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Figure 1. Example instances from our large-scale 3D asset dataset OBJAVERSE. OBJAVERSE 3D assets are semantically diverse, high-

quality, and paired with natural-language descriptions.

Abstract

Massive data corpora like WebText, Wikipedia, Concep-
tual Captions, WeblmageText, and LAION have propelled
recent dramatic progress in Al. Large neural models trained
on such datasets produce impressive results and top many of
today’s benchmarks. A notable omisslion within this fam-
ily of large-scale datasets is 3D data. Despite considerable
interest and potential applications in 3D vision, datasets
of high-fidelity 3D models continue to be mid-sized with
limited diversity of object categories. Addressing this gap,
we present Objaverse 1.0, a large dataset of objects with
800K+ (and growing) 3D models with descriptive captions,
tags, and animations. Objaverse improves upon present day
3D repositories in terms of scale, number of categories,
and in the visual diversity of instances within a category.
We demonstrate the large potential of Objaverse via four
diverse applications: training generative 3D models, im-
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proving tail category segmentation on the LVIS benchmark,
training open-vocabulary object-navigation models for Em-
bodied Al, and creating a new benchmark for robustness
analysis of vision models. Objaverse can open new direc-
tions for research and enable new applications across the
field of AL

1. Introduction

Massive datasets have enabled and driven rapid progress
in Al. Language corpora on the web led to large language
models like GPT-3 [4]; paired image and text datasets like
Conceptual Captions [63] led to vision-and-language pre-
trained models like VIIBERT [42]; YouTube video datasets
led to video capable models like Merlot-Reserve [82]; and
massive multimodal datasets like WebImageText [65] and
LAION [61,62] led to models like CLIP [55] and StableD-
iffusion [59]. These leaps in dataset scale and diversity were
triggered by moving from manually curated datasets to har-
nessing the power of the web and its creative content.

In contrast to the datasets described above, the size of
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the datasets we are feeding to our data-hungry deep learn-
ing models in many other areas of research is simply not
comparable. For instance, the number of 3D assets used
in training generative 3D models is, maximally, on the or-
der of thousands [22] and the simulators used to train em-
bodied Al models typically have only between a few dozen
to a thousand unique scenes [36, 39, 58, 67]. The startling
advances brought about by developing large-scale datasets
for images, videos, and natural language, demand that an
equivalent dataset be built for 3D assets.

We present OBJAVERSE 1.0, a large scale corpus of high-
quality, richly annotated, 3D objects; see Fig. 1. Objects
in our dataset are free to use' and sourced from Sketch-
fab, a leading online platform for managing, viewing, and
distributing 3D models. In total, OBJAVERSE contains
over 800K 3D assets designed by over 150K artists which
makes this data large and diversely sourced. Assets not
only belong to varied categories like animals, humans, and
vehicles, but also include interiors and exteriors of large
spaces that can be used, e.g., to train embodied agents.
OBJAVERSE is a universe of rich 3D data with detailed
metadata that can support many different annotations to en-
able new applications. With this remarkable increase in
scale, we see an incredible opportunity for OBJAVERSE to
impact research progress across domains. In this work, we
provide promising results to answer three questions.

Can 3D vision benefit from a large-scale dataset?
First, as a 3D asset resource, OBJAVERSE can support the
exciting field of 3D generative modeling. We use data ex-
tracted from OBJAVERSE to train generative models for sin-
gle and multiple categories using GET3D [22] and find that
we are able to generate high-quality objects. Moreover, we
find that our generated objects are found by human anno-
tators to be more diverse than those generated by a model
trained on ShapeNet objects in 91% of cases.

Can the diversity of 3D models help improve classi-
cal 2D vision task performance? To answer this ques-
tion, we use the diversity of OBJAVERSE to improve the
performance of long tail instance segmentation models. In-
stance segmentation data can be expensive to obtain ow-
ing to the cost of annotating contours around objects. The
recent LVIS dataset contains segmentation annotations for
1,230 categories but the task remains very challenging for
present day models, particularly on tail categories that have
few examples. We show that increasing the volume of data
by leveraging a simple Copy+Paste augmentation method
with OBJAVERSE assets can improve the performance of
state-of-the-art segmentation methods.

We also use OBJAVERSE to build a benchmark for eval-
uating the robustness of state-of-the-art visual classifica-
tion models to perspective shifts. We render objects in
OBJAVERSE from random orientations, which is how one
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might expect to see them in the real world, and test the
ability of CLIP-style visual backbones to correctly classify
these images. Our experiments show that current state-
of-the-art models’ performance degrades dramatically in
this setting when viewing objects from arbitrary views.
OBJAVERSE allows us to build benchmarks to test (and po-
tentially train) for orientation robustness for a long tail dis-
tribution of asset categories. Building such benchmarks is
made uniquely possible by the scale and diversity of 3D as-
sets in OBJAVERSE. This would simply not be feasible to
create in the real world nor can they be generated from ex-
isting 2D images.

Can a large-scale 3D dataset help us train perfor-
mant embodied agents? We use assets in OBJAVERSE to
populate procedurally generated simulated environments in
ProcTHOR [16] that are used to train Embodied Al agents.
This results in an orders of magnitude increase in the num-
ber of unique assets available for use in ProcTHOR scenes
(previously limited to AI2-THOR’s [36] asset library of a
few thousand unique instances each assigned to one of 108
object categories). Using OBJAVERSE populated scenes en-
ables open vocabulary object navigation from any text de-
scription. In this paper, we provide quantitative results for
navigating to 1.1K semantic object categories, roughly a
50x increase.

These findings represent just a small fraction of what can
be accomplished using OBJAVERSE. We are excited to see
how the research community will leverage OBJAVERSE to
enable fast and exciting progress in 2D and 3D computer
vision applications and beyond.

2. Related Work

Large scale datasets. Scaling the size and scope of
training datasets has widely been demonstrated to be an ef-
fective avenue of improvement for model performance. In
computer vision, the adoption of early large scale datasets
such as Imagenet [17,60] and MS-COCO [41] has dramat-
ically accelerated progress on a variety of tasks including
classification, object detection, captioning, and more. Ever
since, the diversity and scale of datasets have continued to
grow. YFCC100M is a dataset of 99.2M images and 800K
videos [72]. Openlmages [37] is a large scale dataset of
9M images that contains labeled subsets bounding boxes,
visual relationships, segmentation masks, localized narra-
tives, and categorical annotations. Massive web-scraped
datasets containing image-text pairs such as Conceptual
Captions [63], WIT [65], and LAION [61,62] have seen in-
creased popularity recently as they have been used to train
impressive models for vision-language representation learn-
ing [27,30,55], text-to-image generation [30,56,57,59], and
vision-language multitasking [8, 9, 68, 74].

3D datasets. Current large-scale 2D image datasets of-
fer three crucial components that benefit learning: scale,
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Objaverse

Dataset # Objects  # Classes
YCB [5] 71 5
BigBIRD [64] 125 -
KIT [33] 219 145
IKEA [40] 219 11
Pix3D [66] 395 9
GSO [18] 1K 17
EGAD [48] 2K -
PhotoShape [50] 5K 1
ABO[11] 8K 63
3D-Future [20] 10K 34
ShapeNet [6] 51K 55
Objaverse 818K 21K

Figure 2. Comparison between OBJAVERSE and existing 3D object datasets. (Left:) Visual comparison of instances from OBJAVERSE
and ShapeNet for the categories of CAR, BED, VASE, and BAG. OBJAVERSE instances are substantially more diverse since objects can
come from many 3D content creation platforms, whereas ShapeNet models look more similar and all come from SketchUp, a 3D modeling
platform built for simple architectural modeling. (Right:) Scale comparison table between existing 3D object datasets.

diversity, and realism. Ideally, models that reason about
3D objects should have access to datasets that meet these
same criteria. However, of the numerous 3D object datasets
that currently exist, none are able to excel in all three cate-
gories to the same degree as their 2D counterparts. Datasets
such as KIT [33], YCB [5], BigBIRD [64], IKEA [40], and
Pix3D [66] provide image-calibrated models over a diverse
set of household objects, but severely lack in scale with only
a few hundred objects at most. EGAD [48] procedurally
generates 2K objects for grasping, but produces objects that
are not that realistic or diverse. Slightly larger datasets of
photo-realistic objects include GSO [18], PhotoShape [50],
ABO [11] and 3D-Future [20], and ShapeNet [6] with ob-
ject counts in the tens of thousands, see Fig. 2 for compar-
isons between OBJAVERSE and these datasets. Datasets for
CAD models, such as ModelNet [78] and DeepCAD [77],
and ABC [35] do not include textures or materials, which
limits their ability to represent objects that could plausibly
be found in the real world. Datasets of scanned 3D ob-
jects and environments are valuable for real-world under-
standing [10, 13, 14, 38], but are quite small and limited.
In addition to containing numerous artist designed objects,
OBJAVERSE contains many scanned assets, making it a use-
ful source of data for learning from real-world distributions.

While rapid progress has been made in developing
datasets that combine image and text, in contrast, only a few
datasets that pair language and 3D data exist. Text2Shape
[7] released a dataset of 15,038 chairs and tables from
ShapeNet each with around 5 text captions, giving 75,344
total text-shape pairs. ShapeGlot [1] released the CiC
(Chairs in Context) dataset which contains 4,511 chairs
from ShapeNet along with 78,789 descriptive utterances
generated from a referential game. Due to the small scale
and limited diversity of these datasets, current SoTA text-to-
3D models [29,44,53] forgo the use of 3D datasets entirely

and instead rely on 2D image-text supervision.
3. Objaverse

OBJAVERSE is a massive annotated 3D dataset that can
be used to enable research in a wide range of areas across
computer vision. The objects are sourced from Sketch-
fab, an online 3D marketplace where users can upload and
share models for both free and commercial use. Objects se-
lected for OBJAVERSE have a distributable Creative Com-
mons license and were obtained using Sketchfab’s public
API. Aside from licensing consideration, models marked
as restricted due to objectionable or adult thematic content
were excluded from the dataset.

Model metadata. OBJAVERSE objects inherit a set of
foundational annotations supplied by their creator when up-
loaded to Sketchfab. Figure 4 shows an example of the
metadata available for each model. The metadata includes
a name, assignments to a set of fixed categories, a set of
unrestricted tags, and a natural language description.

OBJAVERSE-LVIS. While OBJAVERSE metadata con-
tains a great deal of information about objects, Sketchfab’s
existing categorization scheme covers only 18 categories,
too coarse for most applications. Object names, categories,
and tags provide multiple potential categorizations at vary-
ing levels of specificity and with some inherent noise. How-
ever, for many existing computer vision tasks, it is useful to
assign objects to a single category drawn from a predeter-
mined set of the right size and level of semantic granularity.

We choose the categories from the LVIS dataset [24] for
categorizing a long-tail subset of objects in OBJAVERSE.
We construct a 47K LVIS categorized object subset, called
OBJAVERSE-LVIS, comprised of objects uniquely assigned
to one of 1156 LVIS categories. We perform these assign-
ments by first selecting 500 candidate objects per category
using a combination of predictions from a CLIP classifi-
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(b) Word cloud of OBJAVERSE metadata tags.
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Figure 3. OBJAVERSE statistics. (a) All 18 high-level categories present in OBJAVERSE’s metadata with their corresponding number

of occurrences.

The relative share of most popular categories are evenly split, with a small number of less frequently categories.

(b)

A sample of several thousand popular object tags found in OBJAVERSE log-scaled by their frequency. (c) A histogram of fine-grained
OBJAVERSE-LVIS categories with representative members from several bins highlighted. (d) A histogram of OBJAVERSE tags with repre-
sentative members from several bins highlighted (note y-axis log scale). Tags from the low-occurrence side of the distribution correspond to
unique objects that, taken individually, are rarely seen in the world. Frequently used tags like "furniture” and “car” reflect their real-world
normalcy, but the high frequency of assets like “sword” diverge from their real-world counterparts.

cation model and candidates suggested by terms in their
metadata. This combined pool contains objects visually
resembling the target category (from the CLIP features of
their thumbnail images) that might have missing metadata,
as well as visually unusual instances of a category that are
accurately named or tagged. These 250k candidate objects
were then manually filtered and their assigned categories
verified by crowdworkers. Since we only presented 500 ob-
ject candidates per class, many popular categories, such as
chair or car, have substantially more objects that could be
included in OBJAVERSE-LVIS with future annotations.
Animated objects and rigged characters. OBJAVERSE
includes 44K animated objects and over 63K objects self-
categorized as characters. Examples of animations include
fridge doors opening, animals running, and the hands on
a clock moving. Rigged characters can be set up for ani-
mation and rendering, and may often come annotated with
bone mappings. The vast scale of animations available in
OBJAVERSE can support a wide range of research in tempo-
ral 3D learning, such as building text-based animation gen-
erative models [71], representing object changes over time

with NERFs [51,54], and temporal self-supervised learning
via. future frame prediction [28, 82].

Articulated objects. Decomposing 3D objects into parts
has led to a flurry of research in the past few years, including
work in learning robotic grasping policies [79, 81], 3D se-
mantic segmentation [47], and shape generation [46]. Since
many objects in OBJAVERSE were uploaded by artists, the
objects often come separated into parts. Figure 5 shows an
example, where a chair is separated by its backrest, wheels,
and legs, among many smaller parts.

Exteriors. Photogrammetry and NERF advances have
enabled the commercialization of capturing high-quality 3D
objects of large exteriors by taking pictures [70, 80]. In
OBJAVERSE, there are a large number of scanned buildings,
cities, and stadiums. Figure 5 shows an example of a 3D
object of NYC’s skyline captured through a scan.

OBJAVERSE-Interiors. There are 16K+ interior scenes
in OBJAVERSE, including houses, classrooms, and offices.
The scenes often have multiple floors, many types of rooms,
and are densely populated with objects from human input.
Objects in the scenes are separable into parts, which allows
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Ii 3D Model ;I Name Spicy Ramen Noodle User JChing License CC Attribution Vertices 26.1K Faces 48.6K
Description Spicy Ramen noodle with egg and meat Published June 5, 2018 Views 10.3K Likes 207
Category Food & Drink Staff Favorite Mo Textures 15 Animated Mo PBR Specular
R W T W i U T T T T O R
{ Tags: (:focd ) (:japan /I { bowl L egg /J L meat /_I l\ noodle | |__\ onion ) L soup ramen )

F (TR, 12 \
(_spicy ) spicyramen ) |

unity | ( unity3d ) ( photogrammetry \)

Figure 4. An example of metadata available for each object in OBJAVERSE. Each uploaded object has a 3D model, user-selected rendered
thumbnail image, name, description, tags, category, and stats, among additional metadata.

them to be usable for interactive robotics, embodied Al, and
scene synthesis. To put the scale of OBJAVERSE-Interiors in
perspective, the number of scenes in OBJAVERSE-Interiors
is significantly larger than the 400 or so existing hand-built
interactive embodied Al scenes [21,36,39,67].

Visual styles. Objects in the world can be constructed
in many styles and often differ in style based on the time-
period, geographic location, and artist’s style. OBJAVERSE
objects cover a vast set of visual styles, including 3D scans,
3D modeled objects from virtually any platform, point
clouds, and photo-realism via physically based rendering
(PBR) [52]. Moreover, instances of objects often appear
with many styles, which is critical for training and evalu-
ating robust computer vision models [55]. Figure 5 shows
examples of chairs in OBJAVERSE in many different styles,
including Gothic, modern, Victorian, cartoon, and abstract.

Statistics. OBJAVERSE 1.0 includes 818K 3D objects,
designed by 160K artists. There are >2.35M tags on the
objects, with >170K of them being unique. We estimate
that the objects have coverage for nearly 21K WordNet en-
tities [45] (see appendix for details). Objects were uploaded
between 2012 and 2022, with over 200K objects uploaded
uploaded just in 2021. Figure 3 visualizes several statistics
of the dataset, including the breakdown of objects into their

|
%"‘3’(\

Animated Objects

Rigged Characters

Point Cloud

Scan Gothic

Separated Parts

self-assigned Sketchfab categories, a word cloud over the
tags, a frequency plot of the tags, and the number of objects
in OBJAVERSE-LVIS categories.

4. Applications

In this section, we present 4 initial distinct applications
of OBJAVERSE, including 3D generative modeling, instance
segmentation with CP3D, open-vocabulary ObjectNav, and
analyze robustness in computer vision models.

4.1. 3D Generative Modeling

3D generative modeling has shown much improvement
recently with models such as GET3D [22] delivering im-
pressive high quality results with rich geometric details.
GET3D is trained to generate 3D textured meshes for a cate-
gory and produces impressive 3D objects for categories like
Car, Chair, and Motorcycle using data from ShapeNet [6].
OBJAVERSE contains 3D models for many diverse cate-
gories including tail categories which are not represented
in other datasets. It also contains diverse and realistic ob-
ject instances per category. This scale and diversity can be
used to train large vocabulary and high quality 3D gener-
ative models. In this work, we showcase the potential of
this data as follows. We choose three categories of ob-

Exteriors Interiors
Modern Victorian Cartoon Abstract

Figure 5. Highlights of the visual diversity of objects that appear in OBJAVERSE, including animated objects, rigged (body-part annotated)
characters, models separatable into parts, exterior environments, interior environments, and a wide range visual styles.
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Objaverse Bag Generations
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Figure 6. (a) Example GET3D Bag object generations using
OBJAVERSE and ShapeNet models for training. (b) Additional
Shoe and Fruit&Veg generations from OBJAVERSE models. (c)
models generated when interpolating between two, randomly sam-
pled, latent encodings with our trained Fruit&Veg. model; what
appears to be a pumpkin smoothly transforms into a mushroom.

jects, Shoe, Bag, and Fruit&Veg, and subsample objects
from OBJAVERSE to create three separate datasets contain-
ing, respectively, 143 shoes, 816 bags, and 571 fruits &
vegetables (116 apples, 112 gourds, 92 mushrooms, 68 ba-
nanas, 52 oranges, 52 pears, 31 potatoes 24 lemons, and 24
pineapples). For comparison, we also train a GET3D model
on the set of 83 bags from the ShapeNet dataset. Fig. 6
shows a collection of 3D objects generated by our trained
GET3D models. Qualitatively, the 3D-meshes generated
by the OBJAVERSE-trained models are high-quality and di-
verse, especially when compared to the generations from
the ShapeNet-trained model. To quantify this observation,
we asked crowdworkers to rate the diversity of Bag gener-
ations produced by the OBJAVERSE and ShapeNet trained
models. When shown collections of nine randomly sampled

3D Renders

®8 P
2 2 8

| Copy-Paste
-

€

LVIS Images

Figure 7. An illustration of CP3D (copy-paste 3D) for segmenta-
tion augmentation. We render 3D objects from multiple views and
paste them over LVIS training images.

generations from both models, workers rated the collection
generated from the OBJAVERSE trained model as more di-
verse in appearance 91% of the time.

Our fruits and vegetables, composed of 9 varieties pro-
duces perhaps the highest quality output, a promising signal
that can inspire future work in text-to-3D generation.

4.2, Instance Segmentation with CP3D

A key advantage of using simulated data for computer
vision is that it is much cheaper to obtain expert annota-
tions. Annotated OBJAVERSE objects can be rendered into
images, allowing them to serve as a rich source of additional
data that can be used to enhance model performance on 2D
computer vision tasks. As a proof-of-concept demonstrat-
ing the effectiveness of this approach, we use segmented
data from OBJAVERSE objects as auxiliary labels for train-
ing models on the LVIS dataset for Large Scale Instance
Segmentation [24]. The LVIS dataset contains instance
segmentation masks for 1200 object categories that occur
throughout a set of 164k images. Recognition is especially
challenging in this task due to the long tail of the object cat-
egory distribution in this dataset. LVIS categories only con-

Method AP  APr APc APf
RFS [24] 237 133 230 29.0
EQLv2 [69] 25.5 177 243 302
LOCE [19] 26.6 185 262 30.7
NorCal with RFS [49] 252 193 242 29.0
Seesaw [73] 264 195 26.1 29.7
GOL [3] 277 214 277 304
GOL + CP3D 283 218 283 311

Table 1. Comparison of our approach (GOL+CP3D) against SOTA
Mask-RCNN ResNet-50 models on LVIS. We report results for
APr, APc, and APf which measure AP for categories that are rare
(appear in 1-10 images), common (appear in 11-100 images), and
frequent (appear in >100 images), respectively
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ProcTHOR

tain an average 9 instances across the dataset, so training on
simulated data is a promising approach for overcoming the
challenges of learning in this low-sample regime.

Using the LVIS-annotated subset of OBJAVERSE, we in-
troduce CP3D: an enhancement to the simple, but effective,
copy-and-paste technique of [23]. Figure 7 shows an exam-
ple of the setup for CP3D. Here, we render different views
of 3D objects and paste them on-top of existing LVIS im-
ages. We render 5 distinct views of each object and cache
them for use throughout training. During training, an image
is selected for the copy-paste augmentation with 0.5 prob-
ability, and once selected, 1-3 images of randomly chosen
LVIS-annotated OBJAVERSE objects are pasted onto the se-
lected training image. The segmentation masks of the se-
lected objects are added to the training image’s annotation
as well. Object images and masks are randomly scaled and
translated before being pasted. We use this strategy to fine-
tune the pretrained ResNet-50 Mask-RCNN [25,26] of [3].
As shown in Tab.1, simply finetuning this model for 24
epochs yields performance gains across several metrics.

4.3. Open-Vocabulary ObjectNav

In this section, we introduce open-vocabulary Object-
Nav, a new task propelled by the vast diversity of objects
that appear in OBJAVERSE. Here, an agent is placed at
a random starting location inside of a home and tasked to
navigate to a target object provided from a text description
(e.g. “Raspberry Pi Pico”). To facilitate this task, we pro-
cedurally generate 10K new homes in ProcTHOR [16] fully
populated with objects from OBJAVERSE-LVIS. Until now,
ObjectNav tasks have focused on training agents to navi-
gate to 20 or so target objects provided their category la-
bel [15,16,58], and existing interactive embodied Al simu-
lations, including ProcTHOR, only include around 2K total
objects across around 100 object types [16,39,67]. In this
work, we take a large step to massively scale the number of
target objects used in ObjectNav (20 — OpenVocab), the
number of objects available in simulation (2K — 36K), and
the number of object types of the objects (100 — 1.1K).

Object placement. To make the placement of objects
in the houses more natural, we use the OBJAVERSE-LVIS
subset and annotate placement constraints for each object

ProcTHOR + Objaverse
Figure 8. An existing ProcTHOR scene (left) and a semantically similar ProcTHOR generatable scene with OBJAVERSE objects (right).

category. Specifically, we annotate if objects of a given cat-
egory typically appears on the floor, on-top of a surface,
or on a wall. If instances of the object category may ap-
pear on the floor, we also annotate whether it may appear in
the middle of the scene (e.g. a clutter object like a basket-
ball) or on the edge of the scene (e.g. a toilet or a fridge).
For objects placed on the floor, we also to automatically
detect flat regions on top of the object’s mesh to place sur-
face object types. The annotations are used by ProcTHOR
for sampling objects to place in a scene. We also filter
out OBJAVERSE-LVIS objects that do not appear inside of
homes, such as a jet plane. Structural objects, like doors
and windows, are inherited from ProcTHOR as they would
require additional cleanup.

Object size correction. Objects in Sketchfab may be
uploaded at unnatural scales (e.g. a plant being as large as
a tower). We therefore scale the objects to be of a reason-
able size for them to look natural in a house. Here, for each
object category, we annotate the maximum bounding box
dimension length that every instance of the object category
should be scaled to. For example, we annotate the maxi-
mum bounding box dimension for bookcase to be 2 meters
and fork to be 0.18 meters. If a 3D modeled bookcase then
has a bounding box of 20mx6m x3m, we shrink each side
by a factor of max(20, 6, 3)/2 = 5.

Preprocessing for AI2-THOR. We add support to AI2-
THOR for loading objects on the fly at runtime. Previously,
all objects had to be stored in a Unity build, but such an
approach is impractical when working with orders of mag-
nitude more object data. For each object, we compress it
with Blender [12] by joining all of its meshes together, dec-
imate the joined mesh such that it has at most 5K vertices,
and bake all the UV texture maps into a single texture map.
We then generate colliders using V-HACD [43] to support
rigid-body interactions.

Approach. Given procedural houses populated with
OBJAVERSE-LVIS, the task is to navigate to the proxim-
ity of a chosen target object and invoke a task-completion
action when the target object is in sight, given an
open-vocabulary description formed with the template “a
{name} {category}”. The name is the object name
given by its creator, which is often descriptive. We filter
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@ Television 99.6% @ Television 96.1% © Vase 39.0% © Flowerpot 34.9%

@ Clock 99.8% @ Clock 98.2% © Flowerpot 32.4% © Vase 33.2%

Figure 9. Examples of objects rendered from random orientations
and their O-shot classification categories with the CLIP ViT-B/32.

each by whether it is detected as being written in English by
alanguage detector [31,32], and fall back to a class-only de-
scription for non-English name. Examples of the possible
expressions include “a victorian-monobike motorcycle”, “a
unicorn pony”, or “a dino ghost lizard”. The agent, similar
to the ones in [34], observes an RGB egocentric view of the
environment, pre-processed by the visual branch of a frozen
ResNet-50 CLIP model [55] — the target description is pre-
processed by the corresponding text branch. We train the
agent with DD-PPO [76] and evaluate on houses with floor
plans, objects, and descriptions unseen in training. We use
the AllenAct [75] framework to train our agent. Our trained
agent achieves a success rate of 19.9%, for a random pol-
icy success of 5.1%. For more details about the experiment
refer to the appendix.

4.4. Analyzing Robustness

A persistent bias present in many image datasets, e.g.
ImageNet [60], is that the subjects of interest are gener-
ally photographed from a forward-facing, canonical, orien-
tation. When, for example, taking a photograph of a tele-
vision, few would choose to take this photograph crouched
on the floor behind the television. This impact of this bias
was studied by Alcorn et al. [2] who find that modern com-
puter vision systems are highly susceptible to deviations
from canonical poses. This is more than a theoretical prob-
lem: computer vision systems deployed in the real world
will frequently encounter objects in non-canonical orienta-
tions and in many applications, e.g. autonomous driving, it
will be safety critical that they behave well.

Given the above, we adopt the experimental design of
Alcorn et al. and design, using OBJAVERSE assets, a bench-
mark for evaluating the robustness of state-of-the-art com-
puter vision classification models to orientation shifts. In
particular, for each object in our OBJAVERSE-LVIS subset,
we render 12 images of the object from random orientations
rendered upon a background with RGB values equalling the
mean RGB values from ImageNet; see Fig. 9 for examples.
This ability to, at scale, render objects from random view-

‘ Random Rotation Any Rotation

Model | Top-1 ~ Top-5 | Top-1  Top-5 | ATop-1
OpenAI-400M [55]

RN50 214%  450% | 439% 70.8% | 22.5%
ViT-L/14 29.1% 545% | 523% 77.2% | 23.2%
LAION-400M [62]

ViT-B/32 24.1%  485% | 46.9% T742% | 22.8%
ViT-L/14 30.6% 56.8% | 50.5% 77.0% 19.9%
LAION-2B [61]

ViT-B/32 27.0% 51.8% | 50.3% 76.1% | 23.3%
ViT-L/14 329% 592% | 52.1% 78.0% 19.2%
ViT-H/14 323% 588% | 50.1% 77.3% | 17.8%

Table 2. Evaluating 0-shot CLIP classification models on our ro-
tational robustness benchmark. ATop-1 denotes the difference be-
tween Top-1 Any Rotation and Top-1 Random Rotation. Models
are strongly overfit to standard views of objects.

points is a practical impossibility in the real world but is
made trivial when using 3D assets. We then evaluate several
modern open-domain image-classification networks (con-
strained to the ~1,200 LVIS categories) on these images
and report 4 metrics for each model. These metrics include:
e Top-1 Random Rotation — the frequency with which a
model correctly classifies an image as belonging to the re-
spective LVIS category.

e Top-1 Any Rotation — the frequency with which a model
classifies an image correctly from at least one of the 12 ran-
dom orientations.

This second metric is diagnostic and serves to represent a
model’s performance when shown an object from a canon-
ical pose. We also have Top-5 variants of the above metric
where the correct category need only be in the top 5 pre-
dictions from the model. We report our results in Tab. 2 in
which we evaluate a variety of performant pretrained mod-
els. Comparing the gap in performance between the Top-k
Random Rotation and Top-k Any Rotation metrics we find
that model performance dramatically degrades when view-
ing objects from unusual orientations.

5. Conclusion

We present OBJAVERSE, a next-generation 3D asset li-
brary containing 818K high-quality, diverse, 3D models
with paired text descriptions, titles, and tags. As a small
glimpse of the potential uses of OBJAVERSE, we present
four experimental studies showing how OBJAVERSE can be
used to power (1) generative 3D models with clear future
applications to text-to-3D generation, (2) improvements to
classical computer vision tasks such as instance segmenta-
tion, (3) the creation of novel embodied Al tasks like Open
Vocabulary Object Navigation, and (4) quantifying the rota-
tional robustness of vision models on renderings of objects.
We hope to see OBJAVERSE enable a new universe of new
applications for computer vision.
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