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Abstract

Adversarial training is widely used to make classifiers
robust to a specific threat or adversary, such as ℓp-norm
bounded perturbations of a given p-norm. However, ex-
isting methods for training classifiers robust to multiple
threats require knowledge of all attacks during training
and remain vulnerable to unseen distribution shifts. In
this work, we describe how to obtain adversarially-robust
model soups (i.e., linear combinations of parameters) that
smoothly trade-off robustness to different ℓp-norm bounded
adversaries. We demonstrate that such soups allow us to
control the type and level of robustness, and can achieve
robustness to all threats without jointly training on all of
them. In some cases, the resulting model soups are more
robust to a given ℓp-norm adversary than the constituent
model specialized against that same adversary. Finally, we
show that adversarially-robust model soups can be a viable
tool to adapt to distribution shifts from a few examples.

1. Introduction
Deep networks have achieved great success on several

computer vision tasks and have even reached super-human
accuracy [19, 31]. However, the outputs of such models
are often brittle, and tend to perform poorly on inputs that
differ from the distribution of inputs at training time, in
a condition known as distribution shift [37]. Adversarial
perturbations are a prominent example of this condition:
small, even imperceptible, changes to images can alter pre-
dictions to cause errors [2, 46]. In addition to adversarial
inputs, it has been noted that even natural shifts, e.g. dif-
ferent weather conditions, can significantly reduce the ac-
curacy of even the best vision models [13, 21, 40]. Such
drops in accuracy are undesirable for robust deployment,
and so a lot of effort has been invested in correcting them.
Adversarial training [34] and its extensions [15, 39, 58] are
currently the most effective methods to improve empirical
robustness to adversarial attacks. Similarly, data augmen-
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tation is the basis of several techniques that improve ro-
bustness to non-adversarial/natural shifts [3, 11, 22]. While
significant progress has been made on defending against a
specific, selected type of perturbations (whether adversar-
ial or natural), it is still challenging to make a single model
robust to a broad set of threats and shifts. For example,
a classifier adversarially-trained for robustness to ℓp-norm
bounded attacks is still vulnerable to attacks in other ℓq-
threat models [29, 47]. Moreover, methods for simultane-
ous robustness to multiple attacks require jointly training on
all [33, 35] or a subset of them [8]. Most importantly, con-
trolling the trade-off between different types of robustness
(and nominal performance) remains difficult and requires
training several classifiers.

Inspired by model soups [52], which interpolate the pa-
rameters of a set of vision models to achieve state-of-the-art
accuracy on IMAGENET, we investigate the effects of in-
terpolating robust image classifiers. We complement their
original recipe for soups by own study of how to pre-
train, fine-tune, and combine the parameters of models
adversarially-trained against ℓp-norm bounded attacks for
different p-norms. To create models for soups, we pre-train
a single robust model and fine-tune it to the target threat
models (using the efficient technique of [8]). We then es-
tablish that it is possible to smoothly trade-off robustness
to different threat models by moving in the convex hull
of the parameters of each robust classifier, while achieving
competitive performance with methods that train on multi-
ple p-norm adversaries simultaneously. Unlike alternatives,
our soups can uniquely (1) choose the level of robustness
to each threat model without any further training and (2)
quickly adapt to new unseen attacks or shifts by simply tun-
ing the weighting of the soup.

Previous works [24, 30, 54] have shown that adversarial
training with ℓp-norm bounded attacks can help to improve
performance on natural shifts if carefully tuned. We show
that model soups of diverse classifiers, with different types
of robustness, offer greater flexibility for finding models
that perform well across various shifts, such as IMAGENET
variants. Furthermore, we show that a limited number of
images of the new distribution are sufficient to select the
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weights of such a model soup. Examining the composition
of the best soups brings insights about which features are
important for each dataset and shift. Finally, while the ca-
pability of selecting a model specific to each image distribu-
tion is a main point of our model soups, we also show that it
is possible to jointly select a soup for average performance
across several IMAGENET variants to achieve better accu-
racy than adversarial and self-supervised baselines [18,24].
Contributions. In summary, we show that soups
• can merge nominal and ℓp-robust models (for various p):

efficient fine-tuning from one robust model obtains a set
of models with diverse robustness [8] and compatible pa-
rameters for creating model soups [52] (Sec. 3),

• can control the level of robustness to each threat model
and achieve, without more training, competitive perfor-
mance against multi-norm robustness training (Sec. 4),

• are not limited to interpolation, but can find more effec-
tive classifiers by extrapolation (Sec. 4.3),

• enable adaptation to unseen distribution shifts on only a
few examples (Sec. 5).

2. Related Work
Adversarial robustness to multiple threat models.

Most methods focus on achieving robustness in a single
threat model, i.e. to a specific type of attacks used dur-
ing training. However, this is not sufficient to obtain ro-
bustness to unseen attacks. As a result, further work aims
to train classifiers for simultaneous robustness to multiple
attacks, and the most popular scenario considers a set of
ℓp-norm bounded perturbations. The most successful meth-
ods [33, 35, 47] are based on adversarial training and differ
in how the multiple threats are combined. Notably, all need
to use every attack at training time. To reduce the compu-
tational cost of obtaining multiply-robust models, one can
fine-tune a singly-robust model by one of the above men-
tioned methods [8], even for only a small number of epochs.
Our soups are more flexible by skipping simultaneous ad-
versarial training across multiple attacks.

Adversarial training for distribution shifts. While ro-
bustness to adversarial attacks and natural shifts are not the
same goal, previous works nevertheless show that it is pos-
sible to leverage adversarial training with ℓp-norm bounded
attacks to improve performance on the common corruptions
of [21]. First, AdvProp [54] co-trains models on clean and
adversarial images (in the ℓ∞-threat model) with dual nor-
malization layers that specialize to each type of input. The
clean branch of the dual model achieves higher accuracy
than nominal training on IMAGENET and its variants. Simi-
lar results are obtained by Pyramid-AT [24] by its design of
a specific attack to adversarially train vision transformers.
Finally, [30] carefully selecting the size of the adversarial
perturbations, i.e. their ℓ∞- or ℓ2-norm, for standard ad-
versarial training [34] achieves competitive performance on

common corruptions on CIFAR-10 and IMAGENET-100.
Model soups. Ensembling or averaging the parame-

ters of intermediate models found during training is an ef-
fective technique to improve both clean accuracy [25, 28]
and robustness [14, 39]. Recently, [52] propose model
soups which interpolate the parameters of networks fine-
tuned with different hyperparameters configurations from
the same pre-trained model. This yields improved classifi-
cation accuracy on IMAGENET. Along the same line, [27]
fine-tune a model trained on IMAGENET on several new
image classification datasets, and show that interpolating
the original and fine-tuned parameters yields classifiers that
perform well on all tasks. Additional related work is dis-
cussed in App. A.

3. Model Interpolation across Different Tasks
In the following, we formally introduce the two main

components of our procedure to merge adversarially ro-
bust models: (1) obtaining models which can interpolated
by fine-tuning a single ℓp-robust classifiers, and (2) inter-
polation of their weights to balance their different types
of robustness. We highlight that our setup diverges from
that of prior works about parameters averaging: in fact,
both [27, 52] combine models fine-tuned on the same task,
i.e. achieving high classification accuracy of unperturbed
images, either on a fixed dataset and different hyperparame-
ter configurations [52], or varying datasets [27]. In our case,
the individual models are trained for robustness to different
types of attacks, i.e. with distinct loss functions.

3.1. Adversarial training and fine-tuning

Let us denote D = {(xi, yi)}i the training set, with
xi ∈ Rd indicating an image and yi ∈ {1, . . . ,K} the cor-
responding label, and ∆ : Rd → Rd the function which
characterizes a threat model, that maps an input x to a set
∆(x) ⊂ Rd of possible perturbed versions of the original
image. For example, ℓp-norm bounded adversarial attacks
with budget ϵ > 0 in the image space can be described by

∆(x) = {δ ∈ Rd : ∥δ∥p ≤ ϵ,x+ δ ∈ [0, 1]d}. (1)

Then, one can train a classifier f : θ × Rd → RK parame-
terized by θ ∈ Θ with adversarial training [34] by solving

min
θ∈Θ

∑
(x,y)∈D

max
δ∈∆(x)

L(f(θ, x+ δ), y), (2)

for a given loss function L : RK × RK → R (e.g., cross-
entropy), with the goal of obtaining a model robust to the
perturbations described by ∆. Note that this boils down to
nominal training when ∆(·) = {0} and no perturbation is
applied on the training images. We are interested in the case
where multiple threat models are available, and indicate
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Figure 1. Soups of two models on CIFAR-10: for all pairs (p, q) we show the ℓp- vs ℓq-robust accuracy of the soups w ·θp+(1−w)·θp→q

and w · θq + (1− w) · θq→p varying w ∈ [0, 1]. We also show results for MAX and SAT with simultaneous use of the two threat models.
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Figure 2. Soups of two models on IMAGENET: for p ∈ {2, 1} we show the ℓp- vs ℓ∞-robust accuracy of the soups w·θ∞+(1−w)·θ∞→p

varying w ∈ [0, 1] (first and second columns). Moreover, we show the soups obtained combining θ∞→2 and θ∞→1 (third), or θ∞ and
θ∞→nominal (fourth). For the case of two ℓp-threat models, we also show the results of fine-tuning models with MAX and SAT.

with ∆nominal nominal training, and ∆p for p ∈ {∞, 2, 1}
the perturbations with bounded ℓp-norm as described in
Eq. 1. We focus on such tasks since they are the most com-
mon choices for adversarial defenses, in particular by meth-
ods focusing on multiple norm robustness [35, 47].

Notably, it is possible to efficiently obtain a model robust
to ∆q by fine-tuning for a single (or few) epoch with adver-
sarial training w.r.t. ∆q a classifier pre-trained to be robust
in ∆p, with p ̸= q and p, q ∈ {∞, 2, 1} [8]. For example,
in this way one can efficiently derive specialized classifiers
∆2,∆1,∆nominal for each task from a single model f robust
w.r.t. ℓ∞. However, this does not work well when a nominal
classifier is used as starting point for the short fine-tuning.
In the following, we denote with θp→q the parameters re-
sulting from fine-tuning to ∆q a base model θp.

3.2. Merging different types of robustness via linear
combinations in parameter space

We want to explore the properties of the models ob-
tained by taking linear combinations of the parameters of
classifiers with different types of robustness. To do so,
there needs to be a correspondence among the parameters
of different individual networks: [52] achieve this by merg-
ing differently fine-tuned versions of the same pre-trained
model. As mentioned above, fine-tuning an ℓp-robust clas-

sifier allows to change it to achieve robustness in a new
threat model [8]: we exploit such property to create model
soups, as named by [52]. Formally, we create a model soup
from n individual networks with parameters θ1, . . . ,θn

with weights w = (w1, . . . , wn) ∈ Rn as

θw =

n∑
i=1

wi · θi, (3)

and the corresponding classifier is given by f(θw, ·) :
Rd → RK . While any choice of w is possible, we focus on
the case of affine combinations, i.e.

∑
i wi = 1. Moreover,

we consider soups which are either convex combinations of
the individual models, with w1, . . . , wn ≥ 0, or obtained by
extrapolations, i.e. with negative elements in w.

4. Soups for ℓp-robustness

We measure adversarial robustness in the ℓp-threat
model with bounds ϵp: on CIFAR-10 we use ϵ∞ = 8/255,
ϵ2 = 128/255, ϵ1 = 12, on IMAGENET ϵ∞ = 4/255,
ϵ2 = 4, ϵ1 = 255. If not specified otherwise, we use the
full test set for CIFAR-10 and 5000 images from the IMA-
GENET validation set, and attack by AUTOPGD [6, 7] with
40 steps. More details are provided in App. B.
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4.1. Soups with two threat models

CIFAR-10. We explore the effect of interpolating two
models robust to different ℓp-norm bounded attacks for
p ∈ {∞, 2, 1}. We consider classifiers with WIDERES-
NET-28-10 [56] architecture trained on CIFAR-10. For ev-
ery threat model, we first train a robust classifier with ad-
versarial training from random initialization. Then, we fine-
tune the resulting model with adversarial training on each of
the other threat models for 10 epochs. In Fig. 1 we show, for
each pair of threat models (∆p,∆q), the trade-off of robust
accuracy w.r.t. ℓp and ℓq for the soups

w · θp + (1− w) · θp→q for w ∈ [0, 1]

and symmetrically

w · θq + (1− w) · θq→p for w ∈ [0, 1].

Interpolating the parameters of models trained with a single
ℓp-norm controls the balance between the two types of ro-
bustness: for example, Fig. 1 (middle plot) shows that mov-
ing from θ∞ to θ∞→1 (blue curve), i.e. decreasing w from
1 to 0 in the corresponding soup, progressively reduces the
robust accuracy w.r.t. ℓ∞ to improve robustness w.r.t. ℓ1.
Moreover, for similar threat models (i.e. the pairs (ℓ2, ℓ1)
and (ℓ2, ℓ∞)) some intermediate networks are more robust
than the extremes trained specifically for each threat model.

IMAGENET. We now fine-tune a VIT-B16 [10] robust
w.r.t. ℓ∞ on IMAGENET to the other threat models, includ-
ing nominal training, for either 1/3, 1 or 3 epochs. Fig. 2
shows that interpolation of parameters is effective even in
this setup, and allows to easily balance nominal and robust
accuracy (fourth plot). Moreover, it is possible to create
soups with two fine-tuned models, i.e. θ∞→2 and θ∞→1.
Finally, increasing the number of fine-tuning steps yields
better performance in the target threat model, which in turn
generally leads to better soups.

Comparison to multi-norm robustness methods.
Fig. 1 and Fig. 2 compare the performance of the model
soups to that of models trained with methods for robustness
in the union of multiple threat models. In particular, we
show the results of MAX [47], which computes perturba-
tions for each threat model and trains on that attaining the
highest loss, and SAT [33], which samples uniformly at ran-
dom for each training batch the attack to use. We train mod-
els with both methods for all pairs of threat models: as ex-
pected, MAX tends to focus on the most challenging threat
model, sacrificing some robustness in the other one com-
pared to SAT, since it uses only the strongest attack for each
training point. When training for ℓ∞ and ℓ1, i.e. the extreme
ℓp-norms we consider, MAX and SAT models lie above the
front drawn by the model soups, hinting that the more di-
verse the attacks, the more difficult it is to preserve high
robustness to both. In the other cases, both methods behave

similarly to the soups. The main advantage given by inter-
polation is however the option of moving along the front
without additional training cost: while one might tune the
trade-off between the robustness in the two threat models
in SAT, e.g. changing the sampling probability, this would
still require training a new classifier for each setup.

4.2. Soups with three threat models

We here study the convex combination of three models
with different types of robustness. For CIFAR-10 we cre-
ate soups with each ℓp-robust classifier for p ∈ {∞, 2, 1}
and its fine-tuned version into the other two threat mod-
els. We use the same models of the previous section,
and sweep the interpolation weights w ∈ R3 such that
wi ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and

∑
i wi = 1. In Fig. 3

and Fig. 10 (in the Appendix) we show clean accuracy (first
column) and robust accuracy in ℓ∞, ℓ2 and ℓ1 (second to
fourth columns) and their union, when a point is considered
robust only if it is such against all attacks (last column).

One can observe that, independently from the type of
robustness of the base model (used as initialization for the
fine-tuning), moving in the convex hull of the three parame-
ters (e.g. θ∞+θ∞→2+θ∞→1 in Fig. 3) allows to smoothly
control the trade-off of the different types of robustness. In-
terestingly, the highest ℓ2-robustness is attained by interme-
diate soups, not by the model specifically fine-tuned w.r.t.
ℓ2, suggesting that model soups might even be beneficial
to robustness in individual threat models (see more below).
Moreover, the highest robustness in the union is given by in-
terpolating only the models robust w.r.t. ℓ∞ and ℓ1, which
is in line with the observation of [8] that training for the ex-
treme norms is sufficient for robustness in the union of the
three threat models. Although the robust accuracy in the
union is lower than that of training simultaneously with all
attacks e.g. with MAX (42.0% vs 47.2%), the model soups
deliver competitive results without the need of co-training.

Finally, Fig. 4 shows that similar observations hold on
IMAGENET, where we create soups fine-tuning classifiers
robust w.r.t. ℓ∞, with either RESNET-50 [19] or VIT-B16
as architecture, for 1 epoch.

4.3. Soups for improving individual threat model
robustness

We notice in Fig. 1 and Fig. 2 that in a few cases the in-
termediate models obtain via parameters interpolation have
higher robustness than the extreme ones, which are trained
or fine-tuned with a specific threat model. As such, we an-
alyze in more details the soups w · θ∞ + (1 − w) · θ∞→2,
i.e. using the original classifier robust in ℓ∞ and the one
fine-tuned to ℓ2, on both CIFAR-10 and IMAGENET. Fig. 5
shows the robust accuracy w.r.t. ℓ∞ when varying the value
of w: in both case the original model θ∞, highlighted in
red, does not attain the best robustness. Interestingly, on
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Figure 3. Soups of three models on CIFAR-10: we fine-tune the model robust w.r.t. ℓ∞ (with WIDERESNET-28-10 architecture) to the
other threat models for 10 epochs, and show clean accuracy (first column) and robust accuracy w.r.t. every threat model (second to fourth
columns) and their union (last column) of the soups obtained as convex combinations of the three bases.
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Figure 4. Soups of three models on IMAGENET: we fine-tune the classifiers, with RESNET-50 (top row) and VIT-B16 (bottom) as
architecture, robust w.r.t. ℓ∞ for 1 epoch to the other threat models, and show clean accuracy (first column) and robust accuracy in every
threat model (second to fourth columns) and their union (last column) of the classifiers obtained as convex combinations of the three bases.
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Figure 5. Improvement on single threat models: we show the
robust accuracy w.r.t. ℓ∞ for the soups w · θ∞ + (1−w) · θ∞→2

for varied w. The original model θ∞ is highlighted in red.

CIFAR-10 the best soup is found with w = 0.9, while for
IMAGENET with w > 1: this suggests that the model soups

should not be constrained to the convex hull of the base
models, and extrapolation can lead to improvement.

5. Soups for Distribution Shifts

Prior works [30] have shown that adversarial training
w.r.t. an ℓp-norm is able to provide some improvement in
the performance in presence of non-adversarial distribution
shifts, e.g. the common corruptions of IMAGENET-C [21].
However, to see such gains it is necessary to carefully se-
lect the threat model, for example which ℓp-norm and size
ϵ to bound the perturbations, to use during training. The
experiments in Sec. 4 suggest that model soups of nominal
and adversarially robust classifiers yield models with a vari-
ety of intermediate behaviors, and extrapolation might even
deliver models which do not merely trade-off the robust-
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Figure 6. Soups on IMAGENET variants: for each dataset we plot the accuracy of the 5 best performing soups of the four base models
θ∞, θ∞→2, θ∞→1 and θ∞→nominal, and of the individual classifiers. Additionally, we show the performance of an independently trained
nominal model. All models are evaluated on the 1000 points used for the grid search of the best soups.

ness of the initial classifiers but amplify it. This flexibility
could suit adaptation to various distribution shifts: that is,
the various corruption types might more closely resemble
the geometry of different ℓp-balls or their union. Moreover,
including a nominally fine-tuned model in the soup allows
it to maintain, if necessary, high accuracy on the original
dataset, which is often degraded by adversarial training [34]
or test-time adaptation on shifted data [36].

5.1. Soups for IMAGENET variants

Setup. In the following, we use models soups consisting
of robust VIT fine-tuned from ℓ∞ to the other threat models,
and one more VIT nominally fine-tuned for 100 epochs to
obtain slightly higher accuracy on clean data. For shifts, we
consider several variants of IMAGENET, providing a broad
and diverse benchmark for our soups: IMAGENET-REAL
[1], IMAGENET-V2 [40], IMAGENET-C [21], IMAGENET-
A [23], IMAGENET-R [20], IMAGENET-SKETCH [49], and
CONFLICT STIMULI [12]. We consider the setting of few-
shot supervised adaptation, with a small set of labelled im-
ages from each shift, which we use to select the best soups.

Soup selection via grid search. Since evaluating the ac-
curacy of many soups on the entirety of the datasets would
be extremely expensive, we search for the best combina-
tion of the four models on a random subset of 1000 points
from each dataset, with the exception of CONFLICT STIM-
ULI for which all 1280 images are used (for IMAGENET-C
we use all corruption types and severities, then aggregate
the results). Restricting our search to a subset also serves
our aim of finding a model soup which generalizes to the
new distribution by only seeing a few examples. We eval-

uate all the possible affine combinations with weights in
the range [−0.4, 1.4] with granularity 0.2, which amounts
to 460 models in total. In Fig. 6 we compare, for each
dataset, the accuracy of the 5 best soups to that of each indi-
vidual classifier used for creating the soups and of a nominal
model trained independently: for all datasets apart from IM-
AGENET the top soups outperform the individual models.
Moreover, we notice that the best individual model varies
across datasets, indicating that it might be helpful to merge
networks with different types of robustness.

Comparison to existing methods. Having selected the
best soup for each variant (dataset-specific soups) on its
chosen few-shot adaptation set, we evaluate the soup on the
test set of the variant (results in Table 1). We also evalu-
ate the model soup that attains the best average case accu-
racy over the adaptation sets for all variants (single soup),
in order to gauge the best performance of a single, general
model soup. We compare the soups to a nominal model,
the ℓ∞-robust classifier used in the soups, their ensemble,
the Masked Autoencoders of [18], AdvProp [54], Pyramid-
AT [24], and the ensemble obtained by averaging the output
(after softmax) of the four models included in the soups.
Selecting the best soup on 1000 images of each datasets
(results in the last row of Table 1) leads in 4 out of the 8
datasets to the best accuracy, and only slightly suboptimal
values in the other cases: in particular, parameters interpola-
tions is very effective on stronger shifts like IMAGENET-R
and CONFLICT STIMULI, where it attains almost 8% better
performance than the closest baseline. Unsurprisingly, it is
more challenging to improve on datasets like IMAGENET-
V2 which are very close to the original IMAGENET. Over-
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SETUP # FP IMAGENET IN-REAL IN-V2 IN-A IN-R IN-
SKETCH

CONFLICT
STIMULI

IN-C MEAN

Baselines

Nominal training ×1 82.64% 87.33% 71.42% 28.03% 47.94% 34.43% 30.47% 64.45% 55.84%
Adversarial training ×1 76.88% 83.91% 64.81% 12.35% 55.76% 40.11% 59.45% 55.44% 56.09%
Fine-tuned MAE-B16 ×1 83.10% 88.02% 72.80% 37.92% 49.30% 35.69% 27.81% 63.23% 57.23%
AdvProp ×1 83.39% 88.06% 73.17% 34.81% 53.04% 39.25% 38.98% 70.39% 60.14%
Pyramid-AT ×1 83.14% 87.82% 72.53% 32.72% 51.78% 38.60% 37.27% 67.01% 58.86%
Indep. networks ensemble ×2 82.86% 87.78% 71.73% 25.99% 54.20% 37.33% 46.41% 65.61% 58.99%
Individual networks ensemble ×4 81.31% 86.97% 70.21% 23.13% 54.82% 39.51% 56.02% 68.17% 60.02%

Fixed grid search on 1000 images

Single soup ×1 82.49% 87.85% 71.99% 34.31% 53.84% 39.84% 38.52% 66.82% 59.46%
Dataset-specific soups ×1 82.29% 87.89% 71.95% 38.27% 56.39% 40.73% 67.03% 69.34% (64.24%)

Table 1. Comparison on IMAGENET variants: we report the classification accuracy of various models on the IMAGENET variants,
together with the number of forward passes they require. The soups are selected via a fixed grid search on the interpolation weights with
1000 points for each dataset. The last row shows the results of the best found soup for each dataset.
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Figure 7. Soup compositions on IMAGENET variants: for each dataset we plot the composition of the 5 best soups, i.e. the linear
weights for the individual models, as measured by grid search over 1000 points on weights in the range [−0.4, 1.4] with granularity 0.2.
Additionally we show the composition of the model achieving the best average accuracy over all 8 variants.

all, The soup selected for best average accuracy (across all
datasets) outperforms all baselines, except for the ensemble
of four models (with 4× the inference cost), and AdvProp,
which requires co-training of clean and adversarial points.
These results show that soups with robust classifiers are a
promising avenue for quickly adapting to distribution shifts.

Composition of the soups. To analyze which types of
classifiers are most relevant for performance on every distri-
bution shift, we plot in Fig. 7 the breakdown of the weights
of the five best soups (more intense colors indicate that the
corresponding weight or a larger one is used more often
in the top-5 soups). First, one can see that the nominally
fine-tuned model (in black) is dominant, with weights of
0.8 or 1, on IMAGENET, IMAGENET-REAL, IMAGENET-
V2, IMAGENET-A and IMAGENET-C: this could be ex-
pected since these datasets are closer to IMAGENET itself,
i.e. the distribution shift is smaller, which is what nominal
training optimizes for (in fact, the nominal models achieve

higher accuracy than adversarially trained ones on these
datasets in Fig. 6). However, in all cases there is a contribu-
tion of some of the ℓp-robust networks. On IMAGENET-R,
IMAGENET-SKETCH and CONFLICT STIMULI, the model
robust w.r.t. ℓ∞ plays instead the most relevant role, again
in line with the results in Table 1. Interestingly, in the case
of CONFLICT STIMULI, the nominal classifier has a weight
-0.4 (the smallest in the grid search) for all top performing
soups: we hypothesize that this has the effect of reduce the
texture bias typical of nominal model and emphasize the at-
tention to shapes already important in adversarially trained
classifiers. Finally, we show the composition of the soup
which has the best average accuracy over all datasets (last
column of Fig. 7), where the nominal and ℓ∞-robust models
have similar positive weight.

How many images does it take to find a good soup? To
identify the practical limit of supervision for soup selection,
we study the effect of varying the number of labelled images
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datasets. For each case, we plot the average accuracy on a held-out
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Figure 9. Soup compositions on IMAGENET-C: we plot the
model-wise weights of the best soups across types and severities.

used to select the best soup on a new dataset. For this analy-
sis we randomly choose 500 images from the adaptation set
used for the grid search to create a held-out test set. From
the remaining images, we uniformly sample k elements, se-
lect the soup which performs best on such k points, and
then evaluate it on this test set. We repeat this procedure for
k ∈ {10, 30, 100, 300, 500} for 50 times each with differ-
ent random seeds. In Fig. 8 we plot the average accuracy
on the held-out test set, with standard deviation, when vary-
ing k: increasing the number of points above 100 achieves
high test accuracy with limited variance. This suggests that
soup selection, and thus model adaptation, can be carried
out with as few as 100 examples of the new distribution.

5.2. A closer look at IMAGENET-C

While our experiments have considered IMAGENET-C
as a single dataset, it consists of 15 corruptions types, each
with 5 severity levels. As the various corruptions have dif-
ferent characteristics, one might expect the best soup to vary
across them. In Fig. 9 we plot the composition of the top-
5 soups for each severity level for two corruption types (as
done in Fig. 7). The weights of the individual classifiers
significantly change across distribution shifts: for both cor-
ruption types, increasing the severity (making perturbations
stronger) leads to a reduction in the nominal weight in favor
of a robust weight. However, in the case of “pixelate” the
soups concentrate on the ℓ1-robust network, while for “jpeg
compression” this happens for ℓ∞. Similar visualization for
the remaining IMAGENET-C subsets are found in Fig. 11
of the Appendix. This highlights the importance of inter-
polating models with different types of robustness, and im-
plies that considering each corruption type (including sever-
ity levels) as independent datasets could further improve the
performance of the soups on IMAGENET-C.

6. Discussion and Limitations
Merging models with different types of robustness en-

ables strong control of classifier performance by tuning only
a few soup weights. Soups can find models which perform
well even on distributions unseen during training (e.g. the
IMAGENET variants). Moreover, our framework avoids co-
training on multiple threats: this makes it possible to fine-
tune models with additional attacks as they present them-
selves, and enrich the soups with them.

At the moment, our soups contain only nominal or ℓp-
robust models, but expanding the diversity of models might
aid adaptation to new datasets. We selected our soups with
few-shot supervision, but other settings could potentially
use soups, such as unsupervised domain adaptation [37,42],
on labeled clean and unlabeled shifted data, and test-time
adaptation [43,44,48], on unlabeled examples alone. More-
over, in our evaluation we have constrained the soups to
belong to a fixed grid, which might miss better models: fu-
ture work could develop automatic schemes to optimize the
soup weights, possibly with even fewer examples, or with-
out labeled examples (as done for test-time adaptation of
non-robust models).

7. Conclusion
We show that combining the parameters of robust classi-

fiers, without additional training, achieves a smooth trade-
off of robustness in different ℓp-threat models. This allows
us to discover models which perform well on distribution
shifts with only a limited number of examples of each shift.
In these ways, model soups serve as a good starting point to
efficiently adapt classifiers to changes in data distributions.
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