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Figure 1. PartDistillation distills a grouping of embedding distances of the penultimate later of a instance segmentation model into a part
segmentation model in a completely unsupervised manner. Above are some representative results obtained without any part supervision.

Abstract
We present a scalable framework to learn part segmen-

tation from object instance labels. State-of-the-art instance
segmentation models contain a surprising amount of part
information. However, much of this information is hidden
from plain view. For each object instance, the part in-
formation is noisy, inconsistent, and incomplete. PartDis-
tillation transfers the part information of an instance seg-
mentation model into a part segmentation model through
self-supervised self-training on a large dataset. The result-
ing segmentation model is robust, accurate, and generalizes
well. We evaluate the model on various part segmentation
datasets. Our model outperforms supervised part segmen-
tation in zero-shot generalization performance by a large
margin. Our model outperforms when finetuned on tar-
get datasets compared to supervised counterpart and other
baselines especially in few-shot regime. Finally, our model
provides a wider coverage of rare parts when evaluated
over 10K object classes. Code is at https://github.
com/facebookresearch/PartDistillation.

*This work was done during Jang Hyun Cho’s internship at Meta AI.

1. Introduction

The world of object parts is rich, diverse, and plenti-
ful. Yet, even the most successful part segmentation bench-
marks [10, 22] focus on only the few most prominent im-
age classes, and are orders of magnitude smaller than corre-
sponding object instance segmentation benchmarks [21,31].
Parts are harder to detect, annotate, and properly define.

In this paper, we show that instance segmentation
models, and indirectly much larger instance segmentation
datasets, provide plentiful supervision for part segmenta-
tion. Specifically, we show that the penultimate layer of
a pre-trained instance segmentation model readily groups
parts across a wide class of instances. We distill this part in-
formation from an instance segmentation model into a ded-
icated part segmentation framework, in a two stage process
we call PartDistillation. In the first stage, our model learns
to segment all possible parts in a class-agnostic fashion.
We bootstrap an iterative self-training process from clus-
tered embeddings of an instance segmentation model. The
self-supervised nature of this process allows us to scale part
discovery to 10K object classes in 10M images without
any part-level supervision. In the second stage, our method
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learns to group the discovered parts of each object category
independently into object-specific part clusters. Figure 1
shows the result of this two-stage process.

Unlike traditional self-training methods [39, 43, 47] that
rely on supervised part labels, we distill the part informa-
tion from a pre-trained instance segmentation model. In
this framework, self-training increases the consistency be-
tween the different potential part segmentation, and boosts
the noisy supervisory signal. Our model makes full use of
powerful instance segmentation architectures [11,12,25] for
both supervision and part segmentation itself.

We show that PartDistillation outperforms existing un-
supervised methods by a large margin. It is very label-
efficient in few-shot training, even compared to super-
vised models trained on existing labelled part segmentation
dataset. Finally, we verify that the part discovery qual-
ity is consistent beyond a narrow set of classes in exist-
ing datasets. We go through manual evaluation process and
show that 1) PartDistillation discover more consistent parts
compared to supervised model and 2) the precision stays the
same when scaled to 10K classes.

2. Related Work
Self-supervised learning aims to learn a general feature
representation for many downstream vision tasks by solv-
ing a proxy task such as instance discrimination [8,9,24,42]
and image reconstruction [1, 23]. The learned representa-
tion is then finetuned either on the same dataset with few
labels or on different datasets and tasks. Other methods
directly solve a task without labels such as k-NN classifi-
cation [5, 42], image retrieval [3, 4], and image segmenta-
tion [5, 14, 29, 40]. PartDistillation directly solves part seg-
mentation; we show strong zero-shot performance on un-
known datasets and highly label-efficient when fine-tuned.
Unsupervised part segmentation. Some prior works tack-
les part segmentation in purely unsupervised setting [15,28,
33]. They use a discriminative model to minimize pixel-
level contrastive loss and an equivariance loss across views
to assign unique labels on different part regions. These
models work best if training images contain a single object
category centered in an image, and thus do not scale grace-
fully. In contrast, PartDistillation learns part segmentation
from instance segmentation. It uses object-level masks and
region-level representation similar to [2, 11, 25]. In consid-
ers features exclusively within a detected instance, enabling
the model to learn directly from crowded and scene-centric
in-the-wild images.
Self-training boosts the performance of a pre-trained
model on large-scale unlabelled data. Self-training starts
with an initial model trained either with a small portion of
labelled data or from self-supervision. It then train another
model that predicts the same output as the initial model
from a strongly augmented input. This may significantly

improve the robustness and performance of the resulting
model [20,39,43,47]. PartDistillation can be best described
as a self-training method. One notable difference is that
we supplement the initial annotated labels with generically
mined localization derived from pixel-level feature group-
ing within each object mask. We show that features from
a model trained to solve object instance segmentation has
surprisingly accurate part-level information which a simple
grouping algorithm is able to extract.
Query-based detection and segmentation. Detection
Transformer (DETR) [2] rephrases the problem of object
detection as a query-based cross-attention mechanism. A
set of queries is transformed into object-level representa-
tion as a single vector by attending to the feature map of a
given image through transformer decoders. PartDistillation
adapt this framework [2, 11, 12, 46] and learn to represent
part with a set of queries. This allows to decouple localiza-
tion and classification over two different stages of training.

3. Preliminaries
Self-training considers a small set of images and their la-
bels, and a large set of unlabeled images. It starts from
a teacher model pre-trained on the available labeled data.
The initial model uses a supervised training objective. Self-
training then fits a separate student model to the combined
supervised data and a corpus of unsupervised data. On
the supervised data, it uses the same supervised loss. On
the unsupervised data, it uses the signal from the teacher,
while heavily augmenting the students inputs. During train-
ing, the teacher is periodically updated from a snapshot of
the student model. Without such an update self-training
closely resembles model distillation [13, 27]. Variants of
self-training [20, 41, 47] pre-train on a different task or use
self-supervision. Self-training leads to more discriminative
and robust features for the final system [3, 4, 20, 39, 47].
Query-based segmentation. Mask2Former is one of the
recent methods that introduced the idea of query-based
representation of (object instance) segments in an im-
age [11, 12]. Mask2Former starts by encoding an input
image I into an intermediate feature representation F us-
ing an encoder network E : I → F . From this feature
representation, Mask2Former transforms a fixed set of ob-
ject queries (learned parameter vectors) qo1, . . . , q

o
No into

object instance masks Mo
1 , . . . ,M

o
No with corresponding

objectness scores so1, . . . , s
o
No through a decoder network

Do : qoi , F → Mo
i , s

o
i , f

o
i . In addition, each output is asso-

ciated with a feature vector fo
i , an abstract representation of

the object instance. Mask2Former uses this feature vector
to classify objects coi ∈ C into pre-defined object categories
C through a classification head. Our PartDistillation makes
full use of the query-based Mask2Former. However, instead
of producing object instance queries, we produce queries
for each potential object part in an image. In the next sec-
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(a) First stage: Part-proposal learning (b) Second stage: Part ranking

Figure 2. Overview of PartDistillation. Left: In the first stage, a transformer encoder produces instance segmentation feature which we
group into class-agnostic part segments, part proposals, as described in Sec. 4.2. We then train a separate transformer decoder bootstrapped
from these part segments and improved through self-training. Right: In the second stage, we assign part labels for all part-regions in a
class by clustering across dataset and ranking by the density estimates of the clusters. We call this process class-specific part ranking.

Figure 3. Self-training not only improves localization but also
discovers new parts. Left: clustered part regions. Right: Final
PartDistillation prediction after self-training.

tion, we show how to use a variant of self-training, called
PartDistillation, to train a query-based segmentation model
for object parts without using any part annotations.

4. PartDistillation

Our PartDistillation architecture extends a standard in-
stance segmentation model [11]. We learn an additional
query-based part proposal decoder, and an object-class-
specific ranking function for each part proposal. Sec. 4.1
presents the exact architecture used for part segmentation.
Sec. 4.2 highlights the training objective of the part proposal
mechanism, while Sec. 4.3 shows the training of the object-
class-specific ranking. Both part proposal and object-class-
specific ranking are learned from instance labels alone, and
do not use any dedicated part labels. We base all our exper-
iments on a Mask2Former model trained using the open-
vocabulary Detic [45] model. See Fig. 2 for an overview.

4.1. A transformer-based part segmentation model

The basic PartDistillation architecture closely follows a
Mask2Former [11] object instance segmentation model. We
start from a pre-trained instance segmentation model with
a fixed encoder E, and object instance decoder Do. We
use both as is and do not further fine-tune or modify them.
Instead, we learn a separate part decoder Dp : qpi , F →
Mp

i , s
p
i , f

p
i for a set of generic part queries qp1 , . . . , q

p
Np . For

each part query, we produce a part mask Mp
i , a score spi ,

and feature representation fp
i . Here, the score spi highlights

how likely an output mask corresponds to a valid part. At
this stage, parts are not associated to individual instances,
or object classes. Instead, they are shared among all in-
stances and classes in an image. This helps keep the number
of potential part queries low, and allows parts to generalize
among different object classes.

In a second stage, we assign each part proposal to their
closest object instance, and rescore the part in the context
of the objects category. For each part query qpi , we measure
the overlap (Intersection over Union) O between the part
mask Mp

i and all objects masks Mo
j and assign the part to

the highest overlapping object ai:

ai = argmax
j

O(Mo
j ,M

p
i ). (1)

Here we use open-vocabulary Detic model to cover large
number of object classes. This association provides us with
not just an object query, but also its object instance feature
fo
ai

. We rerank each part proposal using a scoring function
r(fp

i |fo
ai
). We use an object’s class as the primary signal

to rank part segmentations. Parts that often appear in spe-
cific object classes are likely part of an object. Parts that
rarely appear in specific object classes may simply be out-
liers. The final part score ŝpi = r(fp

i |fo
ai
) relies fully on the

reranked model.
The final part segmentation model closely resembles

two-stage object detection and instance segmentation net-
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works. The first stage produces class-agnostic object pro-
posals. A second stage then scores these proposals. The
main difference between our setup and two-stage detectors
is the training pipeline. In the next two sections, we show
how to learn both the part decoder Dp and reranking func-
tion r(fp

i |fo
j ) from just object instance level annotations.

4.2. Learning a part decoder from instance segmen-
tation

We exploit two different signals to train a part segmenta-
tion model from a pre-trained instance segmentation: First,
within each detected instance, the pixel-level feature rep-
resentation fo of an instance segmentation model naturally
groups pixels of similar parts together. Second, across a
dataset, various parts reoccur, shared between different ob-
jects and instances.

PartDistillation starts by clustering pixel-level features
of the penultimate layer of the Mask2Former architecture.
Given an object instance mask Mo

i , we group pixel-level
features fo

i within that mask by K-Means clustering [36]
and obtain class-agnostic part segments M̂p

1 , M̂
p
2 , . . . , M̂

p
k

for each object instance. We refer to these segments as part
proposals. For each object instance, these part proposals
follow the inferred instance mask M̂p

j ⊆ Mo
i , and the em-

bedding distance of the mid-level representation fo of the
Mask2Former. The emergence of structured mid-level rep-
resentations is common among deep networks [44], and as
such provides good part-level supervision. However, the
resulting grouping is both inconsistent between object in-
stances, and noisy within each instance.

We infer a consistent part segmentation by training a
class-agnostic query-based part decoder [11] Dp on all
part proposals. More precisely, we train a single-class in-
stance segmentation model and treat all mined part propos-
als as ground truth masks. We train the model with a bi-
nary classification loss and mask loss similar to the origi-
nal Mask2Former. However, the initial part proposals from
pixel-level feature clustering exhibit significant localization
errors as visualized in Fig. 3.
Self-training. We reduce this noise through self-training,
and obtain high quality part proposals. The output of the
model is a set of part proposals for each image and the
model’s confidence scores for the proposals. Addition-
ally, we also obtain decoded query vectors for the propos-
als, which serve as our part-level representation. We filter
out part proposals that do not overlap with the object in-
stance mask Mo in each image or have low score sp. Self-
training reinforces positive part proposals, and suppresses
the score sp of negative proposals. The results are clean
object-agnostic part proposals, as shown in Fig. 3. In the
next section, we show how to assign these proposals to in-
dividual object classes, to obtain a list of likely object parts.

Dataset Name # Images # Object Classes # Part Classes (Avg. #)

PartImageNet-train 16,540 109 40 (∼ 4)
PartImageNet-val,test 7,555 49 40 (∼ 4)
Pascal Part-train 4,638 20 50 (∼ 8)
Pascal Part-val 4,758 20 50 (∼ 8)
Cityscapes Part-train 2,975 5 9 (∼ 4)
Cityscapes Part-val 500 5 9 (∼ 4)

ImageNet-21K ∼ 15M ∼ 21K n/a

Table 1. Summary of all datasets used in this work.

4.3. Learning class-specific part ranking

Our aim is to produce a score r(fp
i |fo

j ) of how likely a
query qpi is part of an object qoj . We learn this score as a
density estimate

rk(f
p
i |f

o
j ) =

exp(−∥Dp(fp
i , f

o
j )− µj

k∥2)∑Nj

l=1 exp(−∥Dp(fp
i , f

o
j )− µj

l ∥2)
(2)

where the above softmax considers all parts l assigned to an
object j. We use an objects class co as the main supervi-
sory signal for the above density estimate. Parts that often
co-occur with a specific object class in our training set are
scored higher, parts that rarely appear in an object category
are weighted down. We found a simple weighted k-means-
based initial density estimate to be sufficient [38].

During training, we match each pixel x of an object to its
most confident argmaxi M

p
i (x)s

p
i part query. Any query

with a score spi > 0.3 that covers at least 5% of the area
of the object is considered a candidate. More details about
postprocessing part candidates in supplementary. For each
class, we aggregate all candidate queries across the entire
training dataset. Next, we use the k-means-based density
estimator of Snell et al. [38] to initialize our scoring func-
tion Eq. 2. This density estimate assigns common query
features a high initial score, and rare ones a low score. The
entire procedure again, does not use any part labels, but in-
stead uses the co-occurrence of parts and object classes over
an entire dataset as a supervisory signal.
Final self training. Similar to part proposals, we again use
self-training to boost the performance of the class-specific
ranking function, with cluster IDs as class labels. We use
the same postprocessing step (area and score thresholds) to
refine the pseudo-labels before self-training. More details
are in the supplementary.

5. Experiments
Datasets. For quantitative evaluation, we use PartIma-
geNet [22], Pascal Parts [10], and Cityscapes Parts [17, 37]
datasets. Table 1 shows a summary of these datasets.
PartImageNet is a 158 class subset of ImageNet-1K
dataset [18] with 40 part classes shared across all object
categories. The test split of PartImageNet used for eval-
uation has 49 object categories. All 40 part categories are
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NMI ARI
sheep horse cow mbike plane bus car bike dog cat sheep horse cow mbike plane bus car bike dog cat

DFF 12.2 14.4 12.7 19.1 16.4 13.5 9.0 17.8 14.8 18.0 21.6 32.3 23.3 37.2 38.3 28.5 24.1 39.1 32.3 37.5
SCOPS 26.5 29.4 28.8 35.4 35.1 35.7 33.6 28.9 30.1 33.7 46.3 55.7 51.2 59.2 68.0 66.0 67.1 52.4 52.2 46.6
K-means 34.5 33.3 33.0 38.9 42.8 37.5 38.4 35.2 40.4 44.2 58.3 66.8 59.0 63.1 76.8 66.4 70.6 63.2 70.2 71.9
Choudhury et al. 35.0 37.4 35.3 40.5 45.1 38.8 36.8 34.8 46.6 47.9 59.8 68.9 59.7 64.7 79.6 67.6 72.7 64.7 73.6 75.4
Choudhury et al.† 55.2 42.8 60.3 42.5 49.4 45.1 41.1 39.8 51.2 55.4 77.4 62.8 81.8 61.5 70.9 74.1 66.4 54.2 86.2 88.9

PartDistillation 57.3 62.2 65.5 34.8 58.8 55.6 54.8 53.6 43.6 37.8 81.6 89.9 90.0 43.7 88.7 84.1 87.5 74.8 59.0 52.6

Table 2. We evaluate our single model predictions on all 10 individual models of DFF [16], SCOPS [28], and Choudhury et al. [15]. We
follow the same evaluation protocol as [15] such as the number of parts, image resizing and cropping, etc. Note that our model has never
seen Pascal Part images. Here † means our implementation with comparable model.

Figure 4. Manual evaluation result comparing supervised method and PartDistillation.

still present in the test split. Pascal Parts is another part
segmentation dataset with 20 object categories and 50 over-
all part categories. Each object class has 9 part classes on
average. Cityscapes Parts contains 5 object classes that are
either person or vehicles. Interestingly, there are a few com-
mon object classes between all datasets. However, each
dataset has different definitions of parts for those objects.
While all our models are only trained on ImageNet-21K
with 15M images, we also compare with baseline mod-
els trained directly on the train split of above evaluation
datasets. We evaluate all models on the val,test splits
of the evaluation datasets.
Baselines. Here we describe all the baselines. In addition
to published methods for unsupervised part segmentation
like Choudhury et al. [15], we also describe some simple
variants of our approach like “one-stage self-training”. We
also compare with fully supervised models in specific set-
tings. All models are Mask2Former [11] with SwinL back-
bone [34], initialized with weights trained on COCO In-
stance Segmentation [32] unless otherwise specified.

(1) Choudhury et al. segment parts by training a model
for a single object class at a time. Hence, we train individual
models, one class at a time for every dataset. We resort
to only using the DeepLab [7]-like framework with SwinL
backbone as suggested in their work.

(2) One-stage self-training. We also extend the stan-
dard one-stage unsupervised segmentation by clustering
with self-training. In particular, we first use K-Means to
cluster pixels belonging to all segmented object instances
of each object category. We use the part clusters as initial
supervisory signal to run two rounds of self-training.

(3) Part-supervised models. We evaluate models
trained with full supervision using a source dataset on a new

target dataset. This allows us to compare their generaliza-
tion ability with our fully unsupervised model.
Implementation Details. Self-training in our model is
done with a batch size of 256 over 4 nodes. We use a
learning rate of 0.0001 except for fine-tuning experiments
in Table 4. For part-proposal learning step, we trained our
model for 50K iterations, and 100K iterations for the final
self-training during part association. For training Choud-
hury et al. [15], we closely followed their official imple-
mentation. When training on PartImageNet/ImageNet, we
chose the best hyper-parameter based on one randomly cho-
sen object category and used it for all other categories. For
part-region mining, we set k = 4 and for association we set
k = 8. We applied dense-CRF [30] for each mined parts
offline. We provide more details are in supplementary.

5.1. Evaluation on annotated part datasets

We first compare our method against baseline models on
PartImageNet, PascalParts and Cityscapes Parts which have
pre-annotated part masks for different object categories.
Unsupervised methods (such as our method) associate seg-
mented parts with arbitrary cluster labels. Unlike super-
vised methods, there is no direct one-to-one correspondence
between cluster labels and pre-annotated part labels.
NMI and ARI. The metrics normalized mutual informa-
tion (NMI) and adjusted Rand index (ARI) were introduced
in Choudhury et al. [15] as a way to cope with the above
issue. NMI and ARI measure quality with respect to the
target annotated part mask labels.
Mean Intersection over Union (mIoU). Another standard
way to evaluate unsupervised methods is to first associate
each generated cluster with one of the part labels in the
dataset whose part masks have the highest mIoU overlap
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Figure 5. An example of 3×3 grid images shown to annotators
for a part cluster generated by our method (object class: laptop).
The discovered parts are highlighted in red.

with the segments from the cluster. This allows us to di-
rectly adopt mIoU to compare the cluster with the masks
from the associated ground truth part. We provide more de-
tails in supplementary.
Average Recall. We also evaluate only the localization abil-
ity of the model separately. This can be done with Average
Recall (AR@k) metric [32] for measuring quality of the top
k predicted masks per image. The metric ignores class la-
bels and measures recall@k at different IoU thresholds, fol-
lowed by averaging across the thresholds.

5.2. Purity evaluation through manual rating

Metrics used for unsupervised segmentation evalua-
tion have different trade-offs as pointed out in previous
works [15]. Also, existing part datasets only cover a small
set of object categories, and expanding part annotations to
thousands of objects in ImageNet is prohibitive in terms of
annotation cost. Hence, to measure the quality of discov-
ered parts at a much larger scale, we need a different strat-
egy. Inspired by both observations, we introduce a manual
rating based metric. More specifically, for each part clus-
ter discovered for an object category, we sample 9 images
to form a 3 × 3 grid and highlight the part mask belong-
ing to the cluster as shown in Fig. 5. We ask annotators
to rate the purity on a scale of 3-9, denoting the maximum
number of images in the grid, where the part mask consis-
tently segments the same part of the object. As an example,
Fig. 5 was rated as 9. The higher the rating, the purer the
cluster. This rating process is very cheap, since even for
10K classes with 8 parts, we need to rate only 80K col-
lages. This does not require annotators to manually draw
part boundaries, which is much more expensive.

5.3. Results

Comparison with unsupervised methods. We provide re-
sults for various unsupervised methods on PascalParts in

Method Train Test GT Object AR@200 mIOU

Supervised PartImageNet Pascal Part 10.6
Supervised Cityscapes Part Pascal Part 12.3
One-stage. ImageNet-21K Pascal Part 18.8

PartDistillation ImageNet-21K Pascal Part 25.0

Supervised PartImageNet Pascal Part ✓ 11.1 21.8
Supervised Cityscapes Part Pascal Part ✓ 13.4 12.0
One-stage. ImageNet-21K Pascal Part ✓ 20.4 16.5

PartDistillation ImageNet-21K Pascal Part ✓ 26.8 23.0

Supervised Pascal Part PartImageNet 40.8 30.8
Supervised Cityscapes Part PartImageNet 10.8 17.2
One-stage. ImageNet-21K PartImageNet 31.8 26.6

PartDistillation ImageNet-21K PartImageNet 51.4 36.1

Supervised Pascal Part PartImageNet ✓ 45.7 34.9
Supervised Cityscapes Part PartImageNet ✓ 11.9 21.5
One-stage. ImageNet-21K PartImageNet ✓ 36.2 31.9

PartDistillation ImageNet-21K PartImageNet ✓ 58.0 48.0

Table 3. Zero-shot part segmentation comparing PartDistillation
to supervised baselines. PartImageNet and Pascal Part consist of
object classes that share the common part classes. The zero-shot
part segmentation is measured by AR@200 and mIOU. Despite
that supervised models are trained with part labels, PartDistillation
consistently shows better generalization. “One-stage.” stands for
our one-stage self-training baseline.

Tab. 2. We follow the same evaluation protocol as the state-
of-the-art method from Choudhury et al. [15], and use NMI
and ARI metrics. We compare with published results from
[15] for DFF [16], SCOPS [28] and K-Means. These meth-
ods use a Resnet50 backbone. Extending them methods to
a transformer based framework is beyond the scope of this
work (details in supp.). However, to enable fair comparison,
we also train the best baseline: Choudhury et al. [15] with
our implementation using comparable models (SwinL) and
pre-trained weights from Mask2Former.

We further note that our method is trained only on
ImageNet-21K dataset and is not fine-tuned on Pascal-
Parts1. Despite this, it outperforms the SwinL version of
Choudhury et al. trained on PascalParts for 7 out of 10 ob-
ject classes. Our NMI averaged across all classes is 52.4
which is 4.1% better than that for Choudhurty et al. (48.3).
This shows the higher quality of parts discovered by our
method, in addition to its ability to easily scale to 10K ob-
ject classes unlike existing methods.
Comparison with supervised methods. The primary focus
of our work is to scale part segmentation to a large number
of object classes. This could also be achieved if supervised
part models trained on a small source dataset with part an-
notations, can be transferred to new target datasets. We refer
to this as zero-shot part segmentation. We compare Part-
Distillation with supervised models in this zero-shot setup
in Tab. 3. We train the supervised model on different source
datasets and evaluate on a new target dataset. Note that our
method is still trained without any part annotations. We

1One advantage that PartDistillation enjoys is learning parts from many
object classes, hence easily scalable to large dataset. Other unsupervised
baselines are specifically designed for a single object class, and with our
best effort we could not successfully train on multi-class extension of any
of the baselines. Hence, other baselines are trained on one class at a time.
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AR@200 mIOU
Method Train Finetune 1 % 5% 10% 20% 50% 100% 1 % 5% 10% 20% 50% 100%

Instance Seg. COCO Pascal Part 25.3 36.5 38.8 43.6 47.1 49.4 20.5 37.3 44.4 52.6 55.5 56.0
Part-supervised PartImageNet Pascal Part 28.7 37.9 40.6 42.9 46.0 48.5 23.0 44.2 51.4 52.7 55.6 56.3
Part-supervised Cityscapes Part Pascal Part 25.1 35.3 39.1 41.3 44.6 46.5 17.0 34.6 43.1 51.5 54.8 54.9
PartDistillation ImageNet-21K Pascal Part 33.2 40.5 42.4 45.5 47.8 50.2 25.8 43.0 48.7 53.0 56.2 58.6

Instance Seg. COCO PartImageNet 65.3 70.5 73.5 75.8 76.3 76.8 32.0 58.3 63.2 66.1 68.9 70.8
Part-supervised Pascal Part PartImageNet 59.5 65.8 67.0 71.0 73.6 76.6 45.6 59.5 63.4 65.9 68.2 69.5
Part-supervised Cityscapes Part PartImageNet 52.5 63.4 67.7 69.6 73.2 73.2 20.6 54.0 60.5 65.5 67.3 70.0
PartDistillation ImageNet-21K PartImageNet 67.8 73.2 74.1 76.1 77.3 76.9 36.3 60.3 64.5 67.2 70.0 71.5

Instance Seg. COCO Cityscapes Part 12.5 17.4 18.8 20.3 20.3 21.2 28.3 49.9 51.3 61.5 62.4 63.8
Part-supervised PartImageNet Cityscapes Part 8.4 13.7 15.0 17.8 18.1 18.7 37.1 50.9 55.1 62.6 64.1 66.2
Part-supervised Pascal Part Cityscapes Part 14.1 16.6 17.6 18.8 19.3 19.7 53.0 62.3 63.3 65.7 67.6 68.4
PartDistillation ImageNet-21K Cityscapes Part 14.7 19.1 19.2 20.3 20.7 21.3 53.4 63.1 64.4 66.2 68.7 69.9

Table 4. Few-shot benchmark. We train PartDistillation and part-supervised models on 1%, 5%, 10%, 20%, 50% and 100% of the target
data with labels and evaluate AR@200 and mIOU to measure part segmentation. All models are initialized as Mask2Former with SwinL
backbone pretrained on COCO instance segmentation dataset for 100 epochs. For “Part-supervised” and PartDistillation, numbers in gray
cells are initialized from part-proposal models as explained in Sec. 4.2.

use two setups during evaluation, where we assume ground
truth object masks are available in the test set or not.

We first evaluate AR@200 and observe that our method
significantly outperforms all supervised methods in all set-
tings by at-least 10%. The gap is much higher (≥ 15%),
when measured on PascalParts which has a more diverse
set of part and object classes. This shows the superior lo-
calization ability of our method compared to even models
trained with explicit part mask supervision. We also see
that our full method outperforms the one-stage self-training
baseline, validating the need for the two-stage design.

Since part labels in target datasets are different from
those in source datasets, we ignore the predicted part labels
from the supervised models and only retain the part masks.
We then treat these masks as “part proposals”, similar to the
output from the first stage of our model, and cluster pro-
posals belonging to instances of each object category in the
test split of the target dataset (details in supplementary).
This can be done easily in the case of PartsImageNet even in
the absence of ground truth object masks, since each image
mostly has only one instance of one object category. How-
ever, this is not possible for PascalParts which often has
multiple object categories and instances per image. Hence,
we report mIoU on PascalParts only when ground truth ob-
ject masks are assumed to be available. We notice signifi-
cant gains from our model on the mIoU metric as well com-
pared to other methods, including the one-stage baseline.
Few-shot part segmentation. In practice, another way to
scale part segmentation would be to collect a small amount
(few-shot) of part mask annotations for the target dataset
and object categories. We could then start from a strong pre-
trained model and fine-tune it on the target few-shot dataset.
We evaluate in such a setup as well to further measure the
practical utility of our model. We compare different pre-
training methods in Tab. 4. This includes our method as
well as part-supervised models trained with full part super-

vision on different source datasets. Additionally, we also
compare with a model pre-trained for COCO instance seg-
mentation. We report performance with different amounts
of supervision (1%-100%) for the target dataset.

We first notice that at a very low-shot setup (1%) our
model outperforms all other methods significantly. In the
case of Pascal parts, it is 4.5% better is AR@200 than the
next best method (33.2 vs 28.7). More interestingly, our
method achieves an mIoU of 56.2% with only 50% labels.
This is comparable to the best performance with other meth-
ods at 100% supervision of 56.0. This demonstrates that our
method is 2× more label efficient than other methods. This
observation is true for other target datasets as well.

5.4. Purity evaluation with manual rating

We first randomly sample 100 object classes from
ImageNet-21K dataset and compare our method with both
Choudhury et al.† (trained with our SwinL implementation)
as well as the supervised model trained on PartImageNet.
As before, for the supervised method we discard part la-
bels from the source dataset and cluster the resulting class-
agnostic part masks independently for each of the 100 ob-
ject categories to get object-specific part clusters. We use
Detic [45] to obtain instance segmentation mask for the ob-
ject category in each image, and restrict part masks to be
fully contained within the instance mask for all methods.
We obtain 8 part clusters per object category for all meth-
ods. We eliminate degenerate parts that occupy a large por-
tion of the object, by setting a threshold for the part mask
area. We remove part masks whose area exceed 50% of the
object area (more analysis in supplementary).

The clusters were sent for manual rating as mentioned
in Sec. 5.2. The ratings can range from 3-9. In Fig. 4 at
a given purity rating r, we plot the total fraction of parts
(denoted as precision) across all object categories that were
annotated with a rating ≥ r. The higher the value the bet-
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Feature Dataset Pretrain Task Framework AR@1 AR@10

ResNet-101 [26] IN-21K Classification n/a 2.8 6.4
ConvNeXt-L [35] IN-21K Classification n/a 3.1 7.9

ViT-L IN-1K DINO [5] n/a 2.2 5.6
ViT-L IN-1K MAE [23] n/a 1.6 4.6
ViT-L COCO MAE+Inst. Seg. HTC++ 2.8 7.3
SwinL IN-21K Classification n/a 5.3 9.4
SwinL COCO Inst. Seg. HTC++ 2.9 12.5
SwinL LVIS Inst. Seg. Mask2Former 5.3 23.1
SwinL LVIS + COCO Inst. Seg. Mask2Former 5.5 24.3
SwinL COCO Inst. Seg. Mask2Former 6.6 27.6

Table 5. Part localization of pixel-grouping from different archi-
tectures, pretrain task, and framework measured by AR@1 and
AR@10 on PartImageNet-test. Here we compare ResNet [26],
ConvNext [35], ViT [19], and Swin transformer [34] as candidates.

Multi-scale Cosine Instance-level AR@1 AR@10

1.2 9.8
✓ 2.1 16.1

✓ 3.5 14.4
✓ ✓ 5.5 23.4

✓ ✓ 5.2 21.5
✓ ✓ ✓ 6.6 27.6

Table 6. Ablating different features, distance metric, and cluster-
ing scope on part localization performance measured by AR@1
and AR@10 on PartImageNet-test.

ter the clustering purity of the method. In Fig. 4.a we notice
that both our method and the supervised method outperform
Choudhury et al. Our performance is better than the su-
pervised model. However, we noticed the gap between the
curves to be small. This is due to a large fraction of the 100
sampled classes belonging to the same WordNet subtree as
those used in PartImageNet (anmials and vehicles). To test
the hypothesis, we sampled 300 classes outside the PartIm-
ageNet subtree and 300 classes inside this subtree to do an-
other round of manual evaluation, reported in Fig. 4.b and
Fig. 4.c respectively. We notice that the performance from
our method generalizes equally well in both settings, but
the supervised model does not generalize outside PartIma-
genet subtree. We provide non-cherry-picked visualization
for many object classes in the supplementary.

Next, we also measure the scaling ability of our model in
Fig. 4.d, where we compare the performance of our model
on differing number of object classes in ImageNet, ranging
from 100 to 10K. We notice that the performance of our
method is consistent, irrespective of the number of object
classes being evaluated.

5.5. Ablations

We conduct ablations to study the factors that influence
the localization of initial mined-part segments. We use the
ground truth instance mask to select pixel-level features on
each object instance and measure the localization quality by
AR@1 and 10 on the test split of PartImageNet dataset.
Choice of architecture. We evaluate the mined parts from
different settings. We use K-Means to mine part regions
as before and measure the AR@1 and AR@10 with differ-
ent settings. We observe that the localization quality dif-
fers significantly, and Swin Transformer [34] trained with

Figure 6. Different ablations for the pixel grouping and its lo-
calization quality. Left: Different number of groups per instance
measured with AR@10. Right: Features from different stage of
Mask2Former measured with AR@10. Both are evaluated on val
and test combined splits of PartImageNet [22].

Mask2Former [11] on COCO instance segmentation task
shows a significant improvement compared to all other
choices in Tab. 5. Interestingly, even with the same pre-
training task, the choice of model is crucial. Mask2Former
has an AR@10 of 27.6 compared to only 12.5 from a model
trained for the same task but with HTC++ [6].
Choice of features. In Tab. 6, we keep the backbone
fixed and explore the optimal choice of features (multi-scale
combining res3 and res4 layers vs only using res4) from
Mask2Former and the distance metric (cosine vs L2) for
clustering. We also show the impact of clustering pixels
from all instances of the dataset together (in line with stan-
dard one-stage models [14] for unsupervised segmentation)
vs our “instance-level” clustering where we cluster pixels
from one object instance at a time. We note that cosine sim-
ilarity yields better results in general.

Fig. 6 (right) shows the localization quality with fea-
tures from different layers in Mask2Former [11]. “mask”,
“encoder”, and “backbone” stand for mask features, trans-
former encoder features, and backbone features all from
Mask2Former, respectively.
Number of clusters. In Fig. 6 (left), we measure the local-
ization of the mined part segments from Sec. 4.2 with dif-
ferent numbers of grouping, and we pick the optimal k = 4.
Instace-level vs dataset-level clustering. In Tab. 6,
instance-level segmentation in conjunction with cosine sim-
ilarity provides AR@10 of 23.4 which is much higher than
the equivalent one-stage setting without instance-level seg-
mentation 16.1. We also note that multi-scale features pro-
vide a significant gain as well 23.4 vs 27.6.

6. Conclusion and Discussion
In this work, we present a scalable self-training pipeline

that can learn part segmentation for 21K object classes with-
out any part segmentation labels. We show that PartDis-
tillation has strong performance in zero-shot and few-shot
settings. We show that the discovered parts have consistent
purity over 10K part classes by manual evaluation.
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