
CAP: Robust Point Cloud Classification via Semantic and Structural Modeling

Daizong Ding, Erling Jiang, Yuanmin Huang, Mi Zhang, Wenxuan Li, Min Yang*

School of Computer Science, Fudan University, China
{17110240010@,eljiang21@m.,yuanminhuang21@m.,mi zhang@,22210240091@m.,m yang@}fudan.edu.cn

Abstract

Recently, deep neural networks have shown great suc-
cess on 3D point cloud classification tasks, which simulta-
neously raises the concern of adversarial attacks that cause
severe damage to real-world applications. Moreover, de-
fending against adversarial examples in point cloud data is
extremely difficult due to the emergence of various attack
strategies. In this work, with the insight of the fact that the
adversarial examples in this task still preserve the same se-
mantic and structural information as the original input, we
design a novel defense framework for improving the robust-
ness of existing classification models, which consists of two
main modules: the attention-based pooling and the dynamic
contrastive learning. In addition, we also develop an algo-
rithm to theoretically certify the robustness of the proposed
framework. Extensive empirical results on two datasets and
three classification models show the robustness of our ap-
proach against various attacks, e.g., the averaged attack
success rate of PointNet decreases from 70.2% to 2.7% on
the ModelNet40 dataset under 9 common attacks.

1. Introduction

With the rapid development of 3D sensors such as Li-
DAR used in autonomous vehicles, point cloud data, which
represents real-world objects by a set of 3D coordinates of
points, has been widely applied in various 3D vision appli-
cations [30]. Powered by the deep and non-linear structures,
a number of deep learning models have proved to be ef-
fective in modeling the geometric pattern underlying point
cloud data, such as multi-layer perceptron (MLP) [36], con-
volutional neural network (CNN) [24] and graph neural net-
work (GNN) [47]. Despite the effectiveness, the extensive
usage of DNN also raises the concern of adversarial ex-
amples, where the input point clouds are slightly manipu-
lated by an adversary to cause the misbehavior of a model
[22, 48, 52]. Considering its severe consequences and dam-
age to real-world applications, the study of adversarial ex-
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Figure 1. The demonstration of different adversarial attack strate-
gies in point cloud classification.

amples on point cloud data has been attracting more and
more attention from both industry and academia.

Owing to the unique data format of point cloud, i.e., a set
of 3D coordinates, the design of adversarial attacks varies
in multiple aspects [30]. From the view of perturbations,
the adversaries could shift existing points to create adver-
sarial examples [52], which is similar to the adversarial at-
tacks in images [13]. Besides, the adversaries could also
delete [49, 63] or add points [28, 52] to conduct the attack.
Recent studies show that the generative model, i.e., trans-
forming the original point cloud into a new one [15, 64], is
also effective to find adversarial examples. From the view of
restrictions, the constraints of the perturbations may differ
in different approaches, e.g., limiting the number of altered
points [18, 22], restricting the maximal/averaged distance
of shifted points [40] and constraining the shape similarity
between the adversarial examples and original ones [52].

Recently, many efforts have been made to mitigate po-
tential adversarial examples in point cloud data [26, 65],
which mainly fall into two categories,

• Adversarial Training-based (AT): this line of research
takes inspiration from the work in the image domain [32],
which proposes to pair adversarial examples with correct
labels and put them into the training set [26, 40]. In the
context of point cloud data, the main drawback of AT-
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based methods is that they are only robust to certain kinds
of seen adversarial examples [61]. For instance, when the
adversaries leverage an attack method that differs from
the methods used in AT, the attack success rate could
raise from 0.6% to 100.0% 1. Considering the diverse
attack strategies in this task, it is difficult to find adversar-
ial examples for AT-based methods that could generalize
to various kinds of attacks.

• Recovery-based: this line of research reveals that adver-
sarial examples in point cloud data often contain outlier
points [52]. Based on this, recovery-based methods pro-
pose to restore a clean sample from an adversarial exam-
ple before feeding it to the classification model. For in-
stance, SOR utilizes a rule-based strategy to filter outlier
points [65], while DUP-Net [65] leverages a deep genera-
tive network to recover the samples better [57]. Different
from AT-based methods, the recovery-based methods do
not focus on certain kinds of attack strategies, however,
they could be evaded by shape-invariant attacks [42, 48]
which take the geometric pattern of the perturbations into
account, e.g., generating points that smoothly lie on the
surface of the object [48], to make the recovery less ef-
fective.

Our Work. Despite the variety of attack strategies, the
semantic and structural information of different adversar-
ial examples can hardly change [18, 22, 48, 52, 63]. For
instance, an adversarial example of a car should still look
like a car no matter how adversaries choose the attack strat-
egy, e.g., adding, deleting, shifting or transforming. How-
ever, previous works point out that existing classifiers often
pay attention to limited segments or local features of the
whole object to conduct the prediction, leading to the po-
tential risk of different adversarial attacks [49, 50, 63]. This
motivates us to improve the robustness of existing classifiers
by enhancing the modeling of semantic and structural infor-
mation. Based on this, we develop a novel defense frame-
work called contrastive and attentional point cloud learning
(CAP), which is mainly composed of two modules: (1) the
attention-based feature pooling and (2) the dynamic con-
trastive learning paradigm. The first module aims to cap-
ture the global structural information of the object by rec-
ognizing critical points among the point cloud data. To this
end, we design a multi-head attention layer to assign critical
points with higher weights, which will be used for obtaining
the global representation of the input. We also introduce the
temperature coefficient and random sampling techniques to
prevent the module from focusing on a few fixed segments.
The second module aims to characterize the semantic infor-
mation of different objects by disentangling the features of
objects with different labels while gathering those with the
same label. To this end, we design an interesting dynamic

1For detailed experimental setting and results please refer to Sec. 5

contrastive learning paradigm, which divides the learning
goal into a coarse-to-fine process and helps the learning bet-
ter converge.

With the aid of the proposed CAP, we can signifi-
cantly improve the robustness against various adversarial
examples for existing classification models such as Point-
Net/PointNet++ [37], DGCNN [47] and PointCNN [24].
Furthermore, we show that the robustness of CAP is the-
oretically certified. Specifically, given a certain constraint
of the perturbations, we could evaluate whether the trained
model is robust under arbitrary attack strategies, e.g., if an
adversary would be able to add perturbations to a chair to
obtain a prediction of a car. To this end, we first measure
the changes in features after adding perturbations based on
the manifold learning theory. Then we leverage the extreme
value theory to estimate the upper bound of the potential
changes, which indicates the optimal attack that aims to
move the adversarial example across the decision bound-
ary. After that, the robustness of the model can be mea-
sured based on the estimated upper bound. With the pro-
posed certified defense, a user could estimate the potential
risk of adversarial attacks in real-world applications before
deployment. We validate the proposed CAP on two bench-
mark datasets and seven attack methods. In summary, the
main contributions of this work are:

• We propose a novel and general solution for improving
the robustness of existing point cloud classification mod-
els by modeling the semantic and structural information,
which is able to train robust models against various kinds
of adversarial attacks.

• We present an algorithm to theoretically certify the ro-
bustness of the proposed framework. With the aid of the
manifold learning and the extreme value theory, the esti-
mated robustness is highly consistent with the actual em-
pirical results, i.e., attack success rate.

• Extensive experiments on two benchmark datasets show
that our CAP can significantly improve the robustness
of different classification models (PointNet/PointNet++,
DGCNN and PointCNN), e.g., the attack success rate of
PointNet decreases from 70.2% to 2.7% on average on
the ModelNet40 dataset.

2. Background and Related Work
In this section, we first formulate the task of point cloud

classification and common modules used in recently pro-
posed high-performance models. Then we summarize the
concept of adversarial examples in this task.

2.1. Point Cloud Classification

In this work, we focus on the 3D point cloud classifica-
tion task, i.e., assigning an expected label to a 3D object
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Figure 2. The demonstration of the proposed defense framework CAP.

represented by a collection of points. Formally, given an
input X ∈ RN×3 consisting of N points with 3D coordi-
nates and a label y ∈ {1, · · · , C} representing the corre-
sponding category, the classification model can be denoted
as F : X → {1, · · · , C}. Numerous deep-learning models
have been proposed in recent years for point cloud classi-
fication [36, 38, 53]. In this work, we mainly consider the
point-based models [62, 66] owing to their effectiveness in
characterizing geometry patterns [8, 58], which directly re-
ceive the 3D coordinates as the model input instead of pre-
processed point cloud data [36, 37, 47].

There are three key modules in point-based DNN classi-
fication models: feature transformation, neighborhood ag-
gregation and feature pooling. Firstly, the models transform
the input point cloud X ∈ RN×3 to N latent factors through
a non-linear feature extraction operation, e.g., MLP used in
PointNet/PointNet++ [36,37], CNN in PointCNN [24], and
the graph neural network in DGCNN [47]. Then the neigh-
borhood aggregation module is designed to aggregate the
features of nearby points given a reference point to char-
acterize its local pattern [24, 29, 37, 47]. Before the output
layer, max-pooling over the features of points is performed,
whose output vector is regarded as the global representation
of the point cloud, which is fed into a fully-connected layer
for final classification. For a more comprehensive study
please refer to [30].

2.2. Adversarial Examples

Despite the effectiveness of these approaches, the deep
and non-linear structure also brings up the concern of ad-
versarial examples, where the adversaries slightly perturb
the input point cloud to cause the model to predict wrong
labels [15, 48, 52]. The attack goal can be formed by,

min
η

ℓ(F (X̃), ỹ) , s.t. , ∥η∥p ≤ δ, (1)

where X̃ = X ⊕ η and ỹ are the perturbed input and the
target label, respectively, the operation ⊕ could be adding
[28, 52], deleting [49, 63], or shifting points [22, 31, 48, 52]
on the original inputs. The term ∥η∥p denotes the Lp con-
straint of the perturbation, e.g., L0 and L∞ represent the
number of points perturbed [18, 22] and the maximal value

of the perturbation [40] should be smaller than δ, respec-
tively, while L2 represents the minimal transformation cost
from one point cloud to another, e.g., the Chamfer Dis-
tance [52]. Some work also proposes to impose additional
shape-invariant regularizations, e.g., the surface of the gen-
erated adversarial examples should be smooth [48]. Owing
to the unique form of point cloud data, i.e., a set of coordi-
nates, the design of adversarial examples shows strong di-
versity in this task.

2.3. Defending Against Adversarial Examples

Recently, several defense strategies have been proposed
against adversarial attacks in this task, which roughly fall
into two categories: adversarial training [27, 61] such as
PAGN [26], ART-Point [46] and PointCutMix [60], and
recovery-based approaches such as DUP-Net [65] and LPF-
Defense [33]. Adversarial training proposes to put ad-
versarial examples labeled correctly into the training data,
which naturally lacks the ability to generalize to various at-
tack strategies as we have discussed. On the other hand,
the recovery-based approaches could not deal with shape-
invariant attacks such as KNN [42] and GeoA3 [48] effec-
tively. In this work, we develop a novel solution to defend
against various kinds of attack strategies in point cloud clas-
sification.

3. Methodology

In this section, we present the proposed defense frame-
work for point cloud classification.

3.1. Problem Analysis

Though the design of adversarial attacks varies from dif-
ferent attack strategies, the perturbed point cloud retains
similar structural and semantic information as the origi-
nal one due to the constraints on the perturbations (Eq.
1), i.e., objects containing noise still look like the original
ones in human perception. Despite the numerous efforts
made in developing more effective point cloud classifica-
tions [24, 47, 58], recent studies reveal that existing clas-
sification models often pay attention to trivial parts of the
objects to make predictions, e.g., limited critical sets [49],
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small segments [63] and local point distributions [50]. As
such, small perturbations could make the model predict
wrong labels. To improve the robustness of existing clas-
sification models, we propose to enhance the modeling of
structural and semantic information for different models. To
this end, we develop a novel defense framework called CAP
which mainly composes of two parts: attention-based pool-
ing and dynamic contrastive learning.

3.2. Attention-based Feature Pooling

The motivation of the first module is to help the model
recognize critical points that describe an object. To this end,
we develop a multi-head attention layer to characterize the
structural information, which learns to assign weights for
points when we aggregate their features. Considering that
the number of points is often large, e.g., N = 2048 [36],
it would be difficult to conduct attention operations over all
points. To address this issue, we propose to leverage the
downsampling technique [24, 37, 54], which downsamples
points by certain strategies, e.g., random sampling [24] and
farthest point sampling [37]. Formally, after several layers
of downsampling and neighborhood aggregation (Fig. 2),
the features of points at the last layer could be represented
as h ∈ RN ′×D, where the N ′ and D are the number of re-
maining points and the dimension of latent vectors respec-
tively. Then we compute the following attention score,

αi,c =
exp(hT

i ωc/τ)∑
c′ exp(h

T
i ωc′/τ)

, (2)

where ωc ∈ RD is the query vector, which is a learnable
hidden representation of class c, αi,c is the attention score
between the i-th key point and the label c, and τ is the tem-
perature coefficient that prevents the model from focusing
on only several points. Given the latent vector hi of point
i, we could evaluate its correlation corresponding to class c,
i.e. αi,c, based on which we could obtain the global repre-
sentation of the input by,

ĥc =

N∑
i=1

αi,chi, z = conv([ĥ1, · · · , ĥC ],W
h), (3)

The feature ĥc ∈ RD can be interpreted as the latent vector
of a point cloud under the view of class c. Then we lever-
age a normal convolution operation on all ĥc to obtain the
global representation z ∈ RD, where Wh ∈ RC×1 is the
parameter of the convolution layer. The global feature z
will then be fed to the classification layer to predict the la-
bel of the object. After optimizing the parameters {w,Wh},
the proposed attention module could help the model to fig-
ure out which points play important roles for different kinds
of objects. With the aid of the temperature coefficient, the
attention module tends to focus on more points and outlines
the sketch of the object, i.e., the structural information.

3.3. Dynamic Contrastive Learning

The second module aims to help the model distinguish
the features from different classes of objects. To this end,
we take inspiration from the contrastive learning [5,16,44]
and develop the following triplet loss. Specifically, given a
sample X with label s,

ℓ(X,Xs, Xt; θ) = max(d(X,Xs)− d(X,Xt) + ϵ, 0),
(4)

where Xs and Xt denote two other samples from label s
and t respectively (t ̸= s), d(·, ·) is the Euclidean distance
between the global features of samples, and ϵ denotes a pre-
defined threshold. By minimizing the triplet loss, the model
will distinguish the features of samples with different labels
while gathering those with the same label. This mechanism
helps the model find general characteristics of similar ob-
jects, i.e., the semantic information. Based on this, we pro-
pose the following loss to better separate the features for
training,

Lmargin(X; θ) = max
Xs,Xt∈B(X)

ℓ(X,Xs, Xt; θ), (5)

where B(X) denotes the training batch. Given X with label
s, the batch is constructed by sampling several samples Xs

and Xt with label s and t respectively. However, directly
optimizing the maximum loss in Eq. 5 is too difficult at the
early stage of the model training. As a result, the model can
hardly converge in practice. To address the issue, we design
the following learning paradigm,

minθ Lall(θ;X) + exp[ϵ− L̄all(θ;X)] · Lmargin(θ;X),
(6)

where Lall is the averaged triplet losses (Eq. 4 for all pairs
(Xs, Xt) in the training batch), and L̄ represents the value
of the loss function with no backward gradient. At the early
stage of the learning, the model minimizes the averaged
triplet loss, i.e., the averaged distances of samples from two
labels. When the expected triplet loss tends to converge,
the model turns to focus on the borderline between features
of samples from two labels and only minimizes the triplet
loss for samples near the borderline. With the aid of the
proposed coarse-to-fine process, the model will better char-
acterize the semantic information of different classes of ob-
jects.

3.4. Summary

We now show how to incorporate the proposed two mod-
ules into the training of various classification models. Given
a vanilla classification model which transforms all 3D coor-
dinates to feature vectors, we first perform downsampling
on all features for models that don’t have this module, e.g.,
DGCNN, then we replace the existing max pooling opera-
tion with the proposed attention module. During the train-
ing, we combine Eq. 6 with the common classification loss
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Figure 3. The demonstration of the proposed contrastive learning (left) and the estimation of ρ(s, t) (right).

to jointly train the model. The overall framework is de-
picted in Fig. 2. For more implementation details of the
design please refer to Appendix B.

4. Certified Robustness
In this section, we develop an algorithm to show that the

robustness of the proposed framework can be theoretically
certified. To this end, we follow the previous study on certi-
fied robustness [23] and try to answer the following research
question: will the proposed model be robust against adver-
sarial examples under certain constraints?

4.1. Manifold Learning

To answer the question above, we introduce the mani-
fold learning, which assumes that the data samples in high-
dimensional space often lie on low-dimensional manifolds.
It plays an important role in explaining the behavior of deep
learning models in various applications [10, 43]. Specifi-
cally, suppose the manifold Ms ⊂ RN×3 consists of a set
of samples with label s, and the manifold of all samples
can be denoted by M = ∪sMs. Then the actual distance
between two samples Xi, Xj ∈ M should be measured
by the metric on the manifold instead of the Euclidean dis-
tance between inputs [39, 59], while deep neural networks
have been found to have superior performance in model-
ing the metric on the manifold [6, 55]. Formally, suppose
a classification model can be divided into two consecutive
parts, i.e., the feature extractor fθ and the classification
layer gϕ, respectively. Then given two samples on the man-
ifold Xi, Xj ∈ M, the distance between them can be calcu-
lated as d(Xi, Xj) = ∥zi − zj∥2, where zi = fθ(Xi), zj =
fθ(Xj), zi, zj ∈ RD are the feature vectors learned by the
feature extractor. As such, we could denote the manifold
learned by a classification model as (M, fθ).

Since different models with different model structures or
learning algorithms extract features from different perspec-
tives, the learned manifold (M, fθ) can be quite different,
leading to various prediction behaviors of the classification
models, i.e., decision boundaries [2,11,56]. For instance, if
two manifolds Ms and Mt are highly entangled with each
other in the feature space given a feature extractor fθ, there
exist samples close to the decision boundary [17, 19–21].
Thus, an adversary can easily find small perturbations that
make an input sample cross the decision boundary, i.e., gen-

erating an adversarial example [1, 14, 34, 35].

4.2. Robustness Certification

Based on the above definition, to certify the robustness,
we need to study whether the optimal attack could move one
sample from manifold Ms to Mt with perturbations (Fig.
5). To this end, we propose to observe the following two
distances,

m(Ms; δ) = sup
Xs∈M,∥η∥p≤δ

d(Xs, X̃s)

r(Ms,Mt) = inf
Xi∈Ms,Xj∈Mt

d(Xi, Xj), (7)

where X̃s = Xs ⊕ η. The term m(Ms; δ) measures the
maximal bias of features under certain constraints on per-
turbations, while the medial axes r(Ms,Mt) describes the
minimal distance between two manifolds. As such, if the
medial axes r(Ms,Mt) is much larger than m(Ms; δ),
we could conclude that the model is robust under the con-
straints ∥η∥p ≤ δ, i.e., the case C.3 in Fig. 5. Otherwise,
there may exist case C.1 or C.2, where the optimal attack
could find a sample near the decision boundary and gener-
ate the perturbations to force the model to mispredict.

Nevertheless, since the attack strategy is unseen during
the certification, we should enumerate all potential η to
compute the distances, which is time-consuming and im-
practical. To tackle the issue, we introduce the extreme
value theory, which has been widely used for forecasting the
potential maximal values given several observations [7,12].
Practically, we randomly sample Xs ∈ Ms and perturba-
tions η to compute the distances d(Xs, X̃s). To generate
X̃s for point cloud data, we consider three kinds of pertur-
bations: adding, deleting and shifting existing points. For
details of generating the perturbations please refer to Ap-
pendix B. Then we could estimate the cumulative density
function (CDF) of d(Xs, X̃s) by,

P (ds > d) ≈ v

V
·
[
1 + γs ·

d
(v)
s − d

βs

]−1/γs

, d > d(v)s ,

(8)
where d

(v)
s is the vth-largest distance among sampled

d(Xs, X̃s), V is the sampling size, and γs, βs are the shape
and scale parameters of the distribution. For the derivation
of the CDF and the inference of the parameters, please refer
to Appendix A. Intuitively, as shown in Fig. 5, the value
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Table 1. Attack success rate of ModelNet40 normal, adversarial and recovered samples under various attack and defense methods on three
classification models w/ and w/o our CAP.

PointNet DGCNN PointCNN
Vanilla SOR DUP-Net AT AT-PGD EAT PAGN GvG Ours Vanilla SOR DUP-Net AT AT-PGD EAT PAGN Ours Vanilla SOR DUP-Net AT AT-PGD EAT PAGN Ours

Minimal 26.2% 7.4% 6.8% 7.6% 10.6% 10.0% 5.7% 10.6% 1.8% 7.5% 2.7% 1.9% 3.3% 1.5% 9.7% 4.6% 1.6% 1.3% 1.2% 1.5% 1.3% 0.8% 1.7% 1.2% 0.4%
Smooth 48.7% 4.7% 3.8% 29.6% 36.6% 33.3% 7.1% 36.6% 2.3% 81.7% 23.4% 2.8% 75.0% 35.7% 77.7% 23.4% 3.3% 3.3% 2.2% 2.1% 2.8% 2.5% 14.5% 1.5% 0.9%
IFGM 67.3% 3.8% 2.8% 61.1% 64.8% 42.9% 5.3% 64.8% 2.5% 97.7% 1.4% 1.1% 85.2% 95.4% 67.4% 1.3% 2.2% 6.3% 2.5% 1.5% 6.4% 5.8% 17.9% 1.5% 0.7%
PGD 73.0% 4.9% 3.8% 56.2% 53.0% 45.3% 6.5% 53.0% 1.1% 62.1% 4.0% 2.4% 74.0% 59.0% 89.0% 6.1% 0.9% 4.8% 3.4% 2.3% 2.4% 1.8% 8.9% 1.1% 0.2%

Gen3D-Add 60.4% 5.7% 4.9% 56.4% 56.1% 32.0% 5.9% 56.1% 1.6% 38.9% 3.0% 2.1% 33.3% 8.0% 30.2% 4.2% 2.8% 0.9% 0.9% 1.8% 0.8% 0.7% 1.3% 0.9% 0.4%
Gen3D-Pert 98.4% 7.1% 5.1% 0.6% 70.2% 0.5% 3.8% 70.2% 1.5% 96.8% 4.9% 1.7% 89.1% 81.6% 0.9% 5.0% 3.3% 57.4% 23.1% 4.6% 5.6% 5.1% 0.7% 3.1% 1.8%

KNN 90.6% 23.1% 15.8% 76.3% 99.3% 62.7% 31.6% 99.3% 4.0% 98.4% 12.9% 2.5% 98.7% 96.3% 98.2% 19.1% 6.4% 55.1% 27.4% 5.5% 12.1% 13.9% 36.8% 10.0% 3.3%
GeoA3 100.0% 19.1% 15.8% 100.0% 100.0% 100.0% 30.7% 100.0% 5.0% 97.1% 7.6% 2.2% 100.0% 98.9% 100.0% 14.1% 7.6% 16.8% 11.5% 4.7% 6.2% 4.4% 9.3% 11.1% 5.3%

SI 67.2% 7.3% 6.8% 64.0% 65.4% 48.7% 7.6% 65.4% 4.4% 8.2% 2.4% 2.3% 9.4% 14.2% 31.4% 2.2% 3.2% 4.1% 3.7% 2.2% 3.0% 2.6% 3.0% 3.5% 5.0%
Avg. 70.2% 9.2% 7.3% 50.2% 61.8% 41.7% 11.6% 63.1% 2.7% 65.4% 6.9% 2.1% 63.1% 54.5% 56.1% 8.9% 3.5% 16.7% 8.4% 2.9% 4.5% 4.2% 10.5% 3.8% 2.0%

Table 2. Mean test accuracy on ModelNet40 and ShapeNet.

PointNet DGCNN PointCNN

ModelNet40 Vanilla 86.2% 88.9% 86.8%
CAP 86.8% 90.1% 87.9%

ShapeNet Vanilla 78.6% 80.5% 77.9%
CAP 77.1% 80.5% 79.4%

P (ds > d) stands for the probability of d(Xs, X̃s) > d.
Similarly, we can randomly sample pairs of Xs ∈ Ms,
Xt ∈ Mt and compute the distances d(Xs, Xt) for es-
timating the probability of P (dt < d). After that, we
estimate the intersection of the two CDFs, i.e., dcross. If
ρ(s, t) = P (ds > dcross) = P (dt < dcross) is small enough,
the condition m(Ms; δ) < r(M̃s, M̃ t) will be held for a
large probability, which means that the model is robust un-
der the constraint ∥η∥p ≤ δ between label s and t, and
vice versa. We empirically validate this claim in Sec. 5.3.
In real-world applications, a user of a classification model
could leverage the proposed algorithm to measure the po-
tential risk of adversarial attacks before deployment, i.e.,
the robustness certification.

5. Empirical Results

Experimental Setting. We validate the effectiveness of
our defense framework on three point-based classifica-
tion models: the MLP-based PointNet/PointNet++ [36,37],
the convolution-based PointCNN [24] and the graph-based
DGCNN [47]. The experiments are conducted on two
commonly used benchmark datasets: ModelNet40 [51] and
ShapeNet [4]. For both datasets, we uniformly sample 2048
points for each point cloud and normalize them into a unit
sphere. The mean accuracy of the models above on both
datasets is demonstrated in Table 2. For the attacks, we
consider the following nine representative methods: Min-
imal [22], Smooth [31], IFGM [27], PGD [32], Gen3D-
Add [52], Gen3D-Pert [52], KNN [42], GeoA3 [48], and
ShapeInvariant (SI) [18]. These attacks cover adding and
shifting points with various distance regularizations on the
perturbations, including L2 Distance [41], Chamfer Dis-
tance [52], and other shape-invariant related regularizations
[18,48]. As for comparison, we employ two recovery-based
defense approaches, SOR and DUP-Net [65], and four ad-
versarial training-based approaches, Vanilla AT based on
FGSM (AT) and PGD (AT-PGD) [31], Ensemble AT (EAT)
and PAGN [26]. Specifically, EAT leverages adversarial ex-

amples generated by multiple attack methods for training.
In addition, Gather-vector Guidance (GvG) [9] is consid-
ered for PointNet particularly. We consider both targeted
attacks and untargeted attacks when generating adversarial
examples. For the targeted attacks, the attack effectiveness
is estimated by the attack success rate (ASR), i.e., given a
sample, whether the model predicts our pre-assigned label.
For the untargeted attacks, we leverage the accuracy to esti-
mate the robustness. For more details, including the dataset
statistics, the implementation of the models and baseline
methods, the design of the attack and the hyperparameters,
please refer to Appendix B.

5.1. The Robustness of the Proposed Framework

Table 1 and 3 illustrate the ASR of three classification
models trained with and without the proposed CAP under
various attack and defense methods on ModelNet40 and
ShapeNet, respectively. Note that the vanilla column rep-
resents the results of vanilla models without any defense.
The CAP column represents the results of models trained
with our framework. The Avg. row describes the average
results of all rows above. For more results on the untargeted
attack please refer to Appendix C.

From the empirical results, we observe that training with
CAP can greatly improve the robustness of vanilla models
against all kinds of attacks, e.g., the average ASR drops
from 70.2% to 2.7% on PointNet for ModelNet40 and from
54.4% to 1.3% for ShapeNet. Besides, there are several
important findings. First, the adversarial training-based ap-
proaches often fail for certain kinds of attack strategies. For
instance, although ASR is below 1% for PointNet under
the Gen3D-Pert attack for ModelNet40, the ASR raises to
100% under the GeoA3 attack. The root reason lies in that
the adversarial training could not generalize well to differ-
ent kinds of attack strategies as we have discussed. As a
comparison, the ASRs are all below 5% with our defense
strategy for PointNet.

Second, as for the performance of existing recovery-
based defense methods, we observe that SOR and DUP-Net
can filter out most of the malicious perturbations generated
by attack methods under the constraint of common distance
regularizations, e.g. Minimal, Smooth, IFGM, Gen3D-Add
and Gen3D-Pert, where the ASR can be restricted to rel-
atively low on all models. Despite their effectiveness on
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Table 3. Attack success rate of ShapeNet normal, adversarial and recovered samples under various attack and defense methods on three
classification models w/ and w/o our CAP.

PointNet DGCNN PointCNN
Vanilla SOR DUP-Net AT EAT PAGN CAP Vanilla SOR DUP-Net AT EAT PAGN CAP Vanilla SOR DUP-Net AT EAT PAGN CAP

Minimal 29.6% 6.0% 5.6% 6.7% 11.0% 2.8% 1.2% 8.6% 1.8% 1.0% 2.4% 2.7% 2.1% 1.4% 0.5% 0.6% 0.7% 0.9% 1.3% 0.9% 0.5%
Smooth 15.6% 5.0% 5.1% 30.1% 40.5% 3.8% 1.1% 6.8% 2.1% 1.7% 62.3% 71.4% 11.5% 0.7% 1.1% 0.7% 1.2% 2.6% 3.9% 1.1% 0.5%
IFGM 61.2% 4.1% 3.2% 57.6% 72.0% 2.2% 1.2% 85.4% 1.4% 0.6% 95.0% 98.9% 1.0% 3.9% 2.8% 1.4% 1.7% 3.7% 5.0% 1.5% 1.5%

Gen3D-Add 41.8% 4.5% 4.3% 34.5% 47.7% 2.8% 0.9% 13.1% 1.5% 1.1% 10.5% 18.9% 2.5% 2.9% 0.7% 0.6% 1.1% 1.3% 1.6% 0.7% 0.7%
Gen3D-Pert 97.2% 5.3% 4.0% 62.2% 67.0% 2.5% 0.8% 87.4% 3.8% 1.3% 84.0% 90.7% 2.2% 3.7% 13.9% 6.9% 3.0% 3.4% 5.1% 2.2% 1.9%

KNN 80.9% 29.2% 24.7% 92.0% 96.0% 23.0% 3.6% 94.1% 19.6% 1.3% 94.1% 98.8% 12.4% 7.5% 23.9% 12.6% 4.8% 14.9% 11.6% 9.2% 5.6%
Avg. 54.4% 9.0% 7.8% 47.2% 55.7% 6.2% 1.5% 49.2% 5.0% 1.2% 58.1% 63.6% 5.3% 3.4% 7.2% 3.8% 2.1% 4.5% 4.8% 2.6% 1.8%

Figure 4. The visualization of attention of a chair for chair and
desk as labels, a larger circle means a higher attention score.

the aforementioned attack baselines, we point out that these
defense methods can be evaded by shape-invariant attacks
which take geometric-related regularizations into consider-
ation, such as KNN and GeoA3. Specifically, for Model-
Net40, the ASR of GeoA3 on PointNet is 19.1% and 15.8%
after SOR and DUP-Net preprocessing, respectively. This
can be explained by the carefully designed shape-invariant
losses used in these attacks, including the k-NN distance in
KNN and the curvature loss in GeoA3, which prevent the
generated adversarial perturbations from being filtered out
by these defenses. In comparison, our solution aims to learn
a robust classification model that could defend against var-
ious attack strategies. Besides, we find that vanilla models
with different structures exhibit varying degrees of robust-
ness. For instance, the average ASR of original adversar-
ial examples on PointCNN (16.7%) is much lower than the
other two vanilla models (70.2% on PointNet, 65.4% on
DGCNN) for ModelNet40. The results of ShapeNet exhibit
a consistent trend as well. We believe that such robustness
comes with the in-nature of the vanilla model design, where
a higher aggregation degree could lead to the spread of neg-
ative impact caused by perturbations.

5.2. The Attention-based Pooling

To validate the effectiveness of our proposed attention-
based pooling module, we visualize the attention score, i.e.,
the αi,c in Eq. 3, of the same object regarding two labels.
We visualize the attention in Fig. 4. As illustrated in the
figure, when the model extracts features for label chair, the
sketch of the chair object could be recognized. Further-
more, the chair back is assigned with higher weights. On
the contrary, when the model turns to view the chair as a
desk, the attention scores focus on small segments of the

Figure 5. The visualization of features and distances
d(Xs, X̃s), d(Xs, Xt) w/o and w/ our proposed CAP.

object, which indicates that the model does not recognize
the full picture of the chair. Instead, most attention is laid
on the key points on the chair surface. This result further ex-
plains why models trained with our framework could better
characterize the structural information of objects.

5.3. Visualization of Learned Features

We also conduct two experiments to validate whether our
proposed CAP can better learn semantic information. We
first visualize the features extracted by PointCNN trained
w/ and w/o CAP by the t-SNE [45] algorithm in Fig. 5
(first row). As we can see from the figure, the features from
the vanilla model are highly clustered. In other words, the
underlying manifolds of different labels overlap with each
other. After applying the proposed framework, the man-
ifolds become disentangled, which states that CAP could
help models effectively distinguish different kinds of ob-
jects. To further explore this statement, we sample several
pairs of d(X,Xs), d(X,Xt) and visualize the distribution
of the feature distances in Fig. 5 (second row), where the la-
bel s and t are chair and desk respectively. The result shows
that, with the aid of our framework, the distances between
samples with the same label are close to 0, while those with
different labels are much larger. We also validate the effec-
tiveness of the proposed attention module, we find that the
features are still entangled if we remove the attention mod-
ule. For more visualization results of the other two models,
please refer to Appendix C.
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Figure 6. Left: Estimation of ρ(s, t). Right: ASR of target label
(row) from ground truth label (column).

Figure 7. The visualization of sample pairs with large ρ(s, t) on
PointNet with our CAP.

5.4. Robustness Certification

Furthermore, we present the estimation of the robustness
certification described in our theoretical analysis. Specifi-
cally, we estimate the ρ(s, t) for different pairs of samples
from four selected classes and perform the IFGM attack on
these pairs. The averaged results on PointNet trained with
our framework are reported in Fig. 6. The first finding is
that the estimation is highly consistent with the actual ASR,
i.e., for those pairs with extremely small ρ(s, t), the actual
ASR is also 0. The second finding is that our model can
better learn semantic information of the point cloud data.
For instance, the objects of flower pot are more likely to be
recognized as vase after adding perturbation, however, the
ρ(s, t) and the ASR are both close to 0 when the adversary
tries to force the model to predict them as car. A more il-
lustrative visualization of samples of label pairs (s, t) with
a large ρ(s, t) without CAP, including (vase, flower pot) and
(table, desk), is presented in Fig. 7. This experiment also
states the robustness of our model from another perspective,
that is, the potential falsely predicted labels won’t be much
different with the original label visually, e.g., the damage of
recognizing a flower pot as a vase will not be severe.

5.5. Go Beyond Optimal Attack

Finally, we try to investigate what kind of attacks can
evade our defense. We demonstrate the generated samples
in Fig. 8 by enhancing the perturbation of the Gen3D-Pert
attack, i.e. lowering the weight of distance loss. As a result,
a sample with small perturbations (∥δ∥2 = 0.6) can make
the vanilla PointNet predict the target label table, while the
model trained with CAP still obtains the correct predic-
tion. To evade our defense, the perturbation needs to be

Figure 8. The results of increasing the perturbations w/ and w/o
proposed CAP.

extremely large (∥δ∥2 = 16.7), as shown in the right figure,
where the sample has been transformed into a totally differ-
ent and unrecognizable one from the original. Considering
that an adversary is only allowed to slightly manipulate the
point cloud in real-world applications [3, 25], such an at-
tack is actually unrealistic to be accomplished. For more
results such as the influence of different hyper-parameters
and more case studies please refer to Appendix C.

6. Conclusion
In this work, we propose to mitigate adversarial attacks

in point cloud classification by enhancing the modeling of
semantic and structural information, which can be applied
to various classification models and generalize to different
kinds of attack strategies. Furthermore, with the aid of man-
ifold learning and extreme value theory, we could certify
the robustness against potential adversarial attacks, which
is empirically shown to be highly related to the actual at-
tack success rate. As for future work, we may validate our
defense framework on more kinds of classification models
such as voxel-based and transformer-based approaches. In
addition, we may extend the defense framework to other
point cloud applications such as 3D object detection and
segmentation. Lastly, it would also be interesting to apply
the proposed framework to other domains.
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