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Abstract

Objects make unique sounds under different perturba-
tions, environment conditions, and poses relative to the
listener. While prior works have modeled impact sounds
and sound propagation in simulation, we lack a standard
dataset of impact sound fields of real objects for audio-
visual learning and calibration of the sim-to-real gap. We
present REALIMPACT, a large-scale dataset of real object
impact sounds recorded under controlled conditions. RE-
ALIMPACT contains 150,000 recordings of impact sounds
of 50 everyday objects with detailed annotations, includ-
ing their impact locations, microphone locations, contact
force profiles, material labels, and RGBD images.* We
make preliminary attempts to use our dataset as a reference
to current simulation methods for estimating object impact
sounds that match the real world. Moreover, we demon-
strate the usefulness of our dataset as a testbed for acoustic
and audio-visual learning via the evaluation of two bench-
mark tasks, including listener location classification and vi-
sual acoustic matching.

1. Introduction
Object sounds permeate our everyday natural environ-

ments as we both actively interact with them and passively
perceive events in our environment. The sound of a drinking
glass bouncing on the floor assuages our fear that the glass
would shatter. The click made by a knife making contact
with a cutting board assures us that we have diced cleanly
through a vegetable. And listening to the sound a painted
mug makes when we tap it informs us of whether it is made
of ceramic or metal. What we perceive from sound comple-
ments what we perceive from vision by reinforcing, disam-
biguating, or augmenting it.

Understanding the cause-and-effect relationships in
these sounds at a fine-grained level can inform us about
an object’s material properties and geometry, as well as
its contact and other environmental conditions. Capturing

*The project page and dataset are available at https : / /
samuelpclarke.com/realimpact/

these relationships from real-world data can help us im-
prove our models toward more realistic physical simula-
tions, with applications in virtual reality, animation, and
training learning-based frameworks in simulation.

The sounds we perceive from objects are the result of
many intricate physical processes: they encode important
properties about the object itself (e.g., geometry, material,
mechanical properties), as well as the surrounding environ-
ment (e.g., room size, other passive objects present, mate-
rials of furniture in the room). More specifically, when a
hard object is struck, it vibrates according to its mass and
stiffness, and the shape of the object determines the mode
shapes of the dominant vibration patterns (§3.1). Acous-
tic waves are then emitted into the medium, typically air,
bouncing around in the room and interacting with surround-
ing objects and the room itself before reaching our ear or a
microphone to be perceived as pressure fluctuations (§3.2).

Prior work has explored using physical simulation [26,
54] or learning-based methods [28, 29] to reconstruct the
sound generation process virtually, as well as building 3D
environments with simulated spatial audio for embodied
audio-visual learning [7, 15, 18, 35, 42]. However, there has
been little work on building physical apparatuses and fea-
sible measurement process to quantify sounds made by the
everyday objects, despite their importance and intimate re-
lationship with our daily lives. As a result, the evaluations
of the methods above are largely established on subjective
metrics such as user studies.

To address this gap, we introduce REALIMPACT, a
dataset containing 150k recordings of 50 everyday objects,
each being struck from 5 distinct impact positions. For
each impact point, we capture sounds at 600 field points
to provide comprehensive coverage of the frequency com-
ponents of the sounds and how they are distributed spa-
tially. REALIMPACT thus provides all the inputs most cur-
rent simulation frameworks needed to simulate each sound,
while also providing the ground truth recording for compar-
ison. We show that REALIMPACT can be used for various
downstream auditory and audio-visual learning tasks, such
as listener location classification (§5.2) and visual acous-
tic matching (§5.3). These results demonstrate that sound
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fields can help improve machine perception and understand-
ing of the world, and motivate further studies of even more
accurate simulation methodologies to reduce the sim-to-real
gap for future applications.

We make three contributions. First, we design an auto-
mated setup for collecting high-fidelity, annotated record-
ings of sounds by controlled striking of everyday objects.
Second, using this setup, we acquire a large dataset of
spatialized object sounds, REALIMPACT. Third, we moti-
vate the utility of REALIMPACT by (a) using it to perform
comparisons to results generated by current state-of-the-art
sound simulation frameworks and (b) evaluating two bench-
mark tasks for acoustic and audio-visual learning.

2. Related Work
Datasets of Object Sounds. Many datasets of object
sounds have been introduced, each varying in the details of
their collection, based on the applications they target. The
Greatest Hits Dataset [40] includes audio-video recordings
of thousands of impacts between real objects from the wild.
The recordings were not taken in a controlled environment,
and each impact is induced by a human with a drumstick,
polluting each object’s impact sound with the sound of the
rather resonant drumstick. The Sound-20K Dataset [59] is
a fully synthetic dataset of 20,000 simulated recordings of
objects being dropped in virtual environments. More re-
cently, ObjectFolder [17,21] is introduced as a large dataset
of trained implicit models for generating the sounds objects
make when impacted at arbitrary locations. However, these
are once again trained only on data from simulation, and
they do not model the acoustic transfer properties of the ob-
jects, only their structural vibratory response.

Physics-based Sound Rendering. Realistic sound ren-
dering has been a long-held goal in computer music, inter-
active virtual environments, and computer animation [27,
34, 51, 55]. By modeling the underlying physical pro-
cesses of vibrations, the computer graphics community
demonstrated convincing synthesized sounds for vibrating
solids [26, 31, 38, 39], shells [5], rods [47], and even flu-
ids [32, 55]. [26, 55] further showed that it is important for
high-quality sound rendering to capture the amplitude and
spatial structure of radiating sound fields. However, com-
puting these acoustic transfer fields is time-consuming as
they are typically solved in the frequency domain, one fre-
quency at a time. In KLEINPAT [54], the authors showed
that by conflating multiple vibrating modes into one time-
domain solve, getting all-frequency transfer maps can be
done much faster, usually on the order of minutes. These
models require careful simulation and material parameters
tuning for the best results. To alleviate this issue, several
works proposed to sample audio clips [45] and impulse re-
sponses [53] to reconstruct the material definitions. Re-
cently, a few works [28,29] have explored using learning to

approximate both the vibration and transfer computations
using simulated training data. We provide timely real data
that such simulations could use to validate their outputs and
tune their performances.

Recording Sounds Made by Real Objects. Whereas
many learning-based frameworks have traditionally used
simulation results as their “ground truth” for learning acous-
tic models of object vibrations and their transfer, some
works have proposed to fit acoustic object models directly
from data using digital signal processing with more relaxed
model assumptions about rigid body vibrations.

Pai et al. [41] describe a framework for scanning phys-
ical objects across multiple modalities, measuring visual,
tactile, and audio properties of some everyday objects. They
fit a data-driven acoustic model based on modal vibration
for an object by striking it at different points and record-
ing the ensuing sound from a single position per impact
point, assuming constant acoustic transfer across the object.
DiffImpact [12] similarly fits modal models to real record-
ings of objects, but assumes a constant modal response and
transfer across the object since their data lacked annotations
of the impact point and microphone location. Perhaps most
similar to our work, Corbett et al. [13] collect recordings
of striking an object at three different impact points, posi-
tioning a microphone at 19 different positions per impact
point. We collect recordings from an order of magnitude
more microphone positions to empirically demonstrate that
acoustic transfer varies rather drastically over a much finer
resolution than can be captured at 19 different locations.

Also, while these prior works have collected datasets
from real audio, none have publicly released their datasets.
Furthermore, since many simulation frameworks are de-
signed to simulate audio of objects vibrating freely in an
anechoic space, the recordings collected by these works are
unsuitable for a fair comparison, since they are recorded
with objects in contact conditions like resting on tables or
grasped in hands, which greatly hinder free vibrations. In
contrast, we propose a novel capture system where objects
rest on a thread mesh in an acoustically treated room, which
more closely approximates free vibration in an anechoic en-
vironment.

Finally, from outside the domain of object impact
sounds, Bellows et al. [4] have an extensive project mea-
suring the sound directivity of musical instruments while
being played by musicians. The measurements take place in
a large anechoic chamber and are recorded with a rotating
semi-circular microphone array resulting in 2,522 unique
microphone positions. The raw measurements are not pro-
vided, but the directivity patterns are available as spherical
harmonic decompositions [3].

Visual Learning of Sounds in Space. Both audio and vi-
sual data convey crucial spatial information. Recent inspir-
ing works have explored many interesting tasks connecting
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Figure 1. Pipeline for the acquisition of spatialized impact sounds: (Left) The object is placed at the center of the measurement platform
and aligned with mesh threads. The impact hammer is positioned to strike a target vertex on the object. (Center) The gantry moves the
microphones to 40 different positions within a semi-cylinder of the object, with the automated hammer mechanism striking the object to
record the sound at each position. (Right) By the end of the recording process, for each of the 5 vertices of each object, recordings from
600 different microphone positions have been collected within the semi-cylinder to one side of the object, as shown.

visual learning and sound in 3D space, including visually-
guided audio spatialization [20,22,37,57,61], sound source
localization in video frames [1,6,48], learning audio-visual
spatial correspondence [9, 58], and building audio-visual
3D environments [7, 15] for an array of embodied learning
tasks [8, 14, 16, 18, 35, 42]. We show how our dataset can
be used to evaluate real-world performance of auditory and
audiovisual learning frameworks on two novel tasks.

3. Physics-Based Sound Synthesis

We begin with some background about physics-based
sound simulation for rigid objects to motivate design
choices for our dataset and provide context for our base-
line simulation frameworks and their parameters. Here
we briefly summarize a commonly used sound synthesis
pipeline for rigid objects. For a more detailed introduction,
we recommend the article from James et al. [27].

3.1. Modal Sound Synthesis

When a contact force is applied to an object (e.g., your
dinner plate hits the dishwasher handle), depending on the
location of contact, various vibration modes can get excited
and eventually die down due to internal damping. Mathe-
matically, the vibration’s displacement vector u(t) can be
low-rank approximated as

u(t) = Uq(t) = [û1 · · · ûK ]q(t), (1)

where U is the modal matrix with mode shapes ûi and
q(t) ∈ RK the modal coordinates. The equations of mo-
tion are

M ü+ Cu̇+Ku = f , (2)

where M , C, and K are the mass, damping, and stiffness
matrix, respectively*, and f is the external force vector. It
is typically assumed in the literature that the damping can
be approximated by Rayleigh damping, C = αM + βK;
with this convenient assumption, Eq. (2) can be re-written
in the subspace defined by U as

q̈ + (αI+ βΛ)q̇ + Λu = U⊺f , (3)

where I is the identity matrix and Λ = diag(ω2
1 , ..., ω

2
K)

is a diagonal matrix of involving angular frequencies ωi.
Since the damping can significantly affect material percep-
tion [30], the Rayleigh damping can potentially model real-
world objects poorly. In addition, there are two scalar prop-
erties α and β to fit, and in previous work, these are typ-
ically hand-picked to produce sounds that are closest to a
given material. Also note that this formulation is based on
linear modal analysis [49,50], which assumes the vibrations
are infinitesimal, or, in other words, the object is approxi-
mately rigid.

3.2. Acoustic Transfer

Sound radiates from an object’s surface into the sur-
rounding medium as pressure waves. Since the modes de-

*Formulas of how to compute these matrices can be found in [39].

1518



cay slowly over time, it is convenient to work in the fre-
quency domain [26]. The distribution of the wave magni-
tudes in space, p̂(x;ω), is referred to in the literature [26]
as the acoustic transfer function. With a given set of
vibrational boundary conditions, such as those given by
Eq. (3), one can solve the frequency-domain Helmholtz
equation [5,26,31] using boundary element methods [2,11,
23] or a time-domain wave equation before reconstructing
the acoustic transfer fields [54]. To display the acoustic
transfer fields at runtime, we may compress the represen-
tation using multi-point dipole sources [26] or single-point
multipole sources [60]. Another increasingly popular way
of storing and displaying the field is to leverage the radial
structure (or lack thereof) in the far-field radiation to store
Far-field Acoustic Transfer (FFAT) maps, which are rect-
angular, image-like textures that capture the angular radia-
tion pattern of a given object. FFAT maps can be quickly
reparametrized (e.g., equalized, time-delayed) at runtime to
display object impact sounds with user interactions [54].

4. The REALIMPACT Dataset
We introduce REALIMPACT, a dataset of 150,000 real

object impact sounds. Along with these sounds, we record
the force profiles from the impact hammer we used to strike
the objects, as well as an RGBD image of the object from
each azimuth angle and radial distance from which the au-
dio recording is measured. Below, we introduce the hard-
ware setup for collecting the data, the objects we use, and
our data collection pipeline.

4.1. Hardware Setup

We collect all recordings in an acoustically treated room
(see Appendix B for additional details). We designed a
cylindrical gantry system for moving the microphones to
precise positions in space, shown in Figure 1. The gantry
system moves a 1.82-meter-tall vertical column of 15 Day-
ton Audio EMM6 calibrated measurement microphones
which are evenly and precisely spaced along the column.
It moves this column precisely in two degrees of freedom:
azimuth and distance, with a precision of 1◦ and 1 mm, re-
spectively. We suspended a mesh of polyester threads pre-
cisely at the axis of rotation of this gantry, centering it verti-
cally along the column of 15 microphones. This mesh holds
the objects in place while minimizing contact damping and
maximizing the acoustic transparency of the surface hold-
ing the object. Furthermore, the layout of the mesh pro-
vides visual guidance for precisely positioning the objects
in a repeatable manner.

To measure the acoustic transfer from the object to the
microphones, the impact force needs to be recorded, allow-
ing an input-output relation to be found. We used a PCB
086E80 impact hammer to strike each object. The impact
hammer is incorporated into a custom automated striking

Figure 2. The real objects used in our dataset. Objects are clus-
tered by material: (from top left) wood, ceramic, glass, plastic,
(from bottom center) iron, steel, and polycarbonate.

mechanism, which strikes objects precisely and repeatedly
while being as silent as possible. The mechanism uses a mo-
tor to wind the hammer back to contact an electromagnet;
then, upon recording, the electromagnet releases the ham-
mer. Actuating the electromagnet is completely silent, so
the noise created by this mechanism is minimal during each
strike. This mechanism is mounted on a microphone stand
to be able to position it rigidly to strike objects at arbitrary
locations. See Appendix C and D for additional details on
the recording apparatus and hammer impacts, respectively.

The impact hammer has a calibrated force transducer
in its tip, measuring contact forces at the same temporal
resolution as our audio. The impact hammer and micro-
phones are all read in a time-synchronized fashion by using
two Motu 8M audio interfaces connected by an optical ca-
ble. Each audio interface has digitally-controlled amplifier
gains, which must be tuned up or down for object sounds
that are relatively quiet or loud, respectively, to boost the
signal as much as possible while also preventing clipping.
Because these gains are digitally controlled, we can record
and adjust them in a precise and repeatable manner through-
out our experiments. The recordings were made at a sample
rate of 48000 Hz.

We also attach a RealSense D415 RGBD camera to the
column, aligned with the first microphone above mesh-
level, to take RGBD images with our audio measurements.

4.2. Objects

We purchase 50 objects from the ObjectFolder
dataset [19], which is comprised of commonly used house-
hold objects like a ceramic mug, drinking cup, plastic bin,
and wood vase. Each object in REALIMPACT has a high-
resolution 3D mesh model generated from a scan of the real
object [21], which can be used in simulation frameworks.
We select objects which are rigid and consist of a single ho-
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Figure 3. An RGBD image and audio recordings from all 15 mi-
crophones are collected at each gantry position for each vertex we
impact on an object.

mogeneous material belonging to one of the following cat-
egories: ceramic, glass, wood, plastic, iron, polycarbonate,
and steel—materials that have α and β parameters available
and widely used in the physics-based sound rendering liter-
ature [28, 29, 54]. Figure 2 shows all objects used for data
collection. These objects all have a scale and mass suitable
for data collection using our hardware setup.

4.3. Data Collection Pipeline

For each object, we first place the object on the support-
ing mesh, matching the features of the mesh to the distinc-
tive geometric features of the object to position it in a re-
peatable manner. We then select 5 vertices from the vir-
tual mesh at which to strike the object. For each vertex,
we first position the hammer mechanism to strike the ver-
tex. Since our gantry collects recordings on a semi-cylinder
to one side of the object, we position the hammer mecha-
nism to the opposite side of the semi-cylinder both to not
impinge the motion of the gantry and to minimize blocking
acoustic radiation from the surface of the object toward the
microphones. For each vertex, we move the gantry to 40
positions: a grid of 10 angles in 20-degree increments from
0 through 180, at 4 distances of 0.23, 0.56, 0.90, and 1.23
meters from the center of the mesh. We take an RGBD im-
age at each position in addition to the audio recordings. A
diagram of the microphone positions relative to an exam-
ple object is shown in Figure 1. An example of each of the
modalities captured from one position is shown in Figure 3.
See the Supplementary Materials for an example video of
how an object is recorded.

4.4. Processing

The impact hammer strikes are not necessarily constant
across measurements, but the discrepancy can be corrected

0.5
0.0
0.5

830 Hz 3805 Hz 13389 Hz

0 100

0.5
0.0
0.5

0 100 0 100

10

0

10

20

M
ag

ni
tu

de
 (d

B)

He
ig

ht
 (m

)

Azimuth (degrees)

Figure 4. Comparing different azimuth resolutions for mode shape
transfer maps of a ceramic bowl, measured at 23 cm from the cen-
ter. The top row shows maps measured at a resolution of 1 degree,
while the bottom row shows those measured at a resolution of 20
degrees.

since the force is measured. This is achieved by decon-
volving the force signal from the microphone signal with
frequency domain division as mc = F−1 (F (m) /F (i)),
where i is the impact hammer signal, m is the microphone
signal, and mc is the corrected microphone signal. F and
F−1 are the forward and inverse discrete Fourier trans-
forms, respectively. The hammer signal is windowed such
that only the samples within 1% of the force peak are kept,
and all other samples are deemed noise and set as zero, re-
ducing noise in the corrected microphone signal.

To create transfer maps of the recordings, mode fitting
is performed on each corrected microphone signal. The
modes are fit using the method of [10]. First, the vibra-
tional frequencies are fit with a simple peak-picking algo-
rithm performed on F (mc). Decay rates are fit by band-
passing mc at the mode frequencies, applying a Root-Mean-
Squared level detector, and using linear regression to esti-
mate the slope of the energy envelope. The amplitudes are
set as the magnitude of the mode frequency peak in F (mc).
Transfer maps are then formed for each vibrational fre-
quency by displaying the magnitude at each measurement
location with respect to rotation and height, as shown in
Figures 4 and 5 .

4.5. Validation
Spatial Sampling. We use a 20◦ resolution of azimuth an-
gle for the spatial sampling as a compromise to reduce mea-
surement time while still adding benefit for certain sound-
related tasks. We take one set of measurements with 1◦

rotations on one of our objects (a ceramic bowl) as a com-
parison. Figure 4 shows measured acoustic transfer maps
for sample vibrational frequencies with both 1◦ and 20◦

microphone rotations. The lowest-frequency mode shape
varies gradually with the azimuth angle. But note that at the
highest-frequency mode shape shown, the frequency of the
repeating spatial pattern is beyond the Nyquist frequency
of our azimuth sampling resolution. We show the implica-
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Figure 5. Measuring repeatability of our measurements by visual-
izing transfer maps of vibrational frequencies of the ceramic bowl,
measured at 23 cm from the center. The top row shows the mean
of 10 trials of measurements, while the bottom shows the relative
standard deviation of the 10 trials.

tions of attempting to naı̈vely interpolate from these low-
resolution transfer maps in Appendix E.

Repeatability. We verify two aspects of the repeatabil-
ity of our design: the repeatability of the gantry’s position
and the repeatability of our resulting audio measurements.
While our gantry is capable of achieving high angular pre-
cision while it is controlled, we completely power it off dur-
ing each recording, in order to eliminate motor and power
supply noises from our recordings. During these periods,
the wheels may settle into the carpet at a slightly different
angle than we have commanded. We perform four trials of
moving to the commanded angles and find that the maxi-
mum angular error across all trials did not exceed 1◦, with
the mean error being 0.26◦. This translates to a maximum
error of 2 cm in Cartesian space, only reached when the
gantry is at its farthest distance from the center.

For the repeatability of our measurements, we conduct
10 trials of our measurements on the same ceramic bowl,
striking the same target vertex and using the sample posi-
tions we used throughout our dataset. We show the mean
and standard deviations of the transfers we measured at
some sample vibrational frequencies in Figure 5, with re-
sults of objects of additional materials in Appendix F. Our
results suggest that variations may be highest at the bound-
aries of nodes in the transfer map. At these locations, minor
errors in the azimuth angle could cause significant changes
in transfer measurement. Furthermore, at these positions,
the signal is lower at this frequency, so the effects of noise
can be more pronounced.

5. Applications
In this section, we demonstrate some use cases of RE-

ALIMPACT with practical, multimodal applications.

5.1. Comparing Simulated and Real Impact Sounds

Our first task is to compare sounds synthesized by ex-
isting sound rendering methods to the recordings of RE-

ALIMPACT in order to demonstrate typical measurement
and modeling discrepancies. For this purpose, we ran each
baseline method out-of-the-box without any attempt to fine-
tune its model and/or hyperparameters, including material
parameters, such as elastic stiffness (Young’s modulus) and
damping (e.g., α and β in the case of KLEINPAT). We
also did not unify the finite element analysis representa-
tions across different methods, including finite element type
(KLEINPAT uses first-order tetrahedral elements, whereas
ObjectFolder 2.0 uses second-order ones), and tetrahedral
meshes. These out-of-the-box comparisons simplify the
analysis and highlight the ability to benchmark any exist-
ing or new simulation methods given a dataset such as RE-
ALIMPACT, but exhibit various modeling oversights. We
leave the work to narrow the gap between each baseline to
the dataset as future work. We provide more conjectures on
why these discrepancies exist in the limitations section.

Baselines. We provide high-level descriptions of each
baseline and refer the readers to Appendix G or directly to
the linked work for more details:

• WHITE NOISE: Random noise which has been ad-
justed to the same loudness as the average loudness
of the recordings on a per-object basis.

• RANDOM IMPACT SOUND: A random impact sound
recording from our dataset.

• KLEINPAT [54]: The modal analysis is run using first-
order tetrahedral elements, and the Far-field Acoustic
Transfer (FFAT) maps are done using a one-term (1/r)
scalar expansion.

• NEURALSOUND [29]: The modal analysis is run us-
ing an optimization which is warm-started with the
outputs of a 3D sparse U-net on voxelized meshes.
The FFAT maps are predicted directly by a ResNet-
like encoder-decoder structure. For both steps, we use
the pretrained weights.

• OBJECTFOLDER 2.0 [21]: The modal analysis is
predicted by an implicit neural representation trained
on simulation data using second-order tetrahedral ele-
ments. No acoustic transfer values exist in this base-
line so we used p̂(x;ω) = 1 throughout.

Note that the final three baselines all require material
properties of the object as input; we uniformly apply the
same parameters from Table 4 of [54] for all objects with
the same material label in our dataset.

Metrics. We evaluate using the following metrics: 1) L1
spectral loss, a loss based on taking the average L1 distance
between log-magnitude spectrograms of different window
sizes (used for impact sounds in [12]); 2) envelope distance,
which measures the distance between two audio samples’
envelopes over time (used for spatial audio in [37]); and
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REALIMPACT Deconvolved REALIMPACT Deconvolved + Denoised

L1 Spectral Envelope (×10−3) CDPAM L1 Spectral Envelope (×10−3) CDPAM

WHITE NOISE 4.68 9.54 1.38 5.22 9.87 1.39
RANDOM IMPACT SOUND 0.728 4.17 0.121 0.150 4.97 0.0880
KLEINPAT [54] 0.632 4.63 0.117 0.0982 4.63 0.0975
NEURALSOUND [29] 0.673 23.0 0.102 0.133 22.8 0.0750
OBJECTFOLDER 2.0 [21] 0.747 25.6 0.297 0.236 25.4 0.289

Table 1. Comparing with simulated object impact sounds. Lower is better for all metrics.

RealImpact Denoised KleinPAT NeuralSound ObjectFolder 2.0

RealImpact Denoised KleinPAT NeuralSound ObjectFolder 2.0

Figure 6. Comparison of spectrograms from our collected recordings versus simulation frameworks. Each spectrogram represents the
sound recorded or simulated from a sample point at (8, 22, 13) cm in Cartesian space from the center of the base of the object, and each
row corresponds to striking the same vertex on the object.

3) CDPAM [36], a learning-based perceptual distance met-
ric trained from human judgments of detectable differences
between clips.

To mitigate the effects of measurement noise in our
evaluation, we compare each baseline both to our decon-
volved recordings and to denoised versions of our record-
ings, which have been denoised with the algorithm of [46].
Whereas many denoising algorithms are optimized for hu-
man speech, this algorithm has been optimized and vali-
dated against broader categories of audio signals from na-
ture. Comparisons of example spectrograms and their de-
noised counterparts are shown in Appendix H.

Quantitative results are shown in Table 1, and qualita-
tive examples are shown in Fig. 6, comparing our record-
ings of real impact sounds with the simulated sounds using
methods from [21, 29, 54]. The KLEINPAT baseline per-
forms best according to a spectral loss, whereas NEURAL-
SOUND performs best according to the perceptual CDPAM
loss. Both of these baselines significantly outperform Ob-
jectFolder, suggesting that explicitly modeling the acoustic
transfer of objects rather than merely their structural vibra-
tions is essential for achieving realism. A random impact
sound only outperforms baselines in Envelope Loss when
the recording has not been denoised. Each baseline other
than white noise performs better on all metrics when com-
pared against denoised versions of our recordings, suggest-

ing that our raw recordings have non-negligible measure-
ment noise, which must be accounted for in future compar-
isons.

5.2. Listener Location Classification

Identifying the location of the listener with respect to the
sound source is of great practical interest to many applica-
tions in virtual reality and robotics [8, 43, 44]. In this task,
we want to identify the microphone position (angle, height,
or distance) from the impact sound recording.

For each impact in REALIMPACT, we have the record-
ings of the impact sound from 600 different listener lo-
cations collected from 10 different angles, 15 different
heights, and 4 different distances, as illustrated in Fig. 1.

Particularly, we set up three separate classification sub-
tasks: 1) angle classification, where the goal is to classify
the sound into the 10 angle categories (0◦, 20◦, . . ., 180◦);
2) height classification, where the goal is to classify the
sound into the 15 height categories, each corresponding to
the height of our 15 microphones; and 3) distance classi-
fication, where the goal is to classify the sound into the 4
distance categories (0.23 m, 0.56 m, 0.90 m, and 1.23 m).

For each subtask, we split 90/10 percent of impact sound
recordings of an object into the train/test set, respectively.
We train a ResNet-18 [24] network that takes the magnitude
spectrogram of the impact sound as input to predict the an-
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Angle Height Distance

CHANCE 10.0 6.7 25.0
Ours 57.9 60.7 67.4

Table 2. Listener location classification results. We report the
accuracy (in %) for angle, height, and distance classification, re-
spectively.

gle, height, or distance category. Table 2 shows the results
averaged across all 50 objects. We observe that predicting
height is comparatively easier. We suspect that differences
in height strongly influence the spectral details for easier
classification.

5.3. Visual Acoustic Matching

The ability to match a source sound with the correct cor-
responding visual input plays an important role in tasks such
as speech and speaker recognition [33, 52] or object and
event localization [25, 56]. This task aims to match a sound
recording with the correct corresponding image. We set up
this matching task as binary classification.

For 20 of our objects, we have a total of 200 RGBD im-
ages taken simultaneously with our audio recordings, which
are collected at a fixed height from the 10 different angles
and 4 different distances from which we took audio record-
ings for each of the 5 different vertices. We generate posi-
tive pairs by pairing each sound recording to an image taken
at the corresponding angle and vertex. The height and dis-
tance of the image are fixed, so there are 50 possible images
that the sound recordings correspond to. The distance of the
paired RGBD image is selected such that the image captures
the position of both the object and the impact hammer. Neg-
ative pairs are generated by pairing sound recordings with
images that are not at the correct angle and vertex.

We randomly select two heights to be held out for val-
idation and test sets, while the remaining 13 heights are
used for the train set. We train an audio-visual network
with a ResNet-18 backbone for both the image and audio
streams. The network takes in an RGB image as visual in-
put and an impact sound recording as audio input. A fu-
sion layer combines the audio and visual information, and
a final fully-connected layer is used to extract audio-visual
features for binary classification. Table 3 shows the quanti-
tative results of the visual acoustic matching task averaged
across 20 objects, and we show example inputs and outputs
in Appendix I.

6. Limitations and Conclusion
We presented REALIMPACT, a first-of-its-kind, large

dataset of 150k real impact sounds systematically collected
in an acoustically treated room, and demonstrated its several
use cases on benchmarking existing simulation algorithms
and applications on several auditory and audiovisual tasks.

Accuracy ↑ RMSE ↓
CHANCE 50.0 59.7
Ours 75.1 47.7

Table 3. Quantitative results of visual acoustic matching. We re-
port the accuracy results (in %). RMSE angle error (in degrees)
is the root-mean-square error in the difference between the angles
of the image and sound recording. ↑ or ↓ signify higher or lower
values are better, respectively.

The microphone array stack used in our measurement
process is somewhat coarse to capture high-frequency de-
tails (e.g., the 12 cm microphone spacing in elevation
roughly corresponds to the wavelength of 3 kHz). The an-
gular resolution is chosen at only 20 degrees and can result
in aliasing and distortion in the otherwise symmetric radia-
tion fields, as shown in §4.5. The diversity of the recorded
objects is restricted by the size and load capacity of our sup-
porting thread mesh, and the microphone stack arm. The
material descriptions of the objects are artificially lumped
into the categories defined in previous work [54], but they
may not describe the diversity of real-world materials (e.g.,
different kinds of steels will have different mechanical prop-
erties that might affect stiffness and thus the frequency dis-
tributions). Future work should look at more efficient ways
of capture and sample a wider range of objects.

The comparison of real impact sounds to those gener-
ated by current simulation methods exhibit various discrep-
ancies. Many things can lead to the gap between simula-
tions and real recordings: object scanning resolution and
reconstruction accuracy, material stiffness and damping pa-
rameters, finite-element analysis differences (e.g., element
type), and insufficient meshing resolution. Also we did not
explicitly model hollow objects in the comparisons despite
some of our objects being hollow and/or thin, and contact
damping models are missing, which can affect the perceived
damping rates and thus the envelope accuracy. As a result,
many of the out-of-the-box simulation models’ vibrational
frequencies do not agree, let alone their estimates of spatial-
ized sound amplitudes, etc. Many of these oversights will
affect the comparison “fairness” but it also demonstrates a
significant benefit of the REALIMPACT dataset: for the first
time, we can measure these models using the same yard
stick. We hope that this dataset provides future incentives
to improve not just the simulation methods and their usage,
but also the capture process and datasets that can move the
field forward in a significant way.
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puted Acoustic Transfer: Output-sensitive, accurate sound
generation for geometrically complex vibration sources.
ACM Transactions on Graphics (TOG), 25(3):987–995,
2006. 1, 2, 4

[27] Doug L. James, Timothy R. Langlois, Ravish Mehra, and
Changxi Zheng. Physically based sound for computer ani-
mation and virtual environments. In ACM SIGGRAPH 2016
Courses, 2016. 2, 3

[28] Xutong Jin, Sheng Li, Tianshu Qu, Dinesh Manocha, and
Guoping Wang. Deep-modal: real-time impact sound syn-
thesis for arbitrary shapes. In ACM MM, 2020. 1, 2, 5

[29] Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha.
Neuralsound: learning-based modal sound synthesis with
acoustic transfer. ACM Transactions on Graphics (TOG),
41(4):1–15, 2022. 1, 2, 5, 6, 7

[30] Roberta L Klatzky, Dinesh K Pai, and Eric P Krotkov. Per-
ception of material from contact sounds. Presence, 9(4):399–
410, 2000. 3

[31] Timothy R. Langlois, Steven S. An, Kelvin K. Jin, and
Doug L. James. Eigenmode compression for modal sound
models. ACM Transactions on Graphics (TOG), 33(4), 2014.
2, 4

[32] Timothy R Langlois, Changxi Zheng, and Doug L James. To-
ward animating water with complex acoustic bubbles. ACM
Transactions on Graphics (TOG), 35(4):1–13, 2016. 2

1524

https://scholarsarchive.byu.edu/directivity/
https://scholarsarchive.byu.edu/directivity/


[33] Jiyoung Lee, Soo-Whan Chung, Sunok Kim, Hong-Goo
Kang, and Kwanghoon Sohn. Looking into your speech:
Learning cross-modal affinity for audio-visual speech sep-
aration. In CVPR, 2021. 8

[34] Shiguang Liu and Dinesh Manocha. Sound synthesis,
propagation, and rendering: a survey. arXiv preprint
arXiv:2011.05538, 2020. 2

[35] Sagnik Majumder and Kristen Grauman. Active audio-visual
separation of dynamic sound sources. In ECCV, 2022. 1, 3

[36] Pranay Manocha, Zeyu Jin, Richard Zhang, and Adam
Finkelstein. CDPAM: Contrastive learning for perceptual au-
dio similarity. In ICASSP, 2021. 7

[37] Pedro Morgado, Nono Vasconcelos, Timothy Langlois, and
Oliver Wang. Self-supervised generation of spatial audio for
360◦ video. In NeurIPS, 2018. 3, 6

[38] James F O’Brien, Perry R Cook, and Georg Essl. Synthe-
sizing sounds from physically based motion. In SIGGRAPH,
2001. 2

[39] James F O’Brien, Chen Shen, and Christine M Gatchalian.
Synthesizing sounds from rigid-body simulations. In ACM
SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, 2002. 2, 3

[40] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-
ralba, Edward H Adelson, and William T Freeman. Visually
indicated sounds. In CVPR, 2016. 2

[41] Dinesh K Pai, Kees van den Doel, Doug L James, Jochen
Lang, John E Lloyd, Joshua L Richmond, and Som H Yau.
Scanning physical interaction behavior of 3D objects. In
SIGGRAPH, 2001. 2

[42] S. Purushwalkam, S. V. A. Gari, V. K. Ithapu, C. Schissler,
P. Robinson, A. Gupta, and K. Grauman. Audio-visual floor-
plan reconstruction. In ICCV, 2021. 1, 3

[43] Chinmay Rajguru, Giada Brianza, and Gianluca Memoli.
Sound localization in web-based 3D environments. Scien-
tific Reports, 12(1):1–13, 2022. 7

[44] Caleb Rascon and Ivan Meza. Localization of sound sources
in robotics: A review. Robotics and Autonomous Systems,
96:184–210, 2017. 7

[45] Zhimin Ren, Hengchin Yeh, and Ming C Lin. Example-
guided physically based modal sound synthesis. ACM Trans-
actions on Graphics (TOG), 32(1):1–16, 2013. 2

[46] Tim Sainburg, Marvin Thielk, and Timothy Q Gentner. Find-
ing, visualizing, and quantifying latent structure across di-
verse animal vocal repertoires. PLoS Computational Biol-
ogy, 16(10):e1008228, 2020. 7

[47] Eston Schweickart, Doug L James, and Steve Marschner.
Animating elastic rods with sound. ACM Transactions on
Graphics (TOG), 36(4):1–10, 2017. 2

[48] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In So Kweon. Learning to localize sound source
in visual scenes. In CVPR, 2018. 3

[49] Ahmed A Shabana. Theory of Vibration: An Introduction.
Springer Science & Business Media, 2012. 3

[50] Ahmed A Shabana. Dynamics of Multibody Systems. Cam-
bridge university press, 2013. 3

[51] Julius O Smith. Physical Audio Signal Processing for vir-
tual musical instruments and digital audio effects. Center

for Computer Research in Music and Acoustics (CCRMA),
Stanford University, 2010. 2

[52] Amirsina Torfi, Seyed Mehdi Iranmanesh, Nasser Nasrabadi,
and Jeremy Dawson. 3D convolutional neural networks
for cross audio-visual matching recognition. IEEE Access,
5:22081–22091, 2017. 8

[53] James Traer, Maddie Cusimano, and Josh H McDermott. A
perceptually inspired generative model of rigid-body contact
sounds. In International Conference on Digital Audio Effects
(DAFx), 2019. 2

[54] Jui-Hsien Wang and Doug L James. Kleinpat: Optimal
mode conflation for time-domain precomputation of acoustic
transfer. ACM Transactions on Graphics (TOG), 38(4):1–12,
2019. 1, 2, 4, 5, 6, 7, 8

[55] Jui-Hsien Wang, Ante Qu, Timothy R. Langlois, and
Doug L. James. Toward wave-based sound synthesis for
computer animation. ACM Transactions on Graphics (TOG),
37(4):1–16, 2018. 2

[56] Yu Wu, Linchao Zhu, Yan Yan, and Yi Yang. Dual attention
matching for audio-visual event localization. In ICCV, 2019.
8

[57] Xudong Xu, Hang Zhou, Ziwei Liu, Bo Dai, Xiaogang
Wang, and Dahua Lin. Visually informed binaural audio gen-
eration without binaural audios. In CVPR, 2021. 3

[58] Karren Yang, Bryan Russell, and Justin Salamon. Telling
left from right: Learning spatial correspondence of sight and
sound. In CVPR, 2020. 3

[59] Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang,
James Traer, Josh H McDermott, Joshua B Tenenbaum, and
William T Freeman. Generative modeling of audible shapes
for object perception. In ICCV, 2017. 2

[60] Changxi Zheng and Doug L. James. Rigid-body fracture
sound with precomputed soundbanks. ACM Transactions on
Graphics (TOG), 29(4):1–13, 2010. 4

[61] Hang Zhou, Xudong Xu, Dahua Lin, Xiaogang Wang, and
Ziwei Liu. Sep-stereo: Visually guided stereophonic audio
generation by associating source separation. In ECCV, 2020.
3

1525


