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Abstract

Neuroimage processing tasks like segmentation, recon-

struction, and registration are central to the study of neu-

roscience. Robust deep learning strategies and architec-

tures used to solve these tasks are often similar. Yet, when

presented with a new task or a dataset with different vi-

sual characteristics, practitioners most often need to train

a new model, or fine-tune an existing one. This is a time-

consuming process that poses a substantial barrier for the

thousands of neuroscientists and clinical researchers who

often lack the resources or machine-learning expertise to

train deep learning models. In practice, this leads to a lack

of adoption of deep learning, and neuroscience tools being

dominated by classical frameworks.

We introduce Neuralizer, a single model that general-

izes to previously unseen neuroimaging tasks and modali-

ties without the need for re-training or fine-tuning. Tasks do

not have to be known a priori, and generalization happens

in a single forward pass during inference. The model can

solve processing tasks across multiple image modalities, ac-

quisition methods, and datasets, and generalize to tasks and

modalities it has not been trained on. Our experiments on

coronal slices show that when few annotated subjects are

available, our multi-task network outperforms task-specific

baselines without training on the task.

1. Introduction

Computational methods for the processing and analysis

of neuroimages have enabled a deep understanding of the

human brain. The field has also led to advanced patient

care by facilitating non-invasive methods of diagnosis and

treatment. Recent deep learning research promises to sub-

stantially increase the accuracy and speed of neuroimaging

analysis methods.

A drawback of most current deep-learning-based ap-

proaches is that each model is limited to solving the task

it has been trained on, on the type of data it has been

trained on. Generalization to new tasks and domains, such

as different acquisition protocols or new segmentation, is

Input Prediction

One Model 

for all Tasks

Context Set informs Task

Figure 1. Neuralizer can solve a broad range of image processing

tasks, including new ones not seen during training, with a single

model by conditioning the prediction on a context set of examples.

After training on a diverse set of tasks, the model can generalize

to new tasks in a single forward pass without re-training or fine-

tuning. The model is highly flexible, requiring no prior definition

of the set of tasks, and can be conditioned with context sets of any

length.

a main barrier to adoption [62]. Performing neuroimag-

ing tasks like segmentation, registration, reconstruction, or

motion correction requires different models for each pro-

cessing step, despite operating on the same input data and

methods exhibiting strong similarities in network architec-

ture [13,45,85]. Yet, designing and training models to solve

these tasks on each dataset is prohibitively expensive. To

train a deep learning model, a dataset needs to be compiled

and often manually annotated, and the network, training,

and data loading logic needs to be implemented. All these

steps generally require machine learning and neuroimaging

expertise. In addition, computational resources like special-

ized graphics processing hardware and software infrastruc-

ture needs to be available. These requirements are particu-

larly problematic in clinical research settings due to a high

cost of annotation and a lack of machine learning expertise

and hardware.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Example neuroimaging tasks and modalities included in our dataset (top: input images, bottom: output images).

Contribution

We introduce Neuralizer, a general-purpose neuroimag-

ing model that can solve a broad range of neuroimaging

tasks on diverse image modalities (Fig. 2), without the need

for task-specific training or fine-tuning. Neuralizer can

solve new tasks, unseen during training, using a set of ex-

amples of the new task at inference (Fig. 1)

Neuralizer involves a convolutional architecture (Fig. 3),

that takes as input a context set of examples that define the

processing task, and thus does not require prior specifica-

tion of the tasks. The method enables single-pass gener-

alization during inference and can process any number of

reference images in a single pass to inform the prediction.

As a first method tackling task generalization in neu-

roimaging, we focus on analyzing the capabilities of such

system and presenting general insights, and limit our ex-

periments to 2D. We evaluate our model by comparing

the single-pass generalization performance to task-specific

baselines conditioned on an equivalent amount of data.

We find that Neuralizer outperforms the baselines on tasks

where ≤ 32 labeled examples are available, despite never

training on the task. When generalizing to new segmenta-

tion protocols, Neuralizer matches the performance of base-

lines trained directly on the dataset.

2. Related Work

We give a short introduction to neuroimaging tasks, ter-

minology, and methods. We then provide an overview

of fundamental methods for adapting a model to multiple

domains, including multi-task learning, few-shot learning,

fine-tuning, and data synthesis.

2.1. Neuroimage analysis

Neuroimage analysis employs computational techniques

to study the structure and function of the human brain.

Common imaging techniques are structural magnetic res-

onance imaging (MRI), functional MRI, diffusion tensor

imaging (DTI), computed tomography (CT), and Positron

emission tomography (PET). Each imaging method can cre-

ate diverse images with different characteristics and con-

trasts, which are further diversified depending on the prop-

erties of the acquisition site [60, 110], device, protocol,

imaging sequence [56], and use of contrast agents [9, 36].

To analyze these images, a variety of processing tasks

are most often combined in a processing pipeline. Common

processing tasks include anatomical segmentation [12, 18,

22,23,31,82,98,103], skull stripping [49,49,53,87,94,109],

defacing [2, 39], registration [5–7, 10, 20, 28, 45, 47, 54],

modality transfer [79, 80, 97], in-painting [41, 68, 69, 78,

107], super-resolution [21, 58, 72, 73, 104], reconstruction,

and de-noising [58, 70, 92], bias field removal [35, 59], sur-

face fitting [48] and parcellation [91, 99].

Multiple toolboxes provide a suite of interoperable

software components, most implementing classical op-

timization strategies. Widely used toolboxes include

Freesurfer [31], FSL [51, 95, 106], SPM [34], CIVET [3],

BrainSuite [90], HCP pipeline [100], and BrainIAK [57].

Deep-learning-based methods are starting to be included be-

cause of their improved accuracy and shorter runtime [13,

49]. While these methods provide solutions for common

neuroimaging applications, most are limited to a single task

and few modalities. Developers need to manually update

the pipelines to include new processing tasks and to support

a wider variety of image modalities. This process requires

extensive technical expertiese and computational resources,

often not available to the clinical neuroscientists focusing

on scientific questions.

2.2. Multi­task learning

Multi-Task Learning (MTL) frameworks solve multiple

tasks simultaneously by exploiting similarities between re-

lated tasks [17]. MTL can improve performance and reduce

computational cost and development time compared to de-

signing task-specific solutions [26, 88]. In neuroimaging,

MTL networks were recently proposed for the simultaneous
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segmentation and classification of brain tumors by training

a single network with separate prediction heads associated

with the different tasks [25, 38]. This strategy is challeng-

ing to scale as the number of tasks increases, requires prior

determination of the set of tasks, and importantly does not

enable generalization of the model to new tasks. With Neu-

ralizer, we build on these methods to achieve scalable MTL,

without the need for multiple network heads, and impor-

tantly with the ability to generalize to new tasks and modal-

ities.

2.3. Fine­tuning

To tackle problems in the limited data scenarios frequent

in medical imaging, neural networks can be pre-trained on

a related task with high data availability and then fine-tuned

for specific tasks. For example, a common approach in-

volves taking a Res-Net [43] trained on ImageNet [24] and

fine-tuning part of the network for a new task [50, 55, 101].

For medical imaging, networks pre-trained on large sets of

medical images are available [19], and fine-tuning them to

new tasks results in shortened training time and higher ac-

curacy [4, 71]. However, fine-tuning also requires machine

learning expertise and computational resources, most often

not available in clinical research. Additionally, in scenar-

ios with small datasets, fine-tuning models trained on large

vision datasets can be harmful [83].

2.4. Few­shot learning

Few-shot models generate predictions from just a few la-

beled examples [66, 84, 86, 105], or in the case of zero-shot

methods [14], none at all. Many of these methods require

training or fine-tuning. In computer vision, several methods

pass a query image, along with a set of support images and

labels as input to the model [66, 89, 96, 102]. Natural im-

age segmentation methods [67, 112] use single image-label

pairs [61, 111] as support or aggregate information from a

larger support set [63]. Recent few-shot learning methods in

the medical image segmentation setting [11, 29, 30] operate

on a specific anatomical region in a single image modal-

ity [42, 114]. Similar Prior-Data Fitted Networks (PFNs)

are fitted to multiple datasets at once to learn the training

and prediction algorithm [77]. During training, this strategy

draws a dataset, a set of data points and their labels from it,

masks one of the labels and predicts it. The resulting model

aims to generalize to new datasets. PFNs have only been

applied to low-dimensional and tabular data [46]. Our solu-

tion builds on ideas from these methods, but aims to solve a

much larger range of diverse image-to-image tasks on neu-

roimages of many modalities.

2.5. Data augmentation and synthesis

Data augmentation increases the diversity of training

data by augmenting or modifying existing data [85, 113]. It

improves model robustness to input variability that may not

be available in the original training data. In neuroimaging,

arbitrary image modalities can be simulated by synthesis of

images without requiring any real data [13, 16, 45, 49, 93].

In meta-learning, data augmentation can further be used to

generate entirely new tasks [15, 65, 108]. We use data aug-

mentations and further expand existing methods by devel-

oping rich neuroimaging task augmentations for generaliza-

tion to unseen neuroimaging tasks.

3. Neuralizer

We introduce Neuralizer, a multi-task model for neu-

roimage analysis tasks. In this section, we first define the

training framework and adaptations necessary to operate on

a diverse range of tasks and input types. We then introduce

the model architecture, training, and inference strategies.

3.1. Generalizabe multi­task model

Let T represent a set of tasks, with a subset of tasks Tseen

seen during training. Each task consists of input-output

image pairs (xt, yt) from potentially multiple underlying

datasets with input and output spaces xt ∈ X , yt ∈ Y .

To enable generalization to unseen tasks, we condition

the model on a context set Ct = {(xt,i, yt,i)}
N
i=1 of input-

output image pairs passed to the model alongside the predic-

tion task. The context set defines the desired task, and can

vary in size |Ct| = N and is re-sampled from the underly-

ing task-datasets for each input. Fig. 1 gives an example for

a modality transfer task.

We employ a neural network gθ(xt, Ct) = yt with

weights θ that applies the task defined by context set Ct

to the input neuroimage xt. We optimize the network using

supervised training with the loss

L(Tseen; θ) = Et∈Tseen

[

E(xt,yt,Ct)[Lt(yt, gθ(xt, Ct))]
]

,

(1)

where Lt is a task-specific loss function.

3.2. Design for diverse tasks

To process different tasks with a single model, we care-

fully select the loss function, neuroimage encodings, and

generation of the training set for each task type.

Loss function. Neuralizer solves both segmentation tasks

(e.g. anatomical segmentation and skull-stripping via

a brain mask), more general and image-to-image tasks

(e.g. denoising). We use the Soft Dice Loss [76] for

segmentation-like tasks, and the pixel-wise Mean Squared

Error MSE(yt, g(xt, Ct)) = 1
2σ2

∑

p[ytp − g(xt, Ct)p]
2

with balancing hyperparameter σ2 for other tasks. As the

network optimizes multiple tasks during training, the bal-

ance of the loss terms can dramatically affect the optimiza-

tion and resulting performance.
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Figure 3. Neuralizer consists of 7 Pairwise-Conv-Avg blocks (right), arranged in a U-Net-like [76, 85] configuration (left). Each Pairwise-

Conv-Avg block enables interaction between the input image and the image pairs present in the context set. The block consists of a

residual unit, pairwise convolution of each context member with the target, and an averaging of results across the context set to update the

representation. The architecture is invariant to context size N .

Input and output encoding. For Neuralizer to work on

both segmentation and image-to-image tasks, we facilitate

simultaneous input of multiple image modalities and masks.

We design the input space X to accept floating point value

images with three channels, and zero-pad any channels un-

necessary for a specific task. The output space Y follows

the same design but uses only one channel.

Training dataset creation. At each training iteration, we

first sample a task t from Tseen, selecting the task-specific

dataset (Tab. 1). From this dataset, we sample the input im-

age, ground truth output, and image pairs for the context set.

To increase the range of images that can be used to condi-

tion the trained model, the image modalities and acquisition

protocols of entries of the context set can differ from the in-

put image for some tasks. Supplemental section G contains

a detailed description of the training data generator.

3.3. Model architecture

Fig. 3 shows the Neuralizer network architecture,

adapted with the concurrently developed [15] – a method

that focuses on solving broad segmentation tasks. As the

architecture is independent of the task, we omit the task sub-

script in this section.

The input image x and the image pairs of the context

set Ci = (xi, yi), i = 1, ..., N are first passed through an

embedding layer consisting of a single 1 × 1 convolution

with learnable kernels ex, eC , to obtain the representations

rx = x ∗ ex, rCi
= cat(xi, yi) ∗ eC where ∗ is the con-

volution operator. This combines each context image pair

to a joint representation rCi
and maps all representations

to a uniform channel width c, which is constant through-

out the model. Next, we process the representations using

multiple Pairwise-Conv-Avg Blocks (explained below), ar-

Table 1. Tasks, Modalities, Datasets, and Segmentation classes

used in this paper, and involved in training Neuralizer.

Tasks Modalities

Binary Segmentation T1-w.

Modality Transfer T2-w.

Super Resolution MRA

Skull Stripping PD

Motion Correction FLAIR

Undersampled Reconstruction ADC

Denoising & Bias correction DWI

Inpainting DTI (17 dir.)

Datasets Segmentation Classes

OASIS 3 [47, 74] Freesufer protocol, 31

classes [13, 31]BRATS [8, 9, 75]

IXI [1]

ATLAS R2.0 [64] Manually-annotated Hammers

Atlas, 96 classes [27, 37, 40]Hammers Atlas [40]

WMH Challenge [56]

ISLES2022 [81] Brainmasks [31, 49]

ranged as a U-Net-like configuration [76,85] to exploit mul-

tiple scales. The output rout
x of the final Pairwise-Conv-Avg

Block is processed by a residual unit [43] and a final 1 × 1
conv layer to map to one output channel. All residual units

consist of two 3× 3 conv layers, a shortcut connection, and

GELU activation functions [44].

Compared to standard CNNs, Neuralizer uses a mecha-

nism to enable knowledge transfer from the context set to

the input image. We design the Pairwise-Conv-Avg Block
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(Fig. 3, right) to model this interaction. The block maps

from representations of the target input rin
x and context pairs

rin
Ci

to output representations rout
x , rout

Ci
of the same size.

First, we process each input separately with a residual unit

to obtain rint
x = ResUnitx(r

in
x ) and rint

Ci
= ResUnitC(r

in
Ci
).

The residual units, which involve two convolutions, oper-

ate on the context representations and have shared weights.

Second, we pairwise concatenate the context representa-

tions with the target representation on the channel dimen-

sion: pi = cat(rint
x , rint

Ci
). We combine the pairwise rep-

resentations and reduce the channel size back to c using a

1 × 1 convolution with learnable kernel kx, and update the

target representation by averaging across context members

rout
x = rint

x + 1
N

∑N

i=1 pi ∗ kx. The context representations

are updated with a separate kernel rout
Ci

= rint
Ci

+ pi ∗ kC . We

then re-size the outputs of a Pairwise-Conv-Avg Block be-

fore feeding them as input the next block. We experimented

with attention-based and weighted average approaches but

found that they did not lead to an increased generalization

to unseen tasks.

3.4. Task augmentations

To further diversify the training dataset, we employ task

augmentations [15], a group of transformations applied at

random to the input, output, and context images. The ob-

jective is to increase the diversity of tasks to discourage

the model from merely memorizing the tasks in the train-

ing data. A list of all task augmentations is summarized in

Tab. 2, with more detailed descriptions and visual examples

in Supplement C.

3.5. Inference

During inference, we supply an input image xi and a

context set Ci from the desired task. Given these inputs,

a simple feed-forward pass through the model provides the

prediction ŷ = g(x,C). To further increase accuracy at

test-time, we use context-set bootstrapping [15]. We also

increase the context set by sampling with replacement from

the context set, and add small affine augmentations.

4. Experiments

We first compare Neuralizer with task-specific networks,

which require substantial expertise and compute. We then

analyze the effect of the size of the context set, and the

Table 2. Task Augmentations

Task Augmentations

IntensityMapping SyntheticModality

SobelFilter MaskInvert

MaskContour MaskDilation

PermuteChannels DuplicateChannels

multi-task generalization to unseen segmentation protocols

and image modalities. For this first method of large-scale

multi-task generalization in neuroimaging, we conduct the

experiments on 2D image slices.

4.1. Data

To create a diverse dataset encompassing a multitude

of different modalities, acquisition protocols, devices, and

tasks, we pool neuroimages from the public datasets OA-

SIS3 [47, 74], BRATS [8, 9, 75], Atlas R2.0 [64], Ham-

mers Atlas [40], IXI [1], ISLES2022 [81], and the White

Matter Hyperintensities Challenge [56]. We segment all

subjects with Synthseg [13, 31]. Based on the segmenta-

tion, we affinely align the images to the MNI 152 template

space [32,33], and resample to 1mm isometric resolution at

a size of 192 × 224 × 192mm. We perform manual qual-

ity control of the segmentation and registration by ensuring

no segmented areas fall outside of the cropped volume and

discard subjects failing this check (4 subjects). We extract

a coronal slice of 192× 192mm, bisecting the frontal Brain

stem, Hippocampus, Thalamus, and Lateral ventricles. We

rescale image intensities to the [0, 1] interval using dataset-

specific percentiles. For full head images, we create a brain

mask with Synthstrip [31, 49]. The final dataset contains

2,282 subjects with 15,911 images and segmentation masks

across 8 modalities. Subjects of the seven original datasets

are split into 80% for training and validation, 20% test, with

a minimum of 15 test subjects per dataset.

4.2. Models

Neuralizer-seen. This Neuralizer model includes all

tasks available during training. We use this model to evalu-

ate the performance on unseen scans from tasks and modali-

ties that have been included in the training. The model uses

the 4-stage architecture shown in Fig. 3 with 64 channels

per layer. During training, the context size |Ci| is sampled

from U{1,32} at each iteration.

Neuralizer-unseen. To evaluate Neuralizer performance

on tasks and modalities it has not been trained on, we train a

family of Neuralizer models where a single task or modality

is excluded from the training set. The model architecture of

Neuralizer-unseen is identical to Neuralizer-seen.

Baseline-seen. As no established baseline for multi-task

and multi-modality models in neuroimaging can tackle the

number of tasks we aim for, we compare Neuralizer to

an ensemble of task-specific U-Nets [76, 85]. However,

training one model for each task and modality requires

overwhelming computational resources. To reduce the

computational requirement, we follow previous modality-

agnostic models [13, 49] and train each model on multiple

input modalities. This lowers the number of models to be
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Figure 4. Performance of multi-task Neuralizer and the task-specific baselines on each task, averaged across all modalities in the test set.

The tasks being evaluated were included in the training of Neuralizer-seen (orange), held out in Neuralizer-unseen (blue), and specifically

trained on by each task-specific baseline (gray). The x-axis is the size of the train/context set, and the y-axis is the Dice/PSNR score. Some

points on the x-axis are omitted for better visibility. ‘All’ refers to all available train data for the task, ranging from 249 to 2,282 subjects

depending on the task. The bars denote standard deviation across modalities. We extract results for T1 scans in Supplement D.

trained to one per task, segmentation class, and modality-

transfer output modality. To compare Baseline-seen with

Neuralizer-unseen given an equal amount of data, we train

baselines with training set sizes of {1, 2, 4, 8, 16, 32, all}
and employ standard data augmentation.

We use a 4-stage U-Net architecture with one residual

block per layer. The channel width is tuned experimentally

for each training dataset size. We select 256 channels when

all data is available for training, and 64 channels otherwise.

Using larger U-Nets resulted in overfitting and lower perfor-

mance. Supplement H summarizes model parameter counts

and inference costs.

4.3. Training

We use supervised training, task-specific loss functions,

and weigh the MSE loss by selecting σ2 = 0.05, resulting

in the loss terms being of similar magnitude. All models are

trained with a batch size of 8, a learning rate of 10−4, and

the ADAM optimizer [52]. To speed up training, we under-

sample tasks that the model learns quickly, with sampling

weights given in Supplement I.

In addition to the task augmentations, we use data aug-

mentations via random affine movements, random elastic

deformations, and random flips along the sagittal plane.
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Figure 5. Results averaged across tasks, expressed as relative per-

formance compared to the baseline trained on all data. The tasks

being evaluated were included in the training of Neuralizer-seen

(orange), held out in Neuralizer-unseen (blue), and specifically

trained on by each task-specific baseline (gray). The x-axis is the

size of the train/context set, and the y-axis is the relative score.

Some points on the x-axis are omitted for better visibility. ‘All’

refers to all available data for the task, ranging from 249 to 2,282

subjects depending on the task. Bars: standard deviation across

tasks/modalities.
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For Baseline-seen, we reuse the augmentations but remove

those that introduce uncertainty in the desired output. The

training time for Neuralizer is 7 days on a single A100 GPU.

The training time of the baseline models is capped at 5 days.

All models use early stopping, ending the training after 25

epochs exhibiting no decrease in validation loss. The model

with the lowest validation loss is used for further evaluation

on the test set.

4.4. Evaluation

We evaluate the Dice coefficient for the segmentation

and skull stripping tasks, and the Peak Signal-to-Noise Ra-

tio (PSNR) for the image-to-image tasks on the test set. As

the low-data regime is of particular interest, we measure

performance as a function of context set size for the Neu-

ralizer models and use training set size as an analog for the

U-Net models. We evaluate context sets of up to 32 sub-

jects. Larger context sets are possible but come at a linear

cost in memory.

4.5. Experiment 1: Baseline Comparison

To assess if the proposed multi-task approach is competi-

tive with task-specific models, we evaluate the performance

and runtime of Neuralizer-seen, Neuralizer-unseen, and

Baseline-seen on the test-set of each task. For Neuralizer-

unseen, we withhold image modalities using a leave-one-

out strategy during training and evaluate on the unseen

modalities at test time.

Results. We display the results by task, averaged across

modalities in Fig. 4. We also provide an evaluation of us-

ing just the T1 modality in Supplement D, since many task-

specific networks in neuroimage analysis literature focus

on T1 images. We further aggregate performance across

all tasks in Fig. 5, and provide tabular results in Supple-

ment E. Both Neuralizer models outperform most task-

specific baselines trained on up to 32 samples. When train-

ing the baselines on all available data, the baselines outper-

form Neuralizer-seen by 2 percentage points in relative per-

formance, and Neuralizer-unseen by 3 percentage points.

The loss in performance when generalizing to an unseen

modality (between Neuralizer-seen and Neuralizer-unseen)

is less than 2 percentage points for all context set sizes.

Training the baseline model to convergence on 32 sam-

ples took on average 28.2 ± 16.6 hours per task, using one

A100 GPU. Since Neuralizer only requires inference for a

new task, it is orders of magnitude faster, requiring less than

0.1 seconds on a GPU and less than 3 seconds on a CPU.

We provide qualitative samples of the predictions from

Neuralizer-seen model in Supplement A, Figures 6-8.

4.6. Experiment 2: Context set size analysis

We assess the few-shot setting that is prevalent in neu-

roimage analysis, where few annotated images are often

available for a new task. We evaluate performance as

a function of the number of labeled samples. For Neu-

ralizer, we evaluate the model with context-set sizes of

{1, 2, 4, 8, 16, 32} unique subjects from the test set. For the

baseline, we trained models with reduced training set sizes

of the same amount of subjects. To reduce the effect of ran-

dom training subject selection, we train three separate base-

lines with n = 1, two baselines with n = 2, and average

results of models with the same n.

Results. Tab. 4 and Figs. 4, 5 illustrate the results. For all

models, prediction accuracy increases with the availability

of labeled data, with diminishing returns. For both Neural-

izer models, a context set size of one achieves more than

90% of the performance attainable with all data. For most

tasks, the baseline performs overall worse than both Neu-

ralizer models when ≤ 32 labeled samples are available but

achieves the best overall performance on larger datasets.

4.7. Experiment 3: Generalization to a new seg­
mentation protocol

The Hammers Atlas dataset [27,37,40] provides an alter-

native anatomical segmentation protocol to the widely-used

Freesurfer segmentation available for most subjects in the

dataset. The shape, size, and amount of annotated regions

in the protocols differ drastically. A different image acqui-

sition site also leads to differences in visual characteristics.

We use the Hammers Atlas dataset to evaluate Neuralizer-

unseen by entirely withholding the dataset and its annota-

tions from training. We evaluate the Dice coefficient of

the 14 major anatomical segmentation classes present in the

center and right half of the coronal slice.

Results. Tab. 3 illustrates the results. Neuralizer-unseen

performs similarly to Neuralizer-seen and the baseline,

while not requiring lengthy re-training or fine-tuning on the

Hammers Atlas dataset, and not having seen the segmenta-

tion protocol. All three models achieve a mean Dice coef-

ficient of 0.84. The largest performance difference is in the

third ventricle class, where both Neuralizer models outper-

form the baseline by at least 0.04 Dice. The Freesurfer seg-

mentation protocol included in the training set of the Neu-

ralizer models also contains a third ventricle class.

5. Discussion

Our experiments using modality and segmentation class

hold-outs show that Neuralizer can generalize well to un-

seen neuroimaging tasks. Across all context set sizes, the

generalization loss between seen and unseen modalities and

segmentation classes is less than 2 percentage points across
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Model Task Seen Segmentation Class (Hammers Atlas) Mean (std)

Hip PAG STG MIG FuG Stm Ins PCG Tha CC 3V PrG PoG ALG

Baseline-seen ✓ .88 .86 .93 .92 .79 .87 .82 .87 .90 .80 .68 .83 .77 .82 .84 (.07)

Neuralizer-seen ✓ .88 .86 .92 .92 .76 .88 .83 .85 .90 .82 .73 .86 .77 .81 .84 (.07)

Neuralizer-unseen ✗ .88 .87 .93 .91 .78 .87 .82 .85 .90 .81 .72 .85 .78 .81 .84 (.06)

Table 3. Segmentation of the Hammers Atlas dataset. For Neuralizer-unseen, this dataset and segmentation protocol is withheld from

training. Evaluation of major labels located in the center and right of the coronal slice. See Supplement F for class abbreviations.

Experiments 1 and 2. On the smaller held-out Hammers-

Atlas segmentation dataset, we find that Neuralizer can gen-

eralize to unseen tasks with similar performance. These re-

sults show promise that a single Neuralizer model can per-

form multiple neuroimaging tasks, including generalization

to new inference tasks not seen during training.

In settings with 32 or fewer labeled example images,

Neuralizer-unseen outperforms task-specific baselines de-

spite never having seen the task or modality at train time,

and taking nearly no effort or compute compared to the

baselines which require substantial expertise, manual la-

bor, and compute resources. The performance difference is

largest when only one labeled subject is available, but still

present at 32 subjects (Fig. 5). Neuralizer provides a per-

formance advantage on smaller datasets likely by exploit-

ing neuroimaging similarities across the many other neu-

roimaging tasks and datasets available in training.

When training the baselines on all available data, they

can outperform Neuralizer-seen and Neuralizer-unseen by

at most 3 percentage points. The inflection point of identi-

cal performance between Neuralizer and the baselines is not

covered by the range of context set sizes chosen for train-

ing and evaluation due to prohibitive computational costs

and is an interesting direction of study. When large anno-

tated datasets are available, the baselines performed best on

most tasks. However, training task-specific models comes

at a significant cost. As a first step in the proposed prob-

lem formulation, Neuralizer offers an alternative with near

equal performance, while only requiering seconds to infer

any task from the context set.

Limitations

We made simplifying assumptions in this first paper

demonstrating the potential of multi-task generalization in

neuroimaging. The experiments are conducted on 2D data

slices. In large part, we did this since running the hundreds

of baselines in 3D would be infeasible on our compute clus-

ter. Entire volumetric data also impose a challenging mem-

ory requirement on Neuralizer models. To tackle 3D data in

the future, we plan to process multiple slices at a time.

We affinely aligned the neuroimages of the context set to

the target image. Early in Neuralizer development, we tried

training on non-aligned inputs but found that it deteriorated

performance. The need for affine alignment provides an ob-

stacle to adoption. While existing affine-alignment tools are

fast and can be employed, we also believe that this require-

ment can be removed with further development.

We originally experimented with tumor and lesion seg-

mentation tasks but found this to be a more challenging sce-

nario. Lesions are spatially heterogeneous, making learning

from the context set much harder. We excluded tumor and

lesion segmentation masks from the experiments, but plan

to study this setting in the future.

While we demonstrate the proposed ideas on a broad

range of tasks and modalities, neuroimage analysis can in-

volve more domains, tasks, and populations, like image reg-

istration, surface-based tasks, CT image domains, and pedi-

atric data. We plan to extend Neuralizer to tackle these in

the future.

6. Conclusion

Neuralizer performs accurate rapid single-pass, multi-

task generalization, and even outperforms task-specific

baselines in limited data scenarios. Even when a large

amount of annotated data is available, Neuralizer often

matches baseline performance despite not training on the

data. Neuralizer provides clinical researchers and scientists

with a single model to solve a wide range of neuroimag-

ing tasks on images of many modalities, and can be easily

adapted to new tasks without the prohibitive requirement of

retraining or fine-tuning a task-specific model. We believe

this will facilitate neuroscience analyses not currently pos-

sible.
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