.
Class-wise AUC. In Fig. 6, compared with other methods,
the classes (e.g., abuse or road accident) that the our method
shows lower AUC on are mainly anomalies with strong mo-
tion, which are relatively simple that can be detected only
with additional information such as optical flow. In contrast,
in the case of assault, burglary, and fighting, which require
an understanding of the relations between motion and sur-
roundings, the result is superior by 30.5%, 10.2%, 2.4% to

(a) Explosion video (b) Burglary video (c) Normal video
Figure 8. Anomaly score within the UCF-Crimes [31] video. The
x-axis is the frame range, the red highlighted ranges are ground-
truth abnormal frames. The green, blue, and red lines indicate the
score of MMIL [31], RTFM [33], and ours, respectively.
MMIL, and 23.4%, 0.1%, and 8.1% to RTFM, respectively.
4.5. Qualitative Analysis
Embedding features. In Fig. 7, the final embeddings be-
fore FC layers of I3D [4], RTFM [33], and ours is visualized
using the t-SNE [34] algorithm. By utilizing (a) the back-
bone feature, (c) the proposed method that adjusted the rel-
ative distance between normal and abnormal features shows
a distinguishable result compared to the (b) RTFM that en-
larges the magnitude of normal and abnormal features.
Abnormality score plot. In Fig. 8, as the score distribution
is different for each method, to easily compare the abnor-
mality score, it is normalized to the range of [0, 1]. Through
the plot, the proposed method shows more accurate tempo-
ral localization compared to other methods [31, 33]. In par-
ticular, ours results in a high abnormal score even for a (b)
burglary scene where relational information is important.
Furthermore, it shows a stable score for (c) a normal scene
in which a person appears in an empty room. Please refer
to the supplementary material for more examples.
5. Conclusion

In real-world scenarios, to detect anomalous events in
normal scenes, for the first time, we address the importance
of understanding the relationship between context and mo-
tion rather than focusing only on temporal dependencies,
specific motion, or appearance information for undefined
and unseen events. Therefore, we proposed CoMo which
focuses not only on motion but also the relationship with
static surroundings and contexts depending on the normal
or anomalous situation. Furthermore, using a single pre-
trained backbone branch and minimal supervision of weak
labels of WVAD, we proposed a CLAV to implicitly acti-
vate each class for representative features and relative dis-
tance learning to enlarge their gap. It outperformed in four
benchmarks and showed high performance for complex sit-
uations such as robbery and burglar, and stable scores for
confusing normal situations. There is a limitation of false
positives because of ambiguous and complex situations in
our daily life, but we expect high-level relational informa-
tion can help immensely with generalization ability.
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