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Abstract

Humans possess a versatile mechanism for extracting
structured representations of our visual world. When look-
ing at an image, we can decompose the scene into entities
and their parts as well as obtain the dependencies between
them. To mimic such capability, we propose Visual Depen-
dency Transformers (DependencyViT) 1 that can induce vi-
sual dependencies without any labels. We achieve that with
a novel neural operator called reversed attention that can
naturally capture long-range visual dependencies between
image patches. Specifically, we formulate it as a depen-
dency graph where a child token in reversed attention is
trained to attend to its parent tokens and send information
following a normalized probability distribution rather than
gathering information in conventional self-attention. With
such a design, hierarchies naturally emerge from reversed
attention layers, and a dependency tree is progressively in-
duced from leaf nodes to the root node unsupervisedly.

DependencyViT offers several appealing benefits. (i) En-
tities and their parts in an image are represented by dif-
ferent subtrees, enabling part partitioning from dependen-
cies; (ii) Dynamic visual pooling is made possible. The
leaf nodes which rarely send messages can be pruned with-
out hindering the model performance, based on which we
propose the lightweight DependencyViT-Lite to reduce the
computational and memory footprints; (iii) DependencyViT
works well on both self- and weakly-supervised pretraining
paradigms on ImageNet, and demonstrates its effectiveness
on 8 datasets and 5 tasks, such as unsupervised part and
saliency segmentation, recognition, and detection.

1. Introduction
Humans have a rich mental representation of our sur-

rounding environments. When looking at an image (see
Figure 1(a)), we can recognize the scene and also can

*This work was done when Mingyu was visiting MIT.
1https://github.com/dingmyu/DependencyViT

(a) (b)

Figure 1. (a) is an example of hierarchical dependency structure.
(b) illustrates the dynamic pooling and information aggregation
process of DependencyViT.

quickly decompose it into hierarchical elements with de-
pendencies, e.g., a laptop consisting of a screen and a key-
board is placed on the table. This ability to construct depen-
dencies between objects (and/or their parts) serves as the
cornerstone of human intelligence, enabling us to perceive,
interact, and reason about the world.

From the pre-deeplearning era, many classical image de-
pendency parsing algorithms [25, 27, 66, 70, 81, 98] have
been proposed. For example, Bayesian framework [70],
And-Or graph [27], and hierarchical probabilistic mod-
els [25, 66] for parsing images into their constituent visual
patterns. Apart from that, Capsule Network [40, 61] shows
the potential to learn geometrically organized parts from
images. After that, visual grounding methods [10, 18, 21,
23, 85] try to align the semantic meaning between visual
objects and words to distill effective structures for the vi-
sion branch from language. Similarly, human-object inter-
action approaches [39] learn the relationships between two
objects, e.g., a boy “holds” an ice cream, from manually
annotated labels. Such methods struggle to learn hierarchi-
cal visual structures, such as different parts of an object,
unless exhaustive and time-consuming manual annotations
are provided. Recently, vision-language (VL) grammar in-
duction [72] proposes to extract shared hierarchical object
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dependencies for both vision and language unsupervisedly
from image-caption pairs. However, the above works suffer
two key issues: 1) the parsing relies heavily on supervision
from natural language or human annotations rather than
the image itself, and 2) their parsed structures are object-
level based on a pre-trained object detection model, like
Faster/Mask-RCNN [30, 58], hindering their generalizabil-
ity in part-level and non-detector scenarios.

This paper answers a question naturally raised from the
above issues: can we efficiently induce visual dependencies
and build hierarchies from images without human annota-
tions? Currently, visual parsing works mainly lie in seman-
tic and instance segmentation. Unlike detector-based works
that rely on pre-trained detectors, they parse the image at the
pixel level, which is resource-intensive and costly. Inspired
by vision transformers [22] that take image patches as input
and leverage self-attention to perform interactions between
patches, we propose to build a dependency tree at the patch
level. Taking patches as basic elements and building a tree
structure based on them has two benefits: 1) it unifies part-
level and object-level dependencies, all of which are formu-
lated into subtrees; 2) in the dependency structure, informa-
tion can be aggregated from leaves to the parent (as shown
in Figure 1(b)) to produce a hierarchy of representations for
different parts and object along the path.

In practice, it is non-trivial to build the dependency tree
with the standard transformer. Although the self-attention
mechanism is designed to collect information dynamically
from other patches, the number of attention heads con-
straints the number of tokens that a patch can attend to. 1)
However, each parent could have an arbitrary number of
children in a dependency tree, while each child only has
one parent. Thus it’s more straightforward for a node to
select its parent instead of selecting the child. 2) Further-
more, the transformer treats each patch equally, it does not
distinguish between root and leaf nodes. Contributions for
different subtrees should be distinct.

Motivated by the above observations, in this work, we
propose a dependency-inspired vision transformer, named
Visual Dependency Transformers (DependencyViT). We
propose three innovations to the standard self-attention, as
shown in Figure 2. Firstly, to form a root-centric depen-
dency parser, we introduce a reversed self-attention mecha-
nism by transposing the adjacency matrix. In this way, leaf
nodes can send information to their parents and form hi-
erarchical subtrees. Secondly, we propose a message con-
troller to determine how a node or subtree sends messages.
Thirdly, a soft head selector is introduced to generate a
unique dependency graph for each layer. As a result, self-
attentions in DependencyViT naturally form a dependency
tree parser. We did extensive studies in both supervised and
self-supervised pretraining to show DependencyViT is ca-
pable of capturing either object- or part-level dependencies.

Intuitively, dependency parsing should ease scene under-
standing, as humans can understand complex scenes at a
glance based on visual dependencies. Based on this, we
further introduce a lightweight model DependencyViT-Lite
by proposing a dynamic pooling scheme, reducing the com-
putational cost largely. Within each subtree, we prune those
leaf nodes with the least information received because they
have sent information to their parent node. We show the
pruned nodes can be retrieved by soft aggregations from
their parents, preserving the model capability and dense
representation capability.

We make three main contributions. (i) DependencyViT
performs visual dependency parsing by reversed attention
in self- or weakly-supervised manners. We demonstrate
its effectiveness in both part-level and object-level parsing.
(ii) We propose a visual dynamic pooling scheme for De-
pendencyViT hence DependencyViT-Lite. The dependency
tree can also be progressively built during the pruning pro-
cess. (iii) Extensive experiments on both self- and weakly-
supervised pretraining on ImageNet, as well as five down-
stream tasks, show the effectiveness of DependencyViT.

2. Related Work
Dependency Parsing in Vision. Unsupervised dependency
parsing is a long-standing task in computer vision with
many classical image dependency parsing algorithms that
have been proposed in the pre-deeplearning era [25, 27, 66,
70,81,98]. Dating back to [70] proposed a Bayesian frame-
work for parsing images into their constituent visual pat-
terns. [27, 81, 98] surveyed on stochastic and context sen-
sitive grammar of images with Bayesian framework, And-
Or graph and probabilistic models. [25, 66] proposed to use
hierarchical probabilistic models for detection and recogni-
tion of objects in cluttered environments.

In the deep learning era, a representative accomplish-
ment is Capsule Network [61], where the activity vec-
tor of a capsule represents the instantiation parameters
of an object part. After that, Stacked Capsule Autoen-
coders [40] leverages dynamic routing among capsules to
automatically discover sub-patterns and recover the compo-
sitional relations on the MNIST dataset [17]. There are also
works [24, 34, 37, 82, 83, 88] that further extend the com-
position relations in Capsule Networks and apply them to
more tasks, e.g., generative adversarial scenarios. However,
it remains challenging to make them work on complex natu-
ral images. Most recently, supervised hierarchical semantic
segmentation [44, 48, 49] became more popular. There are
works to perform human parsing [76, 77] based on human
part relations. Recently there are also attempts to perform
part segmentation [4, 13, 36, 51] in an unsupervised man-
ner. [64] explored spectral clustering on self-supervised fea-
tures and pseudo labels on unsupervised saliency detection.

This work provides a new perspective, discovering visual
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dependencies automatically from neural attention in vision
transformers. We believe it is of great significance to both
the traditional grammar induction field, and the recent vi-
sion transformer and multimodal learning research. We pro-
vide an initial study that enables a flexible model that can
simultaneously work on hierarchical parsing, scene graph,
and downstream tasks like detection and segmentation. Fur-
thermore, our model can adaptively induce different kinds
of structures conditions on the given task.
Vision Transformers. ViT [22] first applies self-attention
directly to a sequence of image patches. Works [11, 26, 33,
59,60,65,68,75,80,92] follows the discipline to stack mul-
tiple self-attention layers to model the information across
patch tokens. After that hierarchical designs are widely
adopted to vision transformers [1,12,19,20,28,35,42,43,46,
47,52,55,67,71,71,75,79,84,89,89–91,93,95,96] for better
efficiency and lower memory cost. For example, Swin [52],
ViL [93], and HaloNet [71] apply local windows attention
to the patch tokens, which reduce the quadratic complex-
ity to linear, but lose the ability of long-range dependency
modeling. PVT [75] and CvT [79] perform attention on the
squeezed tokens to reduce the computational cost. How-
ever, previous transformer models fail to discover object
parts in images and resolve their dependencies.

In this work, we focus on efficient transformers for de-
pendency parsing, based on the standard ViT [22]. We pro-
pose DependencyViT, a dependency-inspired vision trans-
former built on reversed self-attention, which captures hi-
erarchies and dependencies between patches automatically.
DependencyViT is orthogonal and seamlessly compatible
with the SoTA transformer training methods, makes it more
attractive than traditional grammar models from a practi-
cal perspective. Moreover, we show that the standard ViT
layout can be highly efficient with our DependencyViT-Lite
and dynamic pooling technique.

3. Method
This work proposes Visual Dependency Transformers

(DependencyViT), a dependency-inspired backbone model
based on reversed self-attention, capturing dependencies
between patches automatically from self- or weakly-
supervised signals for vision tasks.
Preliminaries. Let us assume a RN×C dimensional visual
feature X, where N is the number of total image patches
and C is the number of token dimensions. The number
of heads is H . The standard (forward) multi-head self-
attention is defined as:

Af (Q,K,V) = Concat(head1, . . . , headH)Wo

where headh = Attention(Qh,Kh,Vh) (1)

= softmax

[
Qh(Kh)

T

√
Ch

]
Vi

where Qh = XWQ
h , Kh = XWK

h , and Vh = XWV
h

are RN×Ch dimensional visual features of H heads, X ∈
RN×C denotes the input feature and Wh ∈ RC×Ch denotes
the projection weights of the hth head for Q,K,V, C =
Ch ∗ H , and Wo is the weight of the output projection.
AF = softmax(QKT) ∈ RH×N×N is called the attention
matrix of the layer. In subsequent sections, we will omit the
head dimension and focus on analyzing the attention within
a single head.

3.1. Reversed Attention

The standard self-attention mechanism learns the N×N
attention adjacency matrix to exchange information be-
tween different image patches. It treats all patches equally
and does not follow a tree or graph structure, i.e., it does not
distinguish root and leaf nodes. To generate an adjacency
graph, let us assume that each node can find its parent node
via the argmax(·) function since the second dimension
of the matrix follows a normalized probability distribution.
In this case, the forward self-attention works by gathering
information from parent nodes following the soft probabil-
ities. All the nodes receive information from others, and
eventually, they are dominated by the root node and the
structural information of the image is lost. This learning
scheme may perform well on visual recognition tasks due
to its powerful attentive fusion and interaction capabilities,
but it is not based on explicit hierarchical structures and de-
pendencies.

Ideally, to build a dependency tree, we need to identify
which patches are child nodes or parent nodes, so that in-
formation can be progressively aggregated to the root node.
In turn, the root node distributes messages to leaf nodes.
We achieve this by proposing reversed self-attention, which
simply transposes the adjacency probability matrix so that
the child node sends messages to the parent node. Consid-
ering each element aij in the attention matrix A, we have:

aij = softmax

({
qikj√
Ch

}
j∈[0,N)

)
j

, (2)

where qi is the ith element of Q, and kj is the jth element
of K. Then, after transposing the matrix A, the information
flow also changes as follows:

oi =

∑
j

aijvj

Wo =⇒ oi =

∑
j

ajivj

Wo,

(3)

where oi denotes the ith output and Wo is the weight of
the output projection. We can see the child node ‘receive’
messages in forward attention but ‘send’ messages in re-
versed attention following the softmax probability dis-
tribution. Each child node has only one parent, but each
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parent node can have multiple children. In this way, infor-
mation can be collected progressively from leaf nodes to the
root node through multiple reversed attention layers. At the
same time, the dependency tree is also built bottom-up, and
different subtrees may represent part-level or object-level
semantics.

3.2. Dependency Block

Simply applying transposed attention matrices does not
guarantee a good dependency graph induced. This is be-
cause: (i) The amount of token that a patch can attend to is
controlled by multiple attention heads, thus the dependency
graph is not unique. (ii) Contributions for different sub-
trees are not well distinguished. In some downstream tasks
like image classification, foreground and background trees
should be distinct. To solve the above questions: we further
introduce two modules: a head selector and a message con-
troller. An overview of our dependency block is shown in
Figure 2.
Head Selector. The head selector P is used to choose
proper reversed attention heads for dependency induc-
tion. We obtain it by applying the softmax(·) func-
tion on the linear projections of the input tokens: P =
softmax (XWp), where Wp ∈ RC×H is the projection
weight. By the head selector, we can build dependencies
over all attention heads following the learnable soft prob-
abilities and generate a unique dependency graph for each
layer.
Message Controller. Similarly, the message controller M
is learnable weights imposed on tokens during reversed self-
attention. The goal of M is to determine the extent to which
a node or a subtree sends messages. Specifically, we use two
linear projection layers (who have the dimensions RC×C

2

and RC
2 ×1) with a GELU activation [32] between them to

learn it. After that, a sigmoid(·) function is used to get
the probability in [0, 1] of sending messages.

Note that the weights learned by the message controller
are cumulative across all layers. The message controller M
in the ith layer is computed by M1 ·M2... ·Mi, where the
subscript represents the index of the layer. We also use M
to weight the pooling to get the final representation over all
patches. It has two benefits: (i) If a node does not send in-
formation in a layer, it keeps the status in subsequent layers,
making the induced structure clearer. (ii) Different subtrees
are weighted differently, which filters meaningless patches,
benefiting downstream tasks like recognition and detection.

In summary, we have the reversed attention AR = AF ·
P ·M with dimensional permutations, where AF is the for-
ward attention, as shown in Figure 2. We then compute
the soft dependency mask by applying the sum(·) opera-
tor on AR over the head dimension. The dependency graph
and tree structure are then obtained by argmax(·) and the
chu-liu-edmonds algorithm [15], respectively.

Xin
N × C

KT
H × Ch × N

Q
H × N × Ch

M′
N × 1

V
H × N × Ch

P′
N × H

Norm & Projection

AF
H × N × N*

⊗
Softmax

P
H* × 1 × N

M
1× 1 × N

AR
H × N* × N

Transpose
⨀

Projection

Xout
H × N × Ch

⊗

Sigmoid
&

Permutation

Softmax
&

Permutation

⨀

AM
N × N

Sum

⨀
⊗ Matmul Product
Hadamard Product

Figure 2. An architecture overview of our proposed reversed at-
tention block in DependencyViT. FeedForward Networks (FFNs)
and residual paths are omitted here. The input and output tokens
are Xin and Xout with the number of tokens N and token dimen-
sions C, respectively. The number of attention heads is H , and
the per-head token dimension is Ch. We obtain the reversed atten-
tion matrices AR by transposing the forward attention weights AF

with a head selector P and a message controller M imposing on
it. After that, the soft dependency mask AM is induced by apply-
ing summation on AR over the head dimension. ‘*’ indicates the
dimension that is normalized by softmax probability distribution.

3.3. Dynamic Pooling based on Dependencies

Our dependency block is able to learn dynamic and com-
prehensive information flow between patches for depen-
dency induction. Intuitively, with such visual dependen-
cies, scene understanding can be simplified with less com-
putational effort as most of the information can be repre-
sented by a few nodes. With this inspiration, we introduce
a dynamic visual pooling scheme that reduces the compu-
tational cost largely (i.e., FLOPs and GPU memory), and
propose a lightweight model DependencyViT-Lite.

Specifically, we rank and prune those leaf nodes which
have the least information received, because 1) they are not
the parent of any node and 2) they rarely transmit messages
or they have sent enough information to their parent nodes.
We progressively prune the leaf nodes with the least mes-
sages as the depth of the network increases. In this way,
the memory and resource costs are largely reduced. Mean-
while, the tree architecture is still maintained by recording
relationships between the pruned nodes and their parents to
form a complete tree. Most importantly, DependencyViT-
Lite is able to perform dense prediction tasks though some
of its tokens are removed. According to the dependency
graph, we retrieve those pruned nodes by a soft aggregation
from their parents.

14531



3.4. Model Analysis and Protocols

Model Instantiation. In this work, we follow the design
strategy of the standard ViT (DeiT) [22, 68]. To show
the efficiency and effectiveness of our model, we choose
two different model sizes and build DependencyViT-T and
DependencyViT-S based on tiny and small ViTs as back-
bones, respectively. We set the number of attention heads
H = 12, the number of dependency blocks L = 12 with
residual paths and FFNs of ratio 4 as in standard ViT. We
set the token dimensions C = {192, 384} for tiny and
small models, respectively. Take an image with an arbi-
trary resolution, a C-dimensional 16× down-sampling fea-
ture is obtained after the patch embedding layer. There are
no overlaps between any of the two patches. Conditional
positional encoding is used as in [14]. Based on our obser-
vation that the ‘cls’ token passes information between two
visual patches and leads to confusion in dependencies, we
remove it from our model. For DependencyViT-Lite mod-
els, we prune 16% number of nodes (e.g., 32 of 196) at the
{2, 5, 8, 11}th layers, respectively.
Complexity Analysis. Simply applying the standard global
self-attention leads to a complexity of O(2N2C+12NC2),
which contains O(2N2C) for self-attentions, O(4NC2) for
linear projections, and O(8NC2) for feedforward networks
(FFNs). Our head selector and message controller lead to
additional costs of O(NCH) and O(NC), respectively,
which are much smaller than the costs of other components.
In contrast, our DependencyViT-Lite reduces the number of
tokens N to 0.3N and even smaller through dynamic pool-
ing, which lowers the complexity exponentially (to 10%
and even smaller). DependencyViT-Lite can run with batch
sizes more than three times that of ViT on a same GPU.
Pretraining Protocols. We apply two different pretraining
methods on DependencyViT: weakly-supervised and self-
supervised. The first one is supervised pretraining on Im-
ageNet by leveraging the information in class-level labels.
The supervision encourages the model to learn high-level
object-aware semantics, based on which DependencyViT
learns to model object-aware dependencies by gathering in-
formation from subtrees to the root node (centered object).

For self-supervised pretraining, we take inspiration from
recent contrastive learning and masked image modeling
methods [2,5,7,9,29,97] as they can learn both object-level
global representations and part-level local features. Specifi-
cally, we follow the same pretraining protocol as iBOT [97]
(e.g., employ self-distillation and masked image modeling
on DependencyViT) and enjoy the benefit of its powerful
pretraining capabilities. After pretraining, DependencyViT
can establish a dependency tree for an unseen image, con-
taining part-to-part, part-to-object, and object-to-object de-
pendencies.

Figure 3 shows the dependency trees of an image from
ImageNet parsed by weakly-supervised and self-supervised

…

Weakly-sup.

Self-sup.

Patch Merging Part Dependency

…

Input Image

Figure 3. Visualizations of dependency trees parsed by self-
and weakly-supervised pretrained DependencyViT, respectively.
Patches are aggregated gradually until the root node is formed. To
facilitate observation, the background area is not filled to the root
node. It can be seen that weakly-supervised DependencyViT fo-
cuses more on the whole object, while the self-supervised Depen-
dencyViT captures more fine-grained part-aware dependencies.

pretrained DependencyViT, respectively. It can be seen
that weakly-supervised pretrained DependencyViT focuses
more on the entire object, while the self-supervised pre-
trained DependencyViT can capture more fine-grained part-
aware dependencies. The parsed dependency tree is ex-
pected to help many downstream tasks, such as saliency
detection and part segmentation. For more analysis and de-
tailed settings, please refer to Appendix.

4. Experiments
In this section, we conduct extensive experiments

to show the effectiveness of DependencyViT and
DependencyViT-Lite on visual parsing and recogni-
tion. They are: unsupervised part segmentation on the
Pascal-Part [8] and Car-Parts [56] datasets; unsupervised
saliency detection on the ECSSD [63], DUTS [73] and
DUT-OMRON [87] datasets; dependency parsing on
the COCO dataset [50]; and image classification on
ImageNet-1K [16].

4.1. Unsupervised Part Segmentation

To show the effectiveness of DependencyViT on vi-
sual dependency parsing, we apply it to the unsupervised
part segmentation task without part labels, which is chal-
lenging and under-explored as it requires a comprehen-
sive dependency understanding between parts. Consid-
ering available part parsing datasets, e.g., Pascal-Part [8]
and Car-Parts [56], are of small resolution and data scale,
tiny ViT model is enough to work on this situation and

14532



Table 1. Part segmentation results on the Pascal-Part [8] and Car-Parts [56] datasets. ‘clustering’ indicates applying k-means [53] on feature
representations; ‘maximum spanning’ denotes the dependency tree is generated by Chu-Liu-Edmonds maximum spanning algorithm [15].

Method Pretraining Type Part Discovery by Pascal-Part [8] Car-Parts [56]
mIoU (%) mAcc (%) mIoU (%) mAcc (%)

DeiT [68] weakly-sup. clustering 7.2 22.6 8.9 29.5
DeiT [68] weakly-sup. maximum spanning 18.9 35.5 17.8 37.7
DependencyViT weakly-sup. clustering 11.6 31.7 10.9 29.7
DependencyViT weakly-sup. maximum spanning 23.2 41.7 22.6 40.0
iBOT [97] self-sup. maximum spanning 25.1 44.8 25.7 46.1
DependencyViT self-sup. maximum spanning 28.7 47.9 27.0 47.2

Figure 4. Visualization of part partitioning on the Pascal-Part [8]
and Car-Parts [56] datasets. From top to bottom: 1) the original
image; 2) our generated part mask of which each color represents
a subtree in the hierarchy; 3) the ground truth part segments.

further scaling model size up brings no gains. We take
DependencyViT-T as our base model.

Both weakly- and self-supervised pretrained models are
evaluated. For DependencyViT, we average the learned de-
pendency masks of all layers, and then leverage the Chu-
Liu-Edmonds maximum spanning algorithm [15] to gener-
ate the dependency tree. After that, we perform matching
between all subtrees and part segments by the Hungarian
maximum matching algorithm [41] and compute the mean
intersection over union (mIoU) and mean accuracy (mAcc)
metrics for evaluation. Note that we remove small part re-
gions from evaluation for more reliable results. We take
DeiT-Tiny [68] as the baseline. Since there are no explicit
dependencies in it, the Naı̈ve solution is to partition the
patches in their latent representation space by k-means clus-
tering [53] (k is set to 20 in this paper). To get a stronger
baseline, we also build tree structures on DeiT by applying
the maximum spanning algorithm on its mean pooled atten-
tion map. For self-supervised models, DependencyViT-T
is evaluated with the maximum spanning algorithm for de-
pendency tree generation. We take the self-supervised iBOT
(tiny DeiT) as a strong baseline for fair comparison.

From the results shown in Table 1, we observe that De-
pendencyViT consistently outperforms the baseline meth-
ods by a large margin on both weakly- and self-supervised

Figure 5. Visualization for unsupervised saliency detection on the
ECSSD [63], DUTS [73] and DUT-OMRON [87] datasets. From
top to bottom: 1) the original image; 2) our generated saliency
mask; 3) our results post-processed by the bilateral solver [3]; 4)
the ground truth part partitions.

settings and two datasets, demonstrating the effectiveness of
our dependency parsing. Self-supervised DependencyViT
shows better performance than the weakly-supervised one
as it can learn more fine-grained dependencies. We visual-
ize our patch-level part partitioning results in Figure 4.

4.2. Unsupervised Saliency Detection

Besides part-level partitioning, DependencyViT can also
work on object-level comprehensions, thanks to its built-
in hierarchical dependencies. We evaluate the unsuper-
vised saliency detection results of DependencyViT on three
datasets. Except baseline methods [45, 54, 86, 99] that are
specifically designed for the task based on pseudo-labels,
we evaluate weakly-supervised DeiT for fair comparison.
Following [78], we leverage normalized cut [62] on token
representations to get the salient area of an image for DeiT.
For DependencyViT, the soft dependency mask is added to
the representation for better results. Bilateral solver [3] is
used as post-processing for segment smoothing.

Figure 5 visualizes the saliency detection map of our
method DependencyViT (weakly-sup.). From the figure
and Table 2, we see that: 1) DependencyViT is superior to
its counterparts, including the pseudo label-based saliency
detection methods and DeiT. 2) Weakly-supervised Depen-
dencyViT outperforms the self-supervised one, indicating
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Table 2. Unsupervised saliency detection on ECSSD [63], DUTS [73] and DUT-OMRON [87]. Tiny models, token normalized cut [62,78]
and bilateral solver [3] post-processing are used for DEiT and DependencyViT.

Method
ECSSD [63] DUTS [73] DUT-OMRON [87]

maxFβ

(%)
IoU
(%)

Acc.
(%)

maxFβ

(%)
IoU
(%)

Acc.
(%)

maxFβ

(%)
IoU
(%)

Acc.
(%)

DeepUSPS [54] 58.4 44.0 79.5 42.5 30.5 77.3 41.4 30.5 77.9
HS [86] 67.3 50.8 84.7 50.4 36.9 82.6 56.1 43.3 84.3
wCtr [99] 68.4 51.7 86.2 52.2 39.2 83.5 54.1 41.6 83.8
WSC [45] 68.3 49.8 85.2 52.8 38.4 86.2 52.3 38.7 86.5
DeiT [68] 49.3 40.5 72.7 34.2 26.8 72.7 33.2 27.2 71.1
DependencyViT (self-sup.) 62.1 55.0 78.4 43.0 35.9 73.2 32.5 28.0 67.2
DependencyViT (weakly-sup.) 62.0 48.4 83.6 53.8 37.0 87.5 52.0 39.7 88.4

Figure 6. Visualizations of dependency trees parsed by self-supervised DependencyViT (small). Different colors represent different
subtrees. Here we ignore the nodes in the small region (less important) and display the main subtrees.

weakly-supervised model is better at modeling object-level
semantics. 3) The failure case in the last column of Figure 5
demonstrates how DependencyViT works. The two birds
belong to the same semantic category but different objects,
hence two subtrees.

To verify the effectiveness of dependency for object-
level understanding, we make ablative comparisons by
whether adding the soft dependency (+dependency) to the
feature representation, see Figure 7). We see that 1) the
dependency mask improves the performance significantly,
showing the effectiveness of DependencyViT in learning
object-level dependencies; and 2) the bilateral solver brings
considerable improvement over all models.

4.3. Visualization

As shown in Figure 6, we visualize our visual depen-
dency parsing on images from the COCO dataset, which
does not overlap with the pretraining ImageNet dataset. We
can see that the foreground and the background areas are
represented by different subtrees, which further construct

the overall scene dependency tree. The root subtree is gen-
erally an important part of the foreground object.

More downstream experiments, e.g., semantic segmen-
tation on ADE20K [94], object detection on the COCO
dataset [50], and video recognition on Kinetics-400 [38],
can be found in Appendix.

4.4. Visual Recognition

We show DependencyViT can work as a visual back-
bone for recognition and its downstream tasks. Two
different model configurations, i.e., DependencyViT and
DependencyViT-Lite, are evaluated and compared with
many counterparts. We make the following summaries
from Table 4. 1) DependencyViT outperforms all counter-
parts, e.g., 3.2% and 2.3% improvements over DeiT-Tiny
and DeiT-small, respectively, indicating dependency pars-
ing is likely to contribute to visual recognition tasks. 2)
DependencyViT-Lite is the most efficient one (0.8 GFLOPs
only) of all models and shows good performance, demon-
strating the effectiveness of our progressively dynamic
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Table 3. Comparisons of image classification on ImageNet-1K. All models (tiny) are trained
and evaluated with 224× 224 resolution.

Model Direction
Head

Selector
Message

Controller
#Params

(M)
FLOPs

(G)
Top-1
(%)

Baseline (DeiT) [68] forward × × 5.7 1.3 73.3
Forward + P forward

√
× 5.7 1.3 73.4

Forward + M forward ×
√

6.1 1.3 74.8
Forward + P + M forward

√ √
6.2 1.3 74.8

Reverse + P reverse
√

× 5.7 1.3 73.6
Reverse + M reverse ×

√
6.1 1.3 74.9

Reverse + P + M (DependencyViT) reverse
√ √

6.2 1.3 75.4
DependencyViT-Lite (forward) forward

√ √
6.2 0.8 71.1

DependencyViT-Lite (reverse) reverse
√ √

6.2 0.8 73.7

Figure 7. Ablative comparsions (tiny) of
saliency detection on ECSSD dataset.

representation
+dependency

+bilateral solver

35

40

45

50

55

60

m
Io

U
 (%

)

35.5

40.5
38.4

40.1

48.4

44.7

49.9

55.0

DeiT
Ours (weakly-sup.)
Ours (self-sup.)

Table 4. Comparison of image classification on ImageNet-1K. All
models are trained and evaluated with 224 × 224 resolution. *
denotes the method can not be used for dense predictions.

Model Hierarchical Cost #Params
(M)

FLOPs
(G)

Top-1
(%)

ResNet-18 [31]
√

low 11.7 1.8 69.9
ConvMixer-512/16 [69] × high 5.4 – 73.7
DeiT-Tiny/16 [68] × high 5.7 1.3 72.2
CrossViT-Tiny [6] × high 6.9 1.6 73.4
PVT-Tiny [75]

√
low 13.2 1.9 75.1

DependencyViT-Lite-T × low 6.2 0.8 73.7
DependencyViT-T × high 6.2 1.3 75.4
ResNet-50 [31]

√
low 25.0 4.1 76.2

ConvMixer-768/32 [69] × high 21.1 – 80.2
DeiT-Small/16 [68] × high 22.1 4.5 79.8
CrossViT-Small [6] × high 26.7 5.6 81.0
PVT-Small [75]

√
low 24.5 3.8 79.8

Swin-Tiny [52]
√

low 28.3 4.5 81.2
CvT-13 [79]

√
high 20.0 4.5 81.6

DynamicViT-LV-S/0.5 [57]* × – 26.9 3.7 82.0
PVTv2-B2 [74]

√
low 25.4 4.0 82.0

DependencyViT-Lite-S × low 24.0 3.0 80.6
DependencyViT-S × high 24.0 5.0 82.1

pooling. Typically, hierarchical transformers are more ef-
ficient and save computations for downstream tasks. Our
DependencyViT-Lite reduces costs through induced depen-
dencies even using a standard ViT layout. 3) Dynam-
icViT [57] is a pruning-based transformer for the classifi-
cation task. However, it can not perform dense predictions
because the information of its pruned patches is lost. On
the contrary, the pruned nodes in our DependencyViT-Lite
can be retrieved from their parents for dense predictions,
showing the importance of dependency induction.

4.5. Ablation Study

We perform ablation studies on tiny models in Table 3. P
denotes the head selector, and M denotes the message con-
troller. We use ‘forward’ and ‘backward’ to indicate the
attention direction. We can see that the head selector brings

smaller gains than the message controller. And the gains in
reverse attention are larger than gains in forward attention.
Both the head selector and the message controller are im-
portant to dependency induction and the dynamic pooling
scheme, i.e., DependencyViT-Lite.

More ablation studies and downstream experiments can
be found in Appendix.

5. Conclusion

This paper studies patch-level visual dependency pars-
ing using our proposed DependencyViT. We show that the
reversed self-attention mechanism in transformers can nat-
urally capture long-range visual dependencies between im-
age patches. With reversed self-attention, a child node is
trained to attend to its parent and send the information to
the parent node, and a hierarchical dependency tree can
be established automatically. Furthermore, dynamically
image pooling is made possible by learned dependencies,
i.e., merging child nodes into their corresponding parent
nodes, based on which we propose a lightweight model
DependencyViT-Lite. Extensive experiments on both self-
and weakly-supervised pretraining on ImageNet, as well as
five downstream tasks, show the model’s effectiveness.
Limitations. Although our work achieves good perfor-
mance on many tasks by visual dependency induction, it is
an initial study with a fixed patch size and efficient settings
The current patch size limits its performance on small ob-
jects. We will explore more and further scale up our model.
The proposed approach has no ethical or societal issues on
its own, except those inherited from computer vision.
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