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Abstract

Unsupervised point cloud shape correspondence aims to
obtain dense point-to-point correspondences between point
clouds without manually annotated pairs. However, hu-
mans and some animals have bilateral symmetry and var-
ious orientations, which lead to severe mispredictions of
symmetrical parts. Besides, point cloud noise disrupts con-
sistent representations for point cloud and thus degrades
the shape correspondence accuracy. To address the above
issues, we propose a Self-Ensembling ORientation-aware
Network termed SE-ORNet. The key of our approach is
to exploit an orientation estimation module with a domain
adaptive discriminator to align the orientations of point
cloud pairs, which significantly alleviates the mispredic-
tions of symmetrical parts. Additionally, we design a self-
ensembling framework for unsupervised point cloud shape
correspondence. In this framework, the disturbances of
point cloud noise are overcome by perturbing the inputs of
the student and teacher networks with different data aug-
mentations and constraining the consistency of predictions.
Extensive experiments on both human and animal datasets
show that our SE-ORNet can surpass state-of-the-art unsu-
pervised point cloud shape correspondence methods.

1. Introduction

With the cost of LiDAR and depth cameras falling, it
is more accessible to obtain 3D point cloud data. For
real-world applications, such as articulated motion trans-
fer [5, 26] and non-rigid human body alignment [3], the
correspondence between two point clouds is indispensable.
However, we are hard to directly obtain the correspondence
between two raw point clouds due to various object orienta-
tions and ununified coordinate systems.

To accurately find the point-to-point correspondence be-
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Figure 1. The visualization of dense point matching results.
Three point cloud pairs have different relative rotation angles. GT
denotes ground truth. The correspondence is visualized by trans-
ferring colors from source to target according to matching results.
The baseline predicts many false matches, especially for symmet-
rical, similar parts of the object. Our method achieves accurate
matches for these parts with our orientation estimation module.

tween two point clouds, spectral-based methods [1, 9, 15,
19,28] have been proven as practical shape correspondence
methods by computing functional mapping between the
projected features and learning a transformation for the cor-
respondence. Nevertheless, the spectral-based methods suf-
fer from complicated pre-processing steps and the neces-
sity for connectivity information between points. With the
rapid development of deep learning, many fully supervised
point cloud shape correspondence methods [4, 8, 16] have
been proposed to lead to remarkable progress. However,
these methods rely on a large amount of carefully annotated
point cloud pairs, which are expensive and time-consuming
to collect. To relieve the annotation cost of fully super-
vised methods, unsupervised methods [12, 32] that utilize
unlabeled data for model training have attracted more and
more attention. CorrNet3D [32] proposes the first unsu-
pervised deep learning framework for building dense corre-
spondence between point clouds in an end-to-end manner.
DPC [12] models the local point cloud structure by explor-
ing the proximity of points using DGCNN [29] and designs
reconstruction losses to extract continuous point cloud rep-
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resentations. However, in the scanning process of 3D scan-
ner, due to light, vibration and other factors, point cloud
noise will be inevitably generated. Meanwhile, the pre-
processing of point cloud (such as random subsampling)
will also introduce noise. Unfortunately, the previous meth-
ods fail to adequately consider the point cloud noise, which
negatively impacts the point cloud representations. Besides
the noise, existing methods lack attention to symmetrical
parts of the body. The mismatching issue of symmetrical
parts is challenging in this task, which was also spotted by
the previous method [32] but has yet to be solved.

By studying the previous point-based shape correspon-
dence methods [4, 8, 12, 16, 32], we summarize two key
issues that need consideration to achieve a more accurate
shape correspondence: 1) How to overcome the disturbance
of point cloud noise to get robust and consistent point cloud
representations? Point cloud noise perturbs the spatial co-
ordinates of point cloud and interferes with local structure
modeling. Therefore, it is necessary to overcome noise dis-
turbances. 2) How to solve the mismatching issue of sym-
metrical parts in point clouds with different body orienta-
tions? As shown in Figure 1, for the pair of bilaterally sym-
metrical human point clouds facing the opposite directions,
existing methods predict the completely reverse and seri-
ously wrong point cloud correspondence due to the similar
structure and position. The specific relative rotation angles
lead to severe mispredictions of symmetrical parts.

To achieve the above goals, we propose a Self-
Ensembling Orientation-aware Network (SE-ORNet) for
unsupervised point cloud shape correspondence. We inte-
grate orientation modeling and consistent point cloud rep-
resentations under a unified self-ensembling framework,
which consists of a pair of teacher and student models, an
orientation estimation module, and an adaptive domain dis-
criminator. Firstly, we design a new augmentation scheme
to produce augmented samples with rotation and Gaussian
noise, and record the rotation angles as rotation angle labels.
Then, we formulate soft labels and consistency losses to
encourage consensus among ensemble predictions of aug-
mented and raw samples, aiming to perceive the difference
in body orientation and overcome the point cloud noise dis-
turbance to obtain consistent point cloud representations.
In addition, we design a plug-and-play lightweight Orien-
tation Estimation Module, which aligns the orientations of
two point clouds to solve the mismatching issue of symmet-
rical parts in point clouds. Without the real label of rela-
tive rotation angle between the source and target, we super-
vise the training with the rotation angle labels and calculate
angle losses. However, there is a noticeable domain gap
between the rotation-augmented samples and the real sam-
ples. Therefore, we design a discriminator to achieve do-
main adaptation and calculate the domain losses. Further-
more, the discriminator facilitates the Orientation Estima-

tion Module to mine the valuable knowledge in the rotation-
augmented samples to compensate for the information loss
of the real relative rotation angles.

In summary, the main contributions of this work are as
follows: (i) We design a plug-and-play lightweight Orien-
tation Estimation Module that accurately aligns the orienta-
tions of point cloud pairs to achieve correct matching re-
sults of symmetrical parts. (ii) We integrate point cloud
orientation modeling and consistent point cloud representa-
tion learning with the disturbance of point cloud noise into
a unified self-ensembling framework. (iii) Our method at-
tains state-of-the-art performance on both human and ani-
mal benchmarks, and extensive experimental results verify
the superiority of our designs.

2. Related Work
In this Section, we give a brief overview of related works

on point cloud shape correspondence, including learning on
point clouds, shape correspondence, and self-ensembling
approaches.
Learning on Point Clouds. PointNet [21] learns from
global information through multi-layer perceptrons and
max-pooling operation. PointNet++ [22] devises a hier-
archical architecture that recursively partitions the point
cloud to extract local features more effectively. Recent
works explore local aggregators via relations [23, 31, 33],
and graphs [29, 34]. PointCNN [13] transforms neighbor-
ing points to the canonical order to apply traditional convo-
lution on point clouds. DGCNN [29] creates a graph in the
feature space and designs EdgeConv [29] to learn the edge
features of the graph in each layer. However, the methods
are commonly based on some assumptions of implicit lo-
cal geometry, which may result in sensitivity to point cloud
disturbances.
Shape Correspondence. As an active research area in
computer vision and graphics, point cloud shape corre-
spondence methods roughly include spectral-based meth-
ods [1,9,15,19,28] and point-based methods [4,8,12,16,32].
Spectral-based methods require connectivity information to
compute the LBO eigenvectors as basis functions and in-
fer a linear transformation for shape correspondence. How-
ever, with regard to point cloud data, connectivity informa-
tion is difficult to obtain directly while point-based methods
directly process point clouds without connectivity informa-
tion to find the dense point-to-point mapping between two
point clouds with deformable 3D shapes. Deprelle et al. [4]
propose representing shapes as the deformation and com-
bination of learnable elementary 3D structures. Groueix et
al. [8] employ an encoder-decoder architecture to obtain and
constrain the similarity matrix with manually annotated la-
bels. The deep learning methods train their neural networks
in a data-driven manner and improve performance to a large
extent. However, manually labeling the point-to-point cor-

5365



Angle Losses

𝜃𝑥

S
o

u
rc

e
T

ar
g

et
S

o
u

rc
e

𝜃𝑥

Teacher Model𝑌

𝑋𝑠

𝑋

E

𝑁
 
 

𝑁
 
 

𝑁
 
 

OEM

𝑁
 
𝐶
1

𝑁
 
𝐶
1

𝑁
 
𝐶
1

OEM DDGRLGRL

Domain Losses

T
ar

g
et

𝑌𝑠

𝑁
 
 

𝑁
 
𝐶
1

OEM

𝜃

𝑁
 
 

𝑁
 
 

E

𝑁
 
𝐶

𝑁
 
𝐶

Student Model

E

𝑁
 
 

𝑁
 
𝐶

𝑁
 
 

E

𝑁
 
𝐶

𝜃𝑠

share weight

share weight

C
o

n
stru

ctio
n

Lo
sses

EMA Update

E

C
o

n
sisten

cy Lo
sses

Source Target

C
o
n
stru

ctio
n

𝑋𝑠

𝑌

෨𝑋

𝑌𝑠

෨𝑋𝑠 𝑋𝑠
𝑥

𝑋𝑠
𝑦 𝑌𝑠

𝑦

share weight

E

E

E

share weight

𝐹𝑦

𝐹𝑥

𝐹𝑥𝑠

𝐹𝑦𝑠

𝑌𝑠
𝑥

𝑌𝑠

Figure 2. The overview of our self-ensembling orientation-aware network for unsupervised point cloud shape correspondence. Xs

is generated from the raw source point cloud X by random rotation and Gaussian noise, while Ys is only augmented by Gaussian noise.
We design the Orientation Estimation Module to estimate the rotation θ of the source with respect to the target and align the point cloud in
position space. Afterward, the aligned point cloud pairs are input to the teacher and student models, respectively, and the correspondence
is predicted through a DGCNN backbone. Finally, we supervise the student model by the consistency losses and the construction losses,
and the teacher model updates the parameters using the exponential moving average (EMA) strategy. The gradient reversal layer (GRL)
acts as the identity function during forward propagation, but is multiplied by -1 during backward propagation.

respondence between two point clouds in 3D space takes
much time and effort. Therefore, some unsupervised point
cloud shape correspondence methods [12, 32] are proposed
to reduce the overhead of labeling. CorrNet3D [32] is the
first unsupervised deep learning framework. DPC [12] de-
signs several reconstruction losses to smooth point cloud
representations. Due to the lack of annotation, the mis-
matching issue of symmetrical parts in point clouds with
different orientations has become an undeniable problem in
unsupervised shape correspondence area.
Self-ensembling Approaches. Self-ensembling ap-
proaches improve the model generalization by encouraging
consensus among ensemble predictions of unknown sam-
ples with small perturbations. Γ model [24] consists of two
identical parallel branches that respectively take raw images
and corrupted images as inputs. In contrast to Γ model,
Π model [11] integrates two parallel branches into a sin-
gle branch. As an extension of the Π model, the temporal
model [11] forces the consistency between the outputs and
the aggregated outputs over previous training epochs. Mean
Teacher [27] replaces network prediction average with net-
work parameter average via the exponential moving average
(EMA) strategy. We design a framework similar to Mean
Teacher and adapt it for the unsupervised point cloud shape
correspondence task. The proposed framework facilitates
the network to yield consistent and accurate predictions un-
der noise perturbations and orientation rotations.

3. Method
3.1. Overview

The unsupervised point cloud shape correspondence is
to find the mapping f : X → Y between two point clouds

(source X and target Y ) without ground-truth correspon-
dence annotations. Figure 2 illustrates the pipeline of our
approach. Given source X and target Y point clouds, we
utilize random rotation and Gaussian noise to generate the
augmented source point cloud Xs, while we augment Y by
Gaussian noise to obtain Ys. Due to the absence of the rela-
tive rotation angle labels θ, θs, we use the rotation angle la-
bels θx to guide the Orientation Estimation Module learning
and transfer the valuable information by the adversarial do-
main adaptation method. The aligned point cloud pairs are
input to the teacher and student models, respectively, and
we use the DGCNN [29] backbone to output the similarity
matrices. After that, we generate two reconstructed point
clouds X̂, Ŷ based on the predicted similarity matrices by
the student model. Finally, the student model is supervised
by the consistency losses and the construction losses, while
the parameters of teacher model are updated by the expo-
nential moving average (EMA) strategy.

3.2. Orientation Estimation

We provide the overview of the orientation estimation in
Figure 3. The encoded features P sin, P

t
in are fed into the

Feature Interaction Module (FIM) for feature fusion. The
fused features Pout are enhanced by a single-layer edge-
conv. To predict the relative orientation, the features P̂in
are fed into the classification head. We also input P̂in into
the discriminator to determine whether the pair comes from
the same shape or from different shapes.

Feature Interaction Module. As shown in Figure 4,
the feature interaction module is a query-based graph con-
volution. The point features in the source point cloud are
updated by querying points with similar features in the tar-
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Figure 3. The overview of Orientation Estimation.

get point cloud. Let P sin, P
t
in be the inputs of the feature

interaction module. For each point pi ∈ P sin, we first con-
sider it as a query to search for the k-nearest neighbors
qji , 1 ≤ j ≤ k in the target point cloud P tin with respect
to the Euclidean distance defined in the C1-dimensional
feature space. To better model the relative rotation re-
lationships in space, we use spatial position differences
and feature differences as features of each edge, denoted
as (pi, q

j
i − pi), where pi, q

j
i ∈ R(C1+3). Then we use

a multilayer perceptron (MLP) to compute a new feature
eji = MLP(pi, q

j
i − pi) from each edge. For each point,

we aggregate its k edge features into a new point feature
through Max pooling and ReLU activation. In addition, we
add a linear layer that skip-connects the output Pout with
the input to make the block residual.

Rotation Classification Head. We concatenate the out-
put feature Pout and the enhanced feature as the input P̂in
of the Rotation Classification Head. Inspired by the orienta-
tion prediction in the point cloud detection methods [18,20],
we consider the prediction of relative rotation angle as a
classification task. That coarsely aligning the orientations
of the source and target point clouds is enough to solve the
problem of mismatching issue of symmetrical parts in point
clouds. Thus, we pre-define M equally divided angle bins
and then use an MLP head to classify the relative rotation
angle into those pre-defined categories. Specifically, we
compress P̂in using maximum pooling and average pool-
ing to obtain the global features and then predict the prob-
ability distribution of the relative rotation angle. Finally,
we choose the angle bin with the highest probability as the
relative rotation angle of the source and target point clouds.

Adversarial Domain Adaptation. Due to the absence
of relative rotation angle θ, θs, we utilize the relative rota-
tion angle θx to guide the Orientation Estimation Module
learning. However, there is a noticeable domain gap be-
tween the rotation-augmented samples and the real samples.
To eliminate the domain gap, we use a discriminator to iden-
tify whether the input features P̂in of the classification head
are from the rotation-augmented samples or the real sam-
ples. Specifically, we use a PointNet-like module to process
the features P̂in and predict the probability di that the Pin
is from the real samples:

di = MLP2

{
max
N

{
MLP1

[
P̂in

]}}
, (1)
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Figure 4. The Feature Interaction Module (FIM).

where max refers to the global Max pooling. By using the
discriminator, we train the model to disregard the distinc-
tion between the two domains and instead prioritize learn-
ing the relative rotation information.

Relative Rotation Angle Supervision. The angle loss
is computed with a cross entropy loss:

Langle = −
M∑
i=1

θix log
(
θ̂ix

)
, (2)

whereM is the number of the pre-defined angle bins, θ̂ix and
θix denote the predicted probability distribution of relative
rotation angle and the rotation angle label, respectively. The
domain loss is computed with a Focal Loss [14]:

Ldomain = − (1− di)γ log (di) , γ > 1, (3)

where Ldomain denotes the domain loss and γ denotes the
tunable focusing parameter.

3.3. Self-Ensembling Framework

As shown in Table 7, the point cloud orientation and
Gaussian noise are two crucial factors in the unsupervised
point cloud shape correspondence task. The existing meth-
ods ignore noise interference on the point cloud correspon-
dence, making it difficult to obtain robust point cloud rep-
resentations. To address the above problems, we utilize
the Mean Teacher architecture [27] and design two con-
sistency losses to constrain the student model for robust
feature representations under orientation disturbance and
Gaussian noise interference.

Stochastic Transform. We apply stochastic transforma-
tions that include rotation and Gaussian noise on the point
clouds for the student network formulated as τ = (R,N ).
More specifically, given the raw point cloud pair (X,Y ),
we first apply Gaussian noise to the target point cloud Y :

ysi = yi + ni, ni ∼ N (0, σ2), (4)

where N (0, σ2) means the Gaussian distribution with the
0 mean and σ standard deviation. Then, we utilize Gaus-
sian noise and random rotation along the vertical z-axis to
augment the source point cloud X:

xsi = R(θx)� xi + ni, ni ∼ N (0, σ2), (5)

whereR denotes the rotation around the z-axis and θx is the
rotation angle sampled from [0, 2π].
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Architecture of Teacher & Student Models. Given the
raw and augmented point cloud pairs (X,Y ), (Xs, Ys), we
use the Orientation Estimation Module to align source and
target orientations. Then, our approach follows the Mean
Teacher paradigm [27] and inputs the aligned point cloud
pairs (X̃s, Ys), (X̃, Y ) into the student and teacher models,
respectively. We use a variant of DGCNN [29] backbone to
embed the aligned source X̃ and target Y point clouds to
a high-dimensional feature space as Fx, Fy ∈ RN×C . Un-
like DGCNN, which uses dynamic graphs to select neigh-
bors, we follow [12] to use static graphs for the neighbors.
Specifically, we select the k-nearest neighbors in the co-
ordinate space instead of the feature space. Then, we use
the cosine similarity Sxy of source and target point features
Fx, Fy to measure their correspondence.

sij =
F ix · (F jy )T

‖F ix‖2‖F
j
y ‖2

, (6)

where F ix, F
j
y are the ith and jth rows of Fx, Fy , respectively,

and (·)T denotes a transpose operation.
Soft Label & Consistency Loss. To enhance the

perception of local structures and the robustness of the
model, we design two consistency losses to maintain fea-
ture consistency under Gaussian noise and orientation dis-
turbances. We utilize the cross-similarity Stxy obtained from
the teacher model as a soft label and the SmoothL1 loss to
constrain the cross-similarities Ssxsys of the student model:

Lccs = SmoothL1(Stxy, S
s
xsys), (7)

where Lccs denotes the consistency loss of the cross-
similarities. To reduce the interference of point cloud ori-
entation on correspondence estimation, we model the fea-
ture consistency of the strongly augmented source Xs and
raw source X . We constrain the consistency of the self-
similarities Sxx to ensure the consistency of neighboring
points with similar features. We use the feature embedding
Fx of the source point cloud to compute the self-similarity
Sxx by Equation (6). Then, we use the SmoothL1 loss
to constrain the self-similarities Ssxsxs

of the student model
with the self-similarities Stxx from the teacher model:

Lcss = SmoothL1(Stxx, S
s
xsxs

), (8)

where Lcss denotes the consistency loss of the self-
similarities. The above two consistency losses ensure the
robustness of feature embedding under Gaussian noise and
orientation disturbances for accurate correspondence.

3.4. Model Training & Inference

In addition to the above mentioned consistency losses,
angle loss, and domain loss, we use reconstruction losses
to promote a unique point matching between the shape pair.

Following the previous work [12], we perform the cross-
construction operation to construct the target shape Ŷ by
using the feature similarity Sxy between source and target
point clouds, and the target point coordinates Y as follows:

ŷxi
=

∑
j∈NY(xi)

esij∑
l∈NY(xi)

esil
yj , (9)

where NY(xi) is latent k-nearest neighbors of xi in the
target Y . When the source and target point clouds are
identical, we refer to the construction operation as self-
construction. As shown in Figure 2, we obtain the point
clouds Ŷ xs , X̂

x
s , X̂

y
s , Ŷ

y
s by cross-construction and self-

construction. Then, we constrain the training with the con-
struction loss as follows:

Lcons =λcc(CD(Ys, Ŷ
x
s ) + CD(Xs, X̂

y
s ))

+ λsc(CD(Ys, Ŷ
y
s ) + CD(Xs, X̂

x
s )),

(10)

where λcc, λsc are hyperparameters and CD means the
Chamfer Distance. Finally, we add a regularization term
to correspond close points in the source to close points in
the target.

Lnorm =
∑
i

∑
l∈NY(xi)

e‖xi−xl‖22/α ‖ŷxi
− ŷxl

‖22 , (11)

whereNY(xi) is the same as defined in Equation 9 and α is
a hyperparameter. To sum up, the total loss of our unsuper-
vised point cloud shape correspondence method is:

Ltotal =λ1Lccs + λ2Lcss + λ3Langle
+ λ4Ldomain + Lcons + λ5Lnorm,

(12)

where λi is a hyperparameter, balancing the contribution of
different loss terms. During inference, we set the closest
point y∗j in the feature space for each point xi as its corre-
sponding point. This selection rule can be formulated as:

f (xi) = yj∗ , j
∗ = argmax

j
(sij). (13)

4. Experiments
4.1. Experimental Setup

Dataset. To demonstrate the effectiveness and general-
ization of our method, we perform experiments on human
and animal datasets. We conduct experiments on human
datasets according to DPC’s [12] scheme. For the large-
scale dataset, we randomly downsample the SURREAL [8]
dataset, which contains 230000 training shapes, into 2000
shape pairs as the training set. For the test set, we use
the SHREC’19 [17] dataset, which contains 44 real human
models, and pair them into 430 annotated test examples. To
further verify the ability of our method to learn discrimi-
native feature expression with a small data size, we train
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SE-ORNet on the pairs randomly sampled from 44 SHREC
instances, and the testing is still conducted on the official
430 SHREC’19 pairs.

For animal datasets, we also conduct experiments with
different dataset scales. We use the large-scale SMAL [35]
dataset and TOSCA [2] dataset as the training set and test
set, respectively. SMAL dataset consists of parameterized
models of various animals, and we randomly sample SMAL
to obtain the corresponding shape pairs as the training set.
TOSCA is generated by deforming three template meshes
(human, dog, and horse) into multiple poses. We pair the 41
animal figures in TOSCA from the same category to form
a training set of 260 samples and a test set of 286 samples.
Because the number of points in different shapes varies, we
make a random downsample of the original point cloud to a
fixed number n = 1024 , as done in CorrNet3D [32].

Evaluation Metrics. The evaluation metrics include the
average correspondence error and the correspondence ac-
curacy. Based on the Euclidean-based measure, the average
correspondence error is defined for a pair of source and tar-
get shapes (X,Y ) as follows:

err =
1

n

∑
xi∈X

‖f (xi)− ygt‖2 , (14)

where ygt ∈ Y is the ground-truth matching point to xi.
The unit is centimeter(cm). And the correspondence accu-
racy can be formulated as:

acc(ε) =
1

n

∑
xi∈X

I
(
‖f (xi)− ygt‖2 < εd

)
, (15)

where I(·) is the indicator function, d is the maximal Eu-
clidean distance between points in Y , and ε ∈ [0, 1] is an
error tolerance.

Implementation Details. For a fair comparison with
existing methods [12, 32], we use the same DGCNN [29]
backbone with four EdgeConv blocks as the feature extrac-
tor in the self-ensembling framework. The standard devi-
ation σ in Equation (4) is set as 0.1 for human datasets
and 0.15 for animal datasets. In the Orientation Estima-
tion Module, the feature encoding module is a simplified
DGCNN with three EdgeConv [29] blocks whose layer out-
put sizes are 64, 128, and 256. The k of k-NN is set as 24,
and the slope of all LeakyReLU is 0.2. We feed the output
of the last layer into the proposed feature interaction module
with the output size 256. Then we refine the feature by an
EdgeConv layer with the same output size. The angle clas-
sification head consists of three Linear-BN-ReLU and an
output Linear. The channels are 256, 128, and 128 for the
three Linear-BN-ReLU. The last Linear outputs the proba-
bility for classification. We set the number of bins M as 8
in the angle classification head, where each bin represents a
range of 45◦. The domain discriminator is a PointNet-like

Table 1. Comparison on SHREC and SURREAL benchmarks.
Here, acc means the correspondence accuracy at an error toler-
ance of 0.01, while err refers to the average correspondence error.
Higher accuracy and lower error reflect a better result.

Method Input SHREC SURREAL
acc ↑ err ↓ acc ↑ err ↓

Diff-FMaps [16] Point / / 4.0% 7.1
3D-CODED [8] Point / / 2.1% 8.1
Elementary [4] Point / / 2.3% 7.6
CorrNet3D [32] Point 0.4% 33.8 6.0% 6.9

DPC [12] Point 15.3% 5.6 17.7% 6.1
Ours Point 17.5% 5.1 21.5% 4.6

Figure 5. Correspondence accuracy at various error tolerances
for human datasets. The methods are trained on the SHREC or
SURREAL dataset and evaluated on SHREC’19 test pairs. Com-
pared with other methods, our approach achieves an impressive
performance improvement.

module consisting of two MLPs in Equation (1). The chan-
nels of MLP1 are 512, 256, and 128, while the channels
of MLP2 are 256, 128, and 256. We follow [12] and use
a neighborhood size k = 10 in Equation (9) and (11). λcc
and λsc in Equation (10) are set as 1 and 10, respectively.
λ1, λ2, λ3, λ4, and λ5 in Equation (12) are set as 0.1, 0.1,
1.0, 0.8, and 1.0, respectively.

4.2. Comparison on Human Datasets

For a fair comparison with existing methods, we do not
use any post-processing or additional connectivity informa-
tion. In addition, we follow DPC [12] and train our model
on the SURREAL and SHREC datasets, respectively. Then
we test our model on the official 430 SHREC’19 pairs.

Evaluation on SHREC dataset. As shown in Table 1,
our approach shows significant performance improvements
on the SHREC benchmark and achieves new SOTA perfor-
mance by 2.2% improvements in accuracy and 0.5 reduc-
tions in error. To show the improvement under different er-
ror tolerances, we present the correspondence accuracy for
point-based methods trained on SHREC and evaluated on
the SHREC’19 test set. As shown in Figure 5, our method
achieves better results with different error tolerances.

Cross-dataset Generalization. In Table 1 and Figure 5,
we also report the comparison with other methods on the
SURREAL benchmark. The models are trained on the
SURREAL dataset and evaluated on the SHREC’19 test
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Table 2. Comparison on TOSCA and SMAL benchmarks.
Here, acc means the correspondence accuracy at an error toler-
ance of 0.01, while err refers to the average correspondence error.
Higher accuracy and lower error reflect a better result.

Method TOSCA SMAL
acc ↑ err ↓ acc ↑ err ↓

3D-CODED [8] / / 0.5% 19.2
Elementary [4] / / 0.5% 13.7
CorrNet3D [32] 0.3% 32.7 5.3% 9.8

DPC [12] 34.7% 2.8 33.2% 5.8
Ours 38.2% 2.7 36.4% 3.9

Figure 6. Correspondence accuracy at various error tolerances
for animal datasets. The methods are trained on the TOSCA or
SMAL dataset and evaluated on the official TOSCA test pairs.
Compared with other methods, our method achieves a desirable
performance improvement.

set. The large-scale training set of the SURREAL dataset
helps the deep learning-based methods perform better, even
though there is a domain gap between the SURREAL and
SHREC datasets. With our proposed method, the corre-
spondence accuracy reaches 21.5% at an error tolerance of
0.01, and the average correspondence error is reduced to 4.6
on the SHREC’19 test set.

4.3. Comparison on Animal Datasets

To verify the adaptability of our method to point clouds
of different shapes, we conduct experiments on two ani-
mal benchmarks. Similar to human datasets, we train our
method on TOSCA and SMAL datasets respectively, and
test on the TOSCA test dataset. Table 2 and Figure 6 show
the competitive results on TOSCA and SMAL benchmarks.
Our method achieves a 3.5% accuracy improvement on the
TOSCA benchmark and a 3.2% accuracy improvement on
the SMAL benchmark. Compared with the human datasets,
the animal datasets have various shapes with aligned orien-
tations. Thus, the above performance gains come mainly
from our self-ensembling framework, which can learn re-
liable features on complex data. To verify the effect of
the Orientation Estimation Module, we test our method and
baseline using different augmented test sets in Section 4.6.

4.4. Comparison on Real-world Dataset

CMU Panoptic [10] is a dataset of scanned point clouds
of human subjects in various poses, containing noise, out-

Table 3. Comparison on CMU-Panoptic benchmark. Here, err
means average Euclidean keypoint error (cm).

3D-CODED [8] DIF-Net [25] CorrNet [32] IFMatch [7] Ours
err 17.1 15.3 14.8 8.5 3.2

Table 4. Comparison on SHREC’20 benchmark. The training
dataset is indicated in the bracket.

Method SHREC’20 [SURREAL] SHREC’20 [SMAL]
acc ↑ err ↓ acc ↑ err ↓

DPC [12] 25.0% 3.2 24.5% 7.5
Ours 29.9% 1.2 25.4% 2.9

Table 5. Evaluation of the model with different designs on
SURREAL. Lcss is the consistency loss of the self-similarities,
Lccs is the consistency loss of the cross-similarities, τ means the
stochastic transform, OEM means we use the Orientation Estima-
tion Module, FIM is the Feature Interaction Module, and DAM is
the Domain Adaptation Module.

τ Lccs Lcss OEM FIM DAM SURREAL
acc ↑ err ↓

7 7 7 7 7 7 17.7% 6.1
3 3 7 7 7 7 18.8% 5.7
3 3 3 7 7 7 19.2% 5.6
3 3 3 3 7 7 19.5% 5.5
3 3 3 3 3 7 20.4% 5.1
3 3 3 3 3 3 21.5% 4.6

liers, occlusions, and clutter. Meanwhile, SHREC’20 [6]
dataset contains real scans of various four-legged animal
models. As shown in Table 3 and Table 4, we provide the
results under two real scan datasets, demonstrating the re-
markable robustness of our model to noise.

4.5. Ablation Study

Evaluation of the model with different designs. In this
section, we perform extensive ablation studies on the SUR-
REAL dataset to evaluate the effectiveness of each design.
Table 5 demonstrates the performance of the model with
different designs. Specifically, the first line is the results of
DPC [12], which is our baseline model. The second row in-
dicates that the self-ensembling framework with a stochas-
tic transform achieves a better performance than the original
model. By using Lcss to constrain the consistency of source
features before and after augmentation, the correspondence
accuracy can be improved by 0.4%, as shown in the third
row. As shown in the fourth row, adding the Orientation
Evaluation Module without the Feature Interaction Module
and the Domain Adaptation Module, the performance has
a slight improvement. In the fifth row, by introducing the
Feature Interaction Module into the Orientation Evaluation
Module, the correspondence accuracy can be improved by
0.9%. Finally, after utilizing the Domain Adaptation Mod-
ule, the correspondence accuracy is improved by 1.1%.

Effect of the Self-Ensembling Framework. As shown
in Table 6, we modify the self-ensembling framework to
show the effect of each designed component. Removing
either of the consistency losses leads to a drop in perfor-
mance, which indicates that constraining the student net-
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Table 6. Effect of the Self-Ensembling Framework on SUR-
REAL. Here, we modify the self-ensembling framework to show
the effect of each designed component. N means Gaussian noise,
and R means random rotation along the vertical z-axis.

SURREAL w/o Lccs w/o Lcss w/oN w/oR

acc ↑ 19.9% 20.3% 20.6% 18.8%
err ↓ 5.3 5.1 4.9 5.7

Target Source Probability DistributionSource(R)

Figure 7. Effect of the Orientation Estimation Module. We vi-
sualize of the point clouds before and after orientation rectification
on SHREC’19 test set. We denote the raw source point cloud as
Source and the rectified one as Source(R). Besides, we provide the
probability distributions of the relative rotation angle prediction.

Table 7. Robustness Analysis. To verify the robustness of our
method, we test our method and baselines using different aug-
mented test sets. N means Gaussian noise with standard deviation
σ of 0.1 and R means random rotation along the vertical z-axis.

N R SURREAL(B) SURREAL SMAL(B) SMAL
acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓

7 7 17.47% 6.30 21.55% 4.65 33.79% 5.78 36.39% 3.88
3 7 14.38% 8.74 21.55% 4.66 30.21% 6.06 36.15% 3.92
7 3 8.99% 9.33 17.59% 5.81 9.98% 12.24 28.16% 5.63
3 3 7.80% 11.28 17.58% 5.79 9.54% 12.80 27.60% 5.89

work with soft labels facilitates the consistency of the point
cloud representations. When Gaussian noise and rotation
augmentation are removed, the model performances show
different degrees of degradation. The above experiments il-
lustrate our self-ensemble method can obtain a more robust
feature representation of the point cloud through data aug-
mentation and consistency losses.

Effect of the Orientation Estimation Module. To ver-
ify the effect of the proposed Orientation Estimation Mod-
ule, we visualize the point clouds after orientation rectifica-
tion and the probability distributions of the relative rotation
angle predictions. As shown in Figure 7, our method can
accurately estimate the relative rotation angle and align the
point cloud orientation of the source with that of the target.
More results refer to the supplementary materials.

4.6. Robustness Analysis

To verify the robustness of our method, we use differ-
ent augmentations on the test set. As shown in Table 7, we
use Gaussian noise and random rotation for data augmen-
tation of the test sets. Compared to our method, the base-
line shows a significant performance decrease for test sets

Target Source (Baseline) Source (Ours ) Source (GT)

Figure 8. Visualization of the correspondence results with ro-
tation augmentation. With rotation augmentation on point
cloud pairs, the baseline shows regrettable performances, while
our method still retains desirable performances.

Figure 9. Visualization of point cloud pairs with deformations
on real scanned Owlii dataset. In each pair, the left one is the
source and the right one is the target.

with Gaussian noise. For test sets with random rotation, the
baseline performance is greatly degraded, while our method
retains an acceptable performance. Figure 8 shows that our
SE-ORNet can handle the orientation inconsistency issue of
source and target well. To further verify the robustness and
generalization of our method, we conduct experiments on
the real scanned Owlii dataset [30] and present the visual-
ization in Figure 9. The results show that our SE-ORNet
trained on the synthetic SURREAL dataset still produces
impressive performance on the real scanned dataset, demon-
strating strong generalization and robustness.

5. Conclusion

In this paper, we propose a self-ensembling orientation-
aware network for unsupervised point cloud shape corre-
spondence. To the best of our knowledge, SE-ORNet is
the first self-ensembling network in this area. To solve
the mismatching issue of symmetrical parts in point clouds
with different body orientations, we design a plug-and-play
lightweight orientation estimation module to align the ori-
entations of two point clouds. Extensive experiments con-
ducted on four shape correspondence benchmarks demon-
strate the superior performance of SE-ORNet.
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